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Abstract: Intelligent and pragmatic state-of-health (SOH) estimation is critical for the safe and
reliable operation of Li-ion batteries, which recently have become ubiquitous for applications such as
electrified vehicles, smart grids, smartphones, as well as manned and unmanned aerial vehicles. This
paper introduces a convolutional neural network (CNN)-based framework for directly estimating
SOH from voltage, current, and temperature measured while the battery is charging. The CNN is
trained with data from as many as 28 cells, which were aged at two temperatures using randomized
usage profiles. CNNs with between 1 and 6 layers and between 32 and 256 neurons were investigated,
and the training data was augmented with noise and error as well to improve accuracy. Importantly,
the algorithm was validated for partial charges, as would be common for many applications. Full
charges starting between 0 and 95% SOC as well as for multiple ranges ending at less than 100% SOC
were tested. The proposed CNN SOH estimation framework achieved a mean average error (MAE) as
low as 0.8% over the life of the battery, and still achieved a reasonable MAE of 1.6% when a very small
charge window of 85% to 97% SOC was used. While the CNN algorithm is shown to estimate SOH
very accurately with partial charge data and two temperatures, further studies could also investigate
a wider temperature range and multiple different charge currents or constant power charging.

Keywords: battery management systems; convolutional neural networks; deep learning; Li-ion
batteries; machine learning; state-of-health estimation

1. Introduction

Like most things, Li-ion batteries age with time; a process underpinned by the degra-
dation of electrode materials, loss of lithium in active carbon, lithium metal plating and
chemical decomposition, to name a few. If aging is not correctly monitored, an accurate
estimate of available battery capacity is not possible, which greatly compromises a battery’s
safety and reliability.

Battery aging is typically determined through a state-of-health (SOH) estimation which
has a value ranging between 0 and 100%. For this work, SOH is defined as the ratio of
aged and new capacity of the battery. In some industries, such as the automotive industry,
the standard for end of life of a Li-ion battery is when SOH = 80% is reached [1]. SOH is
not an observable quantity and is a highly nonlinear entity, dependent, in large part, on
the volatility of the loading profiles, ambient temperature, depth of discharge (DOD) and
self-discharge, to name a few [2]. Therefore, an accurate estimate of SOH is typically a
tedious computation.

It is difficult for a battery model to capture all the underlying electrochemical processes
and provide accurate estimates of SOH. The benefit of data-driven methods is that they
rely mainly on aging data, therefore they do not require knowledge of these underlying
processes, and in some cases, they also avoid using a physical model. In [3], the authors
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capitalize on the correlation between the diffusion capacitance of a second-order equivalent
circuit model and state of health. A genetic algorithm (GA) is used to estimate the voltage
drop across the diffusion capacitance as well as to estimate the open circuit voltage. The
maximum error observed while using this estimation strategy is 4.35%. In [4], after a
three-dimensional OCV-SOC surface spanning the lifetime of the battery was generated,
the capacity and initial SOC of the battery were computed based on a GA and an equivalent
circuit model (ECM). The estimation error of this technique ranges between 1.09–4.52%,
depending on the test case used. Aside from GA, other works have used particle swarm
optimization (PSO) to ascertain battery aging parameters [5,6].

Recently, due to the increased number of publicly available battery datasets, machine
learning techniques are gaining popularity for battery state estimation. Algorithms have
been investigated including support vector machines, least-squared support vector ma-
chines, K-nearest regression, radial basis functions, random forest, Bayesian networks;
feed-forward, deep, convolutional, Hamming, and recurrent neural networks, as outlined
in review papers [7,8]. In one example, battery cycle life is predicted early in the life of the
battery by using machine learning with inputs including measured data and calculated
features, such as the change in amp hours with respect to voltage (dQ/dV) [9]. Several
studies specifically investigated different ways of utilizing convolutional neural networks
(CNNs) for battery state-of-health estimation. A CNN is trained to estimate battery capacity
from the measured impedance and state of charge values in [10]. In [11], a CNN and a
relevance vector machine were both compared for SOH estimation. A CNN is combined
with a gated recurrent neural network in [12] and two CNNs are used with random forest
in [13], with both combinations showing improved SOH estimation. Finally, a different
method of sampling data, at fixed SOC steps rather than fixed time steps, was shown to be
beneficial for battery SOH estimation with a CNN, FNN, or LSTM [14].

