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Abstract: In the present climate, due to the cost of investments, pollutants of fossil fuel, and global
warming, it seems rational to accept numerous potential benefits of optimal generation expansion
planning. Generation expansion planning by regarding these goals and providing the best plan for
the future of the power plants reinforces the idea that plants are capable of generating electricity in
environmentally friendly circumstances, particularly by reducing greenhouse gas production. This
paper has applied a teaching–learning-based optimization algorithm to provide an optimal strategy
for power plants and the proposed algorithm has been compared with other optimization methods.
Then the game theory approach is implemented to make a competitive situation among power plants.
A combined algorithm has been developed to reach the Nash equilibrium point. Moreover, the
government role has been considered in order to reduce carbon emission and achieve the green
earth policies. Three scenarios have been regarded to evaluate the efficiency of the proposed method.
Finally, sensitivity analysis has been applied, and then the simulation results have been discussed.

Keywords: generation expansion planning; teaching–learning based optimization; game theory;
carbon emission

1. Introduction

It is evident that energy has always been an indispensable part of nations’ plans.
Several decades ago, it used to supply energy for a limited number of household items
chiefly. In parallel with advances in technology and industry, consumption and dependence
on electricity have boomed throughout the years. Therefore, having an optimal strategy for
the future structure of industries that generate electricity is momentous. For this reason, the
generation expansion planning (GEP) problem can be considered to ensure that a fraction of
future load demand would be supplied. For years, different optimization techniques have
been investigated in order to provide an optimal plan for the expansion of generation [1].

Among related works, Ref. [2] provides a new method with game theory approach in
order to regard the electricity market adjacent to the GEP problem with PSO optimization
algorithm to provide the optimal plan for expanding the generation and reducing the CO2
gas emission. In [3] Corrected Normal Boundary Intersection to diagnose pareto optimal
solutions, a contributory lexico-graphic optimization method is applied to improve the NBI
method modeled on a synthetic test system over a 6-year period. Ref. [4] proposes a new
hybrid model next to GEP for the case study in Iran to estimate the GEP problem for the long
term (2016–2030). Furthermore, it directs at improving the combination of renewable energy
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resources in the network. For mentioned purpose, it uses a hybrid fuzzy analytic network
and NSGA-II in two stages, respectively. Finally, it demonstrates the high importance
of renewable energy plants in the future power system of Iran. Ref. [5] simultaneously
considers the electricity demand forecasting and generation expansion planning to promote
the power system planning. In this study, genetic algorithm, artificial immune system,
and differential evolution solve the problem during two periods, long-term (12 years) and
short-term (6 years). Its main aim is to minimize the cost and environmental effects.

Due to the importance of renewable energies, Ref. [6] introduces a new model for
GEP to increase the incorporation of renewable energy resources over the planning. This
survey is in the case study of China with considering uncertainties of load and renewable
energies. In [7], a new technique is presented for the GEP problem to integrate distributed
and centralized generation units. Moreover, this study considers the genetic algorithm to
discover the optimal resolution for a combined objective function. Ref. [8] provides a model
for expanding the power systems by simulating over the 15-year period. In this study, the
applied algorithm to establish the optimal solution is a meta-model assisted evolutionarily.
Results of this paper exhibit that it is an efficient approach.

Because of the penetrating the renewable power plants in power systems considering
the energy storage systems in networks is necessary [9]. In [10], the GEP problem is
considered with hourly variability of the wind and solar power. Ref. [11] introduces a
model for GEP that the units of the generation that energy storage systems are considered
to diminish the reliability of the power system. In this kind of model, the cost of reliability
is calculated by the amount of the lost load and the anticipated energy not supplied in
which, a novel linear expected energy not supplied model is employed that is simulated
on the IEEE-RTS system to display the efficiency of this new formulation. In [12], different
models of GEP combined with renewable energy resources are reviewed. It divides them
based on the employed techniques of optimization. The key point about this paper is
comparing them with their merits and demerits. Ref. [13] suggests an optimum plan for
the generation expansion to lessen the total cost. This goal is obtained by ensuring the
power system operates correctly and considering the requisite conditions of integrating
renewable energy resources in the power grid (model for thermal–wind–photovoltaic).
In [14], the expansion is considered for the transmission and generation problem for an
energy hub (electricity and natural gas). The regarded way for this problem in this study is
an improved genetic algorithm.