In [15], battery current, voltage and temperature are recorded during a particular
window of operation of the battery and used to train a support vector machine (SVM).
The SVM is used as a battery model to estimate capacity or resistance of the battery and
achieves around 0.1 Ah accuracy. However, when applied in real world scenarios, training
an SVM using measured battery signals on board the vehicle can result in large errors as
a result of noisy measurement devices. In [16], electrochemical impedance spectroscopy
(EIS) measurements are used to construct an equivalent circuit model of a battery. Then,
a recurrent neural network takes as inputs historical values of SOC, current, resistance
and capacitance and outputs future values of capacitance and resistance parameters of
the model. The method achieves a mean squared error 0.462 Ah. The drawback of this
method is that it still requires a battery model, one generated using the harder-to-obtain
EIS measurements. In addition, vanilla recurrent neural networks commonly suffer from
vanishing gradients and thus can be difficult to train.

In [17], the probability density function (PDF) of the terminal voltage of a discharge
profile is used to estimate the battery SOH. The strategy maps the peak values of a smoothed
PDF profile to SOH values. The study achieves an error of below 1.6% on the reference
charge curves, however, its performance over partial reference profiles, often encountered
in real world scenarios, is unknown.

Since discharge profiles observed between charging events occur in an uncontrolled
fashion, some works have relied on charge profiles to estimate SOH. In [18,19], incremental
capacity analysis (ICA) profiles, described as dQ/dV, are used to detect small incremental
changes in the charge curves. To identify this ICA profile from noisy measurements and
from partial reference profiles, a support vector machine showed the best results in [18].
This method achieves a 1% mean absolute error (MAE), however, to identify the ICA curve
from noisy measurement data, it is necessary to make use of support vector machines,
which is an additional intermittent step that adds computational overhead and reduces
the generalizability of the method. In [20], the constant current component of the charging
voltage curve is used with an equivalent circuit model to extract the aging parameters.
Parameter identification is achieved using a nonlinear least squares technique. This work
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achieves 2–3% errors, however, its performance is based on full charge profiles and not on
more realistic partial charge curves. The battery in an EV is very rarely fully discharged
down to SOC = 0%, hence, the battery is typically charged from some SOC greater than 0%.
In other words, the battery undergoes partial charge profiles much more frequently than
full charge profiles.

This work uses a CNN, a well-known deep learning algorithm, to estimate SOH.
Specifically, there are three main contributions in this work:

1. A CNN is used to map raw battery measurements directly to SOH without the use of
any physical or electrochemical models. The performance of the CNN is not limited by
knowledge of the underlying electrochemical processes. Physical or electrochemical
models are more challenging to create because they must include complex processes
such as self-discharge, solid lithium concentrations, etc.

2. A data augmentation technique is used to generate the training data used as inputs
to the CNN. This not only makes the CNN more robust against measurement noise,
offsets and gains but also increases the CNN’s SOH estimation accuracy.

3. To further increase the CNN’s practicality in real-world applications, it is trained to es-
timate SOH over partial charge profiles having varying ranges of state of charge (SOC).
This is an important feature increasing the practicality of this method considerably.

The second section of the paper focuses on the theoretical underpinnings of the CNN
algorithm and the third section discusses the randomized usage aging dataset obtained
from the NASA repository [21] as well as the CNN model development using this dataset.
The fourth section discusses the results.

2. Background and Theory of Convolutional Neural Networks for SOH Estimation

Lately, the surge of interest in artificial intelligence (AI) has been primarily under-
pinned by the numerous advancements achieved in deep learning algorithms [22–24]. Al-
though traditional machine learning methods have been studied for decades, advancements
in computing power and an abundance of real-world data have allowed for much larger or
deeper architectures. These new, deeper models have allowed for remarkable achievements
within the field of artificial intelligence [25–29] as well as in other fields [30–33].

Convolutional neural networks, shown in Figure 1, are particularly good at mapping
a set of measured quantities to a desired output. The CNNs used in this work convolve
filters over the input, passing the result to the next layer instead of fully interconnected
adjacent layers as is typically done in fully connected neural networks. Convolving filters
over the two-dimensional dataset allow these networks to benefit from shared weights
and an invariance to local distortions [24]. The CNN’s filters look at data from multiple
time steps during a convolution operation which includes the data point at the present
time step as well as some amount of historical data points. Because of shared weights,
CNNs can be given a large amount of input data without size increasing as much as for
a fully connected neural network. Once CNNs are trained offline, they can offer fast
computational speeds on board a mobile device or vehicle, since they are formulated
by a series of convolution and matrix multiplication operations which can be computed
in parallel. The typical dataset used for training and validation in this work is given
by D = {(Ψ(ξ1), SOH∗(ξ1)), . . . , (Ψ(ξΞ), SOH∗(ξΞ))}, where Ψ(ξ) and SOH∗(ξ) are the
array of input data and the ground-truth state-of-health values, respectively, for each charge
profile, ξ. The input charge profiles, Ψ(ξ) ∈ RN×M, which will be discussed further in
the next section, can be composed of battery measurements such as current, voltage and
temperature and, in the case of partial charge profiles, they also include the SOC values.
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Figure 1. Architecture of a convolutional neural network (CNN) where each layer is composed of a
convolution and pooling component and with the last two layers being fully connected. The input
data is given by Ψ(ξ) ∈ RN×M where N = 256 and M = 3 since Ψ(ξ) = [I(ξ); V(ξ); T(ξ)] where I, V
and T represent the current, voltage and temperature of the charge curve. The output of the CNN is
the estimated SOH.

The kernel, wlkm, is used in each layer of the CNN and has height Cl and width Rl .
The kernels are convolved over the input array of height Nl−1 and width Ml−1. For a more
formal description, consider the element xlk

ij (ξ) at location (k, j) in the kth feature map of
layer l for charge profile ξ, given as follows;

xlk
ij (ξ) = η

(
∑
m

Cl−1
∑

c=0

Rl−1
∑

r=0

(
wlkm

rc hl−1,m
i+c,j+r(ξ) + blk

))
hlk(ξ) = S

(
xlk(ξ)

) (1)

where
η = max(0, y) (2)

In the above composite function, m is the feature map in layer l − 1, blk is the bias for
feature map k in layer l and wlkm

rc is the value of the kernel at the (c, r) location. S(·) is a
subsampling function, called max-pooling, which gives the maximum value of a perceived
subset s of a feature map, where s ⊆ hlk.

The nonlinearity used in this work, η, is referred to as the rectified linear unit (ReLU).
This is used in this work due to its simplicity and ease of implementation in real time.
The last few layers of a CNN, as observed in Figure 1, are fully connected layers, formally
described as follows;

gl
β(ξ) = η

(
∑
β

(
wl

αβhl−1
β (ξ) + bl

β

))
(3)

where
gl
β(ξ) = SOH(ξ), for l = L (4)

and where wl
αβ denotes the weight connection between neuron α in the (l − 1)th layer

and neuron β in the lth layer, bl
β and hl

β are the bias and activation function at layer l,
respectively. The total number of layers in the CNN is given by L. To determine the SOH
estimation performance of the CNN for a particular charge curve ξ, the estimated state of
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health, SOH(ξ), is compared to the state-of-health ground-truth value, SOH∗(ξ), resulting
in an error value. The loss function is simply the mean squared error computed from all
the individual errors, as follows;

L =
1
Ξ

Ξ

∑
ξ=0

(
(SOH(ξ)− SOH∗(ξ))2

)
(5)

where Ξ is the total number of charge curves in the training dataset.
One full training epoch, ε, describes a single cycle of one forward pass and one

backward pass. In this work, training does not cease till a specified threshold criteria of
loss is attained. In addition, the gradient of the loss function with respect to the weights is
used to update the network weights in an optimization method called Adam [34]. This is
given in the following composite function;

uε = γ1uε−1∇L(wε−1)

vε = γ2vε−1∇L(wε−1)
2

ũε = uε/(1− γ1
ε)