The influence of solar and wind integration and distinct reliability aims is analyzed
in [15] for the electricity generation expansion planning. The applied model for expanding
generation capacity is national electricity market optimizer (NEMO) through the covariance
matrix adaptation evolution strategy (CMA-ES) algorithm considered for all candidates
in the case study of Indonesia’s Java–Bali. Differential evolution (DE), opposition-based
differential evolution (ODE) and self-adaptive differential evolution (SaDE) algorithms are
considered in [16] to find the optimized plan for generation expansion of the case study
in Indian state Tamil over a 6-year and a 12-year period. The key point about this study
is considering the penalty costs on emissions and new technologies for generating the
electricity and comparing them in different strategies.

Considering the presence of renewable energy resources for environmental reasons
in the future of a system is necessary, in [17], the differential evolution algorithm (DE) is
exerted to GEP problem with the wind power plant for different goals.

By considering the unit commitment as one of the most important problems in the
operation of power systems, in [18] influence of unit commitment with load and renew-
able energy unpredictability on the GEP problem is studied. In this study, the regarded
method for the GEP problem is a robust model and for unit commitment is a data-driven
robust model.

It is obvious that in parallel with the expansion of the generation units, the trans-
mission should be expanded [19]. In [20], the planning of renewable energy resources is
considered adjacent to the expansion of the transmission to promote the system’s flexibility.
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Mixed-integer linear programming (MILP) model is exerted for finding the optimal answer
for this issue. In [21] a mixed-integer linear programming formulation is provided for
the generation and transmission expansion planning problem simultaneously, which is re-
solved by a nested benders decomposition and a tailored benders decomposition algorithm
in the case study of Texas.

Due to the consequences of the carbon environment having an optimal plan for the
expansion of the generation units is necessary to decrease the amount of carbon. So, in [22],
a low carbon model for GEP is introduced. The problem is modelled as a mixed-integer
linear programming (MILP) which is resolved through the CPLEX algorithm.

Since climate mitigation has become an important issue throughout the world, in [23],
it is considered with a GEP problem which is modelled as a multi-level optimization
problem with a risk-averse agent for balancing. In [24], a framework for the GEP problem
with the mixed energy system is provided. The problem is solved by formulating a mixed-
integer linear programming problem to decrease the cost of the mixed energy system. With
increasingly integrating renewable energy resources in the power systems, the importance
of their uncertainty increases. Ref. [25] plans generation expansion for stochastic wind–
thermal power plant of which the probabilistic characteristics are considered. In this study,
a MILP also is introduced which is solved with the branch-and-cut algorithm. Ref. [26]
provides a two-stage nested bilevel model for the GEP problem. Furthermore, a novel
algorithm is introduced in order to convert the provided model to a mixed-integer quadratic
programming (MIQP) problem.

Having enough information about the different dimensions of the conducted works
about the GEP problem for providing a novel technique can be useful. Hence, Ref. [27] carry
outs a review about the distinct dimensions of the state-of-the-art generation expansion
planning such as the plan for expansion of the transmission, the systems work with gas,
interim activities of markets for power, electric automobile and that sort of things. In [28],
the GEP problem is considered in the presence of the renewable energy market. In this
study, the provided problem is solved by the integration of the Karush–Kuhn–Tucker
(KKT) method and the fixed-point iterative algorithm. The uncertainty of renewable energy
resources is one of the most important criteria that should be considered. In [29], a two-
stage robust plan is proposed for generation expansion regarding the probability of the
immense amount of wind energy. In this paper, the provided GEP problem is resolved with
mixed-integer linear programming (MILP).

The hydropower plant is one of the useful power plants for areas with enough hy-
dropower. In [30], the GEP problem for hydropower is considered in the case study of the
Sulawesi power system. Ref. [31] in a multi-objective model for the GEP problem focuses
on the operational flexibility in the presence of renewable energy resources. The applied
way for solving this problem is the non-dominated sorting genetic algorithm version II
(NSGA-II).