ṽε = vε/(1− γ2
ε)

wε = wε−1 − ρ ũε
ṽε−κ ,

(6)

where γ1 and γ2 are decay rates set to 0.9 and 0.999, respectively, ρ = 10−5 is the learning
rate and κ is a constant term set to 10−8. The network weights at the present training epoch
are given by wε. During the backward pass, the network self-learns its network weights and
biases, a process referred to as backpropagation, which is a remarkable difference to other
methods that demand time-consuming hand-engineered battery models and parameter
identification. Validation, which in this paper refers to what is commonly considered
testing, is performed on datasets which the CNN has never seen during training.

In this paper, state-of-health estimation performance was evaluated with various met-
rics. These include mean absolute error (MAE), root mean squared error (RMS), standard
deviation of the errors (STDDEV) and the maximum error (MAX).

The CNN models discussed in this paper were created with TensorFlow, a machine
learning framework. To expedite the training process two NVIDIA Graphical Processing
Units (GPUs) were used, a TITAN X and a GeFORCE GTX 1080TI.

3. Methodology of Random Walk Aging Datasets and Data Preparation
3.1. Randomized Battery Usage Datasets

The dataset used in this work is the Randomized Battery Usage Dataset obtained
from the NASA Prognostics Center of Excellence [21]. The parameters of most of these
datasets are shown in Table 1. The 28 LG Chem 18,650 Li-ion cells are aged by undergoing
a randomized load; ranging between 0.5 A and 5 A for some datasets and −4.5 A to 4.5 A
for others, often at different ambient temperatures. Each random walk step lasts for about
5 min. Random usage serves as a better representation of real-world loading profiles where
vehicle acceleration and deceleration are unpredictable. Reference charge profiles were
conducted roughly every 5 days to characterize the cell’s aging. These were sampled at
0.1 Hz, although this was not always consistent, and, as is typically performed, the charge
curves in these characterization steps included a constant current (CC) and constant voltage
(CV) segment. The CC segment of the charge profile was set to 2 A and typically consisted
of the first 60 to 70% of the charge.

This work considers the fixed and partial SOC ranges where both the CC and the
CV segments of the charge curves are utilized. For most of the 28 aging datasets in this
repository, the cells are aged to at least SOH equal to 80% and in some cases to SOH less
than 40%. An example of one aging dataset is shown in Figure 2, where, as the battery aged,
the relationship of charging voltage to amp hours of charge added to the battery changed
due to reduced capacity and increased impedance of the battery.
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Table 1. Randomized Battery Usage Dataset parameters.

Capacity @ SOH = 100% Min. 2.08 Ah/Typ. 2.15 Ah

Min/Max Voltage 3.2 V/4.2 V
Min/Max Temperature 15 ◦C/43 ◦C

Charge Current (CC) 2.0 A
Random Walk Current Min. −4.5 A/Max. 5.0 A
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3.2. Data Processing

The entire process from data parsing to training and validation of the CNN are
represented in a flowchart in Figure 3. The following was performed for every one of
the 28 datasets of the repository. First, the reference charge profiles are extracted from the
raw data. For example, dataset 1 of the 28 datasets, contains 40 reference charge profiles,
spanning the entire lifetime of the aged battery cell. These are extracted and saved for the
preprocessing step. Second, in the preprocessing step, the current voltage and temperature
sequences of dataset 1 are resampled using linear interpolation at 0.1 Hz to ensure good
discretization. The three signal sequences are concatenated together to form an array
having 3 columns and 256 rows. Therefore, as shown in Figure 1, an input reference profile
is defined as Ψ(ξ) ∈ RN×M where N = 256 and M = 3. Although we truncated the datasets
to the first 256 time steps, the reference profiles were typically at least 1000 time steps
long. For the case of the partial reference profiles, not only were the first 256 time steps
selected but different segments of 256 time steps were also chosen throughout the full
reference profile.

The number of rows is typically longer than 256, but we truncated the number of rows
so that all reference profiles had the same duration in time. This was done to increase data
impartiality; in other words, to avoid biasing the model towards reference profiles which
might have had more time steps or which had a longer time span. The reference profiles
for one dataset were then all concatenated depthwise to form a three-dimensional array.
For example, in the case of dataset 1 containing 40 recorded reference profiles, the resulting
dimensions after processing would be 256× 3× 40.

The data points representing current during charging were multiplied by the sampling
period of 10 s or 0.002778 h which were then summed to get the resulting capacity. This
calculation was performed whenever the reference profiles were observed which was
roughly every 5 days. To get the ground-truth SOH, the Ah calculation from all the
reference profiles was divided by the Ah calculation conducted for the first observed
reference profile, before any aging was performed.
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Figure 3. Flowchart describing data preprocessing, data augmentation and model training steps.
Each of the datasets are constructed by extracting the reference charge profiles from the raw data.
After preprocessing, the 28 datasets are split into train and testing datasets. The train set is then
augmented as described in Section 3 before training begins. Please refer to text for more details.

3.3. Training Data Augmentation

The convolutional neural network is made more robust against noise, offsets and
gains existent in real-world measurement devices by augmenting the training data. In this
paper, a novel data augmentation technique was used by injecting Gaussian noise into
the measured battery signals. Specifically, Gaussian noise with 0 mean and a standard
deviation of 1–4% was injected into the voltage, current and temperature measurements.
Moreover, to provide robustness against offsets and gains inherent in battery measurement
devices, an offset was applied to all measurement signals and a gain was applied only to the
current measurement since current measurements are more susceptible to gains. An offset
of up to ±150 mA and a gain of up to ±3% was applied to the current measurements, an
offset of up to ±5 mV was applied to the voltage measurement and an offset of up to ±5 ◦C
was applied to the temperature measurement. Alternate copies of the training data were
created with varying levels of noise, offsets and gains within the limits described above.

Before training and during the data augmentation step, up to 80 variants were created
for each original dataset which would mean that 2240 datasets were used for the training.
The noise, offset, and gain values used in the paper are similar to or are somewhat worse
than those values seen for typical automotive sensors [35–37]. For example, a commercial
grade current sensor may be rated for 0.5% noise on the output. A larger noise magnitude
was selected in this paper than that inherent in many of these sensors for two reasons:
(1) to help with the training of the network and reduce overfitting as well as to increase
estimation accuracy; and (2) to emulate noise which may be injected into the system due to
noisy power electronics or other EMI and EMC emitting equipment in an actual vehicle.

This data augmentation technique is inspired by a method sometimes referred to as
jittering [38,39] which not only makes the model more robust against measurement error
but it also leads to higher estimation accuracies and reduces overfitting. After training
on this augmented data, we also tested the model on augmented test data which was
intentionally injected with signal error to test the CNN’s robustness.
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4. State of Health Estimation Results and Discussion

The state-of-health estimation performance of the deep convolutional networks are
outlined in this section. As previously mentioned, this work used charge profiles which in-
cluded both fixed (beginning at SOC = 0%) and partial SOC ranges (beginning at SOC > 0%).
There are trade-offs which need to be made in either case and these will be discussed in the
following two sections. The results obtained over full reference charge profiles serve as a
good baseline to which the performance over partial charge profiles can be compared. The
networks discussed in this section used a learning rate of 1× 10−5.

4.1. State-of-Health Estimation Using Fixed Charge Profiles

Training was conducted on up to 26 of the aging datasets and validation was performed
on 1 or 2 datasets, depending on the tests being performed. The validation datasets are
never seen by the CNN during the training process. The time required to train the CNNs
used to obtain the results in this subsection was 4–9 h, depending on their size and depth.