Along with advances in technologies in power systems, the appliances and structure of
these kinds of systems will change. In [32], the GEP problem is considered with microgrid
aggregators. In this study, the applied algorithm to find the best solution is the gravitational
search algorithm (GSA).

To create a competitive situation in the GEP problem, different game theory (GT)
approaches such as Nash–Cournot (NC), Nash–Bertrand (NB), and bi-level are used. In [33],
the Cournot–Bertrand model is applied for the GEP problem and categorizes 12 primary
models of this theory. In a similar study [34], a novel bi-level technique is regarded for GT
to provide an optimal plan for the generation expansion of the power systems. In [35], a
game theoretical approach is considered to provide an optimal plan simultaneously for
sub-transmission and generation expansion.

The increasing presence of distributed generation in power systems demands a key
point that should be considered in the generation expansion planning problem. This key
point is coordination and interaction between the transmission and distribution systems
that in [36] GEP problem is regarded with this criterion. Additionally, in [37] is used
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a new way which is called Bayesian network for the dynamic behavior of the system
with considering uncertainties of renewable power plants in a multi-objective generation
expansion planning decision model regarding permanent development. Because of the
changeable output of renewable energy resources, considering flexibility requirements with
respect to the power system is an important issue. Ref. [38] introduces a power-based GEP
model that improves this issue.

Consequently, significant contributions of this study proposed a novel algorithm and a
developed model to solve the GEP problem by a game theory approach. First, we analyzed
the GEP problem with a TLBO algorithm that outperformed in the quality of solutions
and convergence speed under the condition of our problem and compared the results with
previous methods. Next, we have modelled the problem by GT to maximize each power
plant’s profit. In the end, we considered carbon emission parameters in the NC model,
met the peak demand and formulated the government’s objective under a unique strategy,
namely with the carbon tax and government subsidy. We analyzed the effect of applied
regulation on the optimal decisions of the NC model in the GEP problem.

In conclusion, we applied mentioned scenarios regarding the structure of the GEP and
government regulations. We comprehensively compared the effects of different govern-
mental carbon and subsidy regulations by sensitivity analysis.

The rest of the paper is organized as follows: Section 2 describes the problem. Section 3
applies the TLBO algorithm to the GEP problem and compares it with other prominent
algorithms. In Section 4, the results of the simulation are illustrated, then the results are
discussed and analyzed. In the last section, the conclusion is presented.

2. Problem Description
2.1. Generation Expansion Planning

The GEP problem is one of the most important parts of planning for power systems. It
aims to find the best method to expand the power plants with the most reliability and the
least cost of the energy required for the customers. So, this plan should determine where,
when, and how much capacity for new power plants should be created. In this study, three
scenarios have been taken into account to prove the efficiency of the proposed method. In
the first scenario, the optimization problem has been solved with respect to governments’
criteria, and the minimum cost is achieved without regarding a game theory model. In the
next scenario, game theory is applied to make a competitive situation for power plants to
be able to achieve the maximum profit by providing the optimal strategy over the regarded
period. This scenario has been considered without applying any penalty for fossil fuel or
subsidy for renewable resources. The last scenario assumes two criteria. The first one is a
deterrent factor to declining CO2 generation by fossil-fuel power plants. Second, a factor
for the subsidy that government allocate to encouraging the increase in renewable energy
resources.

The objective function that should be optimized in the first scenario is considered as:

Fmin =
{

Fcostgem + Fcosto&m + Fcostinv

}
(1)

Finv =
9

∑
s=1

(
15

∑
i=1

(
C(i)× Cinv(i)× N(i)

(
1

(1 + r)i

)))
(2)

Fgen =
9

∑
s=1

(
15

∑
i=1

(
C(i)× F(i)× CN(i)× TU × CF

(
1

(1 + r)i

)))
(3)

Fom =
9
∑

s=1

(
15
∑

i=1

(
C(i)× Com(i)× CN(i)× CF

(
1

(1+r)i

)))
i = 1, 2 . . . , 15 s = 1, 2, . . . 9

(4)

In these equations, the function that has to be optimized is the Fmin formed from Fgen
(generation costs), Finv (investment costs) and FO&M (operation and maintenance costs).
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It is evident that each kind of unit has to generate electricity in the particular range. The
limitations relevant to these generators for objective function are considered with inequality
constraints below:

Mmin < M(i) < Mmax (5)

0 < U(i) < Umax (6)

Ctotal =
9

∑
s=1

(
15

∑
i=1

(C(i)× CN(i))

)
(7)

(1 + Mmin)× Dpeak(i) ≤ Ctotal(i) ≤ (1 + Mmax)× Dpeak(i) (8)

In these equations, Ctotal has to be supplied worth of load demand over a year. Mmax is
the maximum amount that each kind of unit can generate. On the other hand, the lower
limit Mmin is the slightest fraction of generating electricity by each kind of unit.

2.2. Game Theory Approach

As the game theory (GT) has different models like Nash-Cournot (NC), Nash- Bertrand
(NB), and Bi-level in order to create a competitive situation among all the power plants
or players of the game, this paper has been used the NC model in which all players are
reluctant to change their plan to increase their profit. In other words, they would not gain
more profit in any other strategies, which means that the selected strategy would be the
best one. This condition is called the Nash equilibrium point. In this model, independent
system operators (ISO) and power plants are considered as players of the game. ISO is
an agent that operates as a player by devoting carbon tax and government subsidy to the
generation units.

In this paper, we consider power plants as a series of players which are looking to
increase their fuel prices. On the other hand, the government (ISO) is the other side of
the game theory that seeks to reduce the price of fuel. In addition, based on the Paris
Agreement and the international community’s desire for clean energy, we examine the
effects of the carbon tax and government subsidy as clean fuel incentives in the other
scenario. However, two scenarios that are considered by GT include:

• An investigation of GEP problem using NC model (considering GT) from the point of
view of power plants by comparison between them;

• An investigation of GEP problem using NC model (considering GT) from the point
of view of power plants with considering carbon tax and government subsidy by
comparison between them.

The equations with considering the GT theory are described as:

FGT1 =
{

Fcostgem + Fcosto&m + Fcostinv

}
(9)

FGT2 =
{

Fcostgem + Fcosto&m + Fcostinv + CT + SG

}
(10)

SG =
15

∑
i=1

(SS × C × CN) (11)

CT =
15

∑
i=1

(ET × CO2 × C × CN) (12)

For the GT modeling, we used the NC method. Our proposed algorithm has combined
the bi-level, NC, and TLBO methods. NC is formulated by:

REVGT =
15

∑
i=1

(EP × C(i)× CN) (13)

ΠGT = REVGT − FGT , GT = GT1, GT2 (14)
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Here, GT is the number of scenarios in game theory approach.

3. Optimization Algorithm
Teaching–Learning-Based Optimization

Teaching–learning-based optimization algorithm (TLBO) is one of the newest smart
optimization ways that is inspired by the process of teaching and learning. In TLBO,
a mathematical model is considered for learning and teaching. It implements in two
phases that lead to the optimization of the related system. Firstly, the best member of the
population is chosen as a teacher and captures the average of population toward itself.
Then, the new best member is chosen as the best teacher among new student Equation (15).
That is the task which a good teacher does in the real world.

Xnew,i = Xold,i + ri(Mnew − (TF × Mi)) (15)

In another phase, members of the population try to make progress with each other and
expand their knowledge. In this phase, randomly, two learners Xi and Xi are chosen. If the
objective function for i member of the class is less than the objective function of j member,
the position for that i member is determined by Equation (16); otherwise, the position for it
is determined by Equation (17). In this way, the best answer is found by comparing the
objective function for all members in a certain iteration. One of the most important qualities
of this algorithm is not depending on parameters, because this algorithm has the lowest
number of parameters.

Xnew,i = Xold,i + ri
(
Xi − Xj

)
(16)

Xnew,i = Xold,i + ri
(
Xj − Xi

)
(17)

4. Simulation and Results
4.1. Case Study

Electric load demand increases in parallel with the advances of technology and escala-
tion in population. It reinforces having a tactical and economic schedule and plans for the
future of generation units that want to supply the required energy. In this study, 9 kinds of
generation units (centralized and distributed in Figure 1) are considered as the best power
plants for the next 15 years to implement the GEP problem in the case study of Iran.