The CNN was first validated on two aging datasets in the NASA repository, referred
to as dataset RW4, recorded at 25 ◦C, and RW23, recorded at 40 ◦C. This CNN is composed
of 6 convolution layers and 2 fully connected layers (FC). The results, shown in Figure 4
and in Table 2, point to an MAE of 1.5% and 1.2% for the 25 ◦C and 40 ◦C, respectively. The
network is trained for up to 175,000 epochs. Mean absolute error is calculated as follows,

MAE =
100%

n

n

∑
i=1

abs
(

SOH∗i − SOHi

SOH∗i

)
(7)

where n is the total number of discrete datapoints being evaluated.
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estimation error over 40 ◦C validation dataset.

Table 2. SOH estimation accuracy of CNN for 25 ◦C and 40 ◦C RW aging datasets.

Validation Dataset MAE (%) STDDEV (%) MAX (%)

Validation RW dataset (25 ◦C) 1.5 1.0 3.3
Validation RW dataset (40 ◦C) 1.2 0.7 2.4

L1&L2: 32@(32,1), L3–L6: 64@(32,1), FC1: 256 neurons.

The CNN’s performance over additional test cases are shown in Table 3, where the
footnotes indicate the architecture of the network. For example, L1: 32@(32,1), indicates
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that the first layer is a convolutional layer having 32 filters with height 32 and width 1. In
addition to the performance metrics, the number of parameters representing the networks
used for each of the test cases is shown. For most of these tests, training was stopped at
100,000 epochs to maintain testing objectivity. The first of such tests evaluates the CNN’s
accuracy for inputs which include solely voltage as compared to inputs which include
battery current, voltage and temperature. The results show that the error when using only
voltage as an input is satisfactory with an MAE and MAX of 1.5% and 3.9% respectively.
However, the MAE and the MAX are reduced by 33% and 44%, respectively, when using all
three input signals. Therefore, all three inputs are critical for minimizing estimation error.

Table 3. SOH estimation accuracy of CNN for different test cases.

Case Study MAE
(%)

STDDEV
(%)

MAX
(%)

Parameters
(Millions)

Input: voltage 1 1.5 1.1 3.9 3.8
Input: voltage, current, temperature 1 1.0 0.6 2.2 3.8

No pooling 1 1.3 0.8 3.4 3.8
Pooling 1 1.0 0.6 2.2 3.8

Unaugmented training data 2 2.4 1.1 4.2 3.6
Augmented training data 2 1.2 1.1 3.6 3.6

Smallest CNN 3 1.9 1.6 6.1 0.1
1 L1–L6: 64@(32,1), FC1: 256 neurons, 2 L1&L2: 32@(32,1), L3–L6: 64@(32,1), FC1: 256 neurons, 3 L1&L2: 4@(4,1),
FC1: 32 neurons.

As described in Equation (1) of Section 2, max pooling, S(·), is performed after a
convolutional layer to subsample the layer activations. Although this is a layer that is
often used for other applications, its efficacy in SOH estimation applications was initially
unknown. Therefore, to better understand this, a CNN with pooling layers was compared
to a second CNN with no pooling layers. It was found that a CNN with no pooling offered
an MAE of 1.3% however a CNN with pooling had an MAE of 1.0%. Therefore, pooling
improves the accuracy of the CNN for SOH estimation by about 23%.

In the third test, we investigated if augmented training data described in section
III, affects the estimation accuracy of the CNN. This was performed by training two
identical CNNs with identical architectures over augmented and unaugmented datasets.
Augmentation describes the injection of Gaussian random noise as well as offsets and gains
into the training data, as described in section III. Using an unaugmented training dataset, an
MAE and MAX of 2.4% and 4.2% was obtained, while when using an augmented training
dataset, an MAE and MAX of 1.2% and 3.6% was obtained. Therefore, exposing the CNN
to augmented training datasets offers good performance gains with a reduction in MAE
and MAX of 50% and 14%, respectively.

In the final test case, the estimation performance was examined for a much smaller
network since on-board applications often cannot allocate a large amount of computation
time to the SOH algorithm. Therefore, a network with only two convolutional layers was
used to estimate SOH. When trained with augmented training data, the MAE and MAX
achieved by this small CNN over a validation dataset were 1.9% and 6.1%, respectively.
Although this network had adequate performance, further tests were conducted