Figure 1. A schematic of regarded power plants in a case study of Iran.
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These regarded power plants include natural gas steam turbine (NGST), natural gas
combined cycle (NGCC), natural gas combustion turbine (NGCT), nuclear, hydroelectric,
wind, solar, biomass, and geothermal power plants. Furthermore, the TLBO algorithm is
regarded to optimize the problem. The peaks of load demand are forecast over 15 years
separately. Therefore, GEP is estimated in this period. In this procedure, the total cost,
including investment, generation, operation, and maintenance, are contemplated as the
objective function. Finally, the results of this problem have been compared with another
practical way. Table 1 displays the present number of different kinds of regarded generation
units. In this table, the ratio of the non-renewable resource is just over 83% of total
capacity, 14.8% has been allocated to hydro plants and renewable and nuclear power
plants are around 2% of this capacity. It is evident that fossil-fuel power stations are the
main generation units in Iran. All information related to the technological and economic
features of considered substitutes are provided in Table 2. In this study, 9 different kinds of
generation units are regarded in the case study of Iran in order to go to prove the efficiency
of the TLBO algorithm unto another well-known way in the GEP problem.

Table 1. Information of current generation units in Iranian power systems [1].

Type of Unit Unit Capacity
(MW)

Number of Each
Unit

Total Installed
Capacity (%)

Available
Capacity (MW)

NGST 160 99 22.5 15,840
NGCC 300 59 25.2 17,700
NGCT 160 155 35.3 24,000

Nuclear 1000 1 1.4 1000
Hydro 200 52 14.8 10,400
Wind 100 2 0.28 200

Solar-PV 100 1 0.14 100
Biomass 100 1 0.14 100

Geothermal 50 2 0.14 100
Total - - 100 70.24 (GW)

Table 2. Information of current generation units in Iranian power systems [1].

Type of
Unit

Capacity
(MW)

Max
Num. of

Unit
Investment Fuel Cost

($/MW)
O&M Cost

($/MW)
Capacity

Factor

Theory
Time

Working
(h)

CO2
Generation
Rate (Ton

CO2/MWh)

NGST 160 5 1,250,000 58.82 37,150 0.77 6500 0.760
NGCC 300 22 1,035,000 47.45 14,390 0.85 7000 0.344
NGCT 160 55 676,000 78.43 6700 0.85 7000 0.520

Nuclear 1000 5 5,615,000 12.06 88,750 0.85 7000 0
Hydro 200 33 2,936,000 74 85,000 0.5 7000 0
Wind 100 39 2,213,000 0 28,070 0.3 3000 0

Solar-PV 100 39 3,950,000 0 16,700 0.11 2640 0
Biomass 100 17 4,114,000 41.47 100,500 0.8 8000 0

Geothermal 50 55 6,243,000 0 129,484 0.75 8000 0

The flowchart of the proposed algorithm is shown in Figure 2. It can be described as
follows: at first, the initial population is produced by random values, which this population
is agents of power plants. In the next stage, the cost of the system is calculated, then they
are sorted. Afterwards, this procedure continues in the defined iteration. This iterative
procedure is performed until the specific constraints of the system, which are earned from
Equations (5), (6) and (8), are confirmed. After establishing the best plan for generation
expansion, in the following stage, each kind of unit as a player in the game tries to reach
its maximum profit, and it continues until all players reach their optimal strategies. In
other words, it will continue to find the Nash equilibrium point. Details of the algorithm
parameters have been shown in Table 3.
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Figure 2. The flowchart of the proposed algorithm.

Table 3. Parameters of the TLBO algorithm.

Parameters Value

Max number of iterations 50
Initial population 200
Random parameter of each new teacher or student 1 or 2

All simulations were executed on a PC in Rasht, Gilan, Iran with Intel Core i7 CPU @
3.20 GHz and 32 GB RAM using MATLAB 2021a.
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4.2. Scenario 1: ISO

In this scenario, we consider the GEP problem with three optimization methods. The
most important point about these algorithms is the simplicity of their implementation. The
Particle Swarm Optimization algorithm (PSO) is one of the most important optimization
algorithms that is placed in the domain of Swarm Intelligence. In the PSO algorithm, mem-
bers of the population have contact directly, and they address solving the problem through
exchanging information and reminding the last memories [39]. The genetic algorithm
(GA) is another well-known and useful one. This algorithm is inspired by the genes in the
human body. It utilizes crossover and mutation techniques in order to find the best solution
for the problem. From an overall perspective, it can be obtained that the three simulated
algorithms in this paper for the GEP problem have their unique answers.

In this scenario, a comparison between these algorithms (PSO and GA) and TLBO has
been investigated in a unique case study with the government’s viewpoint.

The results in Table 4 reveal that TLBO has found the best solution separately in
different costs (operation and maintenance, generation and investment). Additionally,
operation and maintenance, and investment costs in GA are better than PSO. However,
because of the higher expense of generation by PSO, the second-lowest amount of cost is
the solution earned by the GA algorithm followed by the PSO algorithm with only around
15 MW lower. Moreover, the simulation time is not essential because of the long-term
prospect in generation expansion planning.

Table 4. Result of simulation.

Objective PSO GA TLBO

Time (s) 72.62 67.25 77.35
Investment cost (MW) 171,328,530.49 191,666,159.99 123,651,477.57

O&M cost (MW) 15,016,948.47 17,823,268.11 9,888,589.06
Operation cost (MW) 147,850,288.42 109,740,447.55 61,050,077.15

Total cost (MW) 334,195,767.39 319,229,875.67 194,590,143.79

In this section, the decline in power plants’ total cost by TLBO algorithm has been
analyzed and the efficiency of this method on the GEP problem has been discussed.

Turning to Figure 3, in the way that ISO sees, the GEP problem has been considered
without the GT approach. It is clear that TLBO has been able to determine the plan for
generation expansion over a 15-year period with minimum costs. In this figure, as expected,
by considering the high cost of investment for renewable energy power plants, the number
of these kinds of power plants has been more than fossil-fuel power plants over the early
years of the period that they can compensate these costs over the following years. In
contrast, the number of fossil-fuel power plants with the low investment cost has been
more over the late years. Table 5 illustrates the results in the first scenario.

4.3. Scenario 2: Game Theory without Limitation

In this scenario, each kind of power plant is considered as a player of the GT that they
try to increase their profit by regarding their benefits without any carbon tax and subsidy.
This issue can cause investors to be captured to invest more in electricity generation with
more profit. These mentioned players are considered as players in a GT model to achieve
the Nash equilibrium point. It is the optimum point for all the players that its results can
be seen in Figure 4. These results are obtained for players in the Nash equilibrium point
which are unwilling to change their strategy.
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Figure 3. The capacity of additional units in each kind of power plant by the year from ISO view-
point (MW).

Table 5. Numbers of new units to be added during the planning horizon in TLBO algorithm.

Year NGST NGCC NGCT Nuclear Hydro Wind Solar-Pv Biomass Geothermal

1 4 12 7 1 14 24 32 4 8
2 0 0 0 0 7 0 0 0 0
3 0 0 7 0 4 39 0 4 5
4 1 0 0 0 0 39 39 0 0
5 5 0 2 0 0 20 0 0 55
6 0 3 0 0 0 0 10 0 0
7 0 22 0 0 0 19 20 2 0
8 0 22 0 0 0 0 10 0 20
9 0 0 5 0 0 0 0 13 0

10 5 17 0 0 33 39 0 0 55
11 2 0 0 3 0 39 0 0 0
12 0 0 0 0 0 19 0 10 0
13 0 22 0 0 0 6 37 0 0
14 0 0 0 0 0 0 0 2 15
15 0 22 18 0 0 0 0 1 54

Figure 4. The capacity of additional units in each kind of power plant by the year in scenario 2 (MW).



Energies 2022, 15, 1172 11 of 16

4.4. Scenario 3: Game Theory with Limitation

In this scenario, as the results can be seen in Figure 5, not only the GT model is
considered, but also limitations are imposed on players of the game. The government
as an organization imposes tax carbon ($12) for the fossil-fuel power plants; moreover, it
considers an amount of money (20% of the sale price of each MWh) as a subsidy for the
investigator to encourage them to build more renewable energy resources.

Figure 5. The capacity of additional units in each kind of power plant by the year in scenario 3 by
applying the carbon tax and subsidy (MW).

Figure 6 shows the profit for each kind of power plant in scenarios 2 and 3 over a
15-year period in million dollars. As it can be emanated, imposing tax carbon and subsidy
makes it better for investors to invest in renewable energy power plants. Namely, building
renewable energy power plants can be more persuading. If we consider NGCC as a fossil-
fuel index, it is obvious that the profit for this kind of power plant after imposing tax carbon
has gone down, on the other hand, as a positive point in this figure, this profit has gone
up for those kinds of power plants which are renewable such as solar, wind and hydro.
These results illustrate not only in terms of financial aspects is profitable, but also this can
be helpful with respect to environmental issues.

Figure 7 is the cumulative sum of units’ numbers in 2035 (the last year in the considered
period in this paper). The regarded unit for this diagram is MW. It is evident that when we
implement GT that each kind of power plant wants to maximize their profit, the installed
capacity is more than when ISO is considered its profit. As a result, by raising the power of
the network, the reliability of the power system will increase. Moreover, in this way, social
welfare will grow. Furthermore, this method can be profitable in terms of the electricity
market. Additionally, these results illustrate that, in scenario 3, the capacity of renewable
energy power plants like hydro has increased, while the capacity of NGCC as a fossil-fuel
power plant has decreased.
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Figure 6. The profit of each power plant in strategy 2 and 3 in million dollars.

Figure 7. The total cumulative capacity of each power plant in all scenarios in 2035.

4.5. Sensitivity Analysis

This section analyzes the problem by considering the different proportions of subsidy
and carbon tax for the power plants. Given Figure 8, it can be emanated that after imposing
the subsidy in the amount of 0, 20 and 50 percent of the whole subsidy for the renewable
energy power plants such as wind, solar, geothermal and biomass, the profit has marginally
increased. On the other hand, fossil-fuel power plants’ profit such as NGCT or NGCC has
declined. As can be discerned from Figure 9, the different amounts of emission tax have
been considered.
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Figure 8. Sensitivity analysis of government subsidy value by power plants profit (Million $).

Figure 9. Sensitivity analysis of carbon tax value by fossil fuel (FF) and renewable energy (RE) power
plants profit ($/ton·CO2).

The results related to fossil-fuel power plants illustrate by increasing the emission tax,
the capacities of fossil-fuel power plants have decreased. Whereas this tax has caused a rise
in the capacity of renewable energy power plants. Indeed, the increase in emission tax and
government subsidy not only cannot ensure the decline of greenhouse gases, but also can
remove the competitive situation among players. Moreover, it can lead to not supplying
the load demand. Therefore, considering GT with novel optimization algorithms demands
the Nash equilibrium point in order to achieve green expansion planning.

5. Conclusions

From what has been discussed, it can be drawn that the GEP problem is one of the
practical and economical ways to achieve planning goals such as distinct costs of the power
plants and decreasing pollution generated by fossil-fuel power plants. Hence, organizing
an optimal strategy for the GEP problem is crucial for the power systems. Namely, choosing
the optimization algorithm in the GEP problem is determinant. In this paper, the TLBO
algorithm has been compared with GA and PSO, and results proved the efficiency of this
algorithm in the problem. Moreover, in order to create a competitive situation among
power plants to increase their profit, the GT approach was applied. This approach showed
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more penetration of the renewable energy power plants, which declares the efficiency of
this method.
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Nomenclature

Parameters Description
C The amount of every kind of generation unit
Cinv The cost of each unit’s investment ($/MW)
N The number of every kind of considered units
F The cost proportion of generation variable of every unit ($/MWh)
CN The cumulative sum of units’ number
TU Working time of considered units (hour)
CF The coefficient of capacity of every unit
Ctotal Total capacity of electricity generation
Mmax The highest amount of reserve margin
Mmin The lowest amount of reserve margin
Umax The maximum number of units
Com The cost of operating and maintenance of every unit ($/MW)
ET The emission cost of CO2 ($/tonCO2·year)
SS The amount of subsidy that government allocate to power plants ($/MWh)
EP Energy price
REV The revenue from selling the electric energy of each player
i The number of years that has been considered
s The number of generation units that has been regarded
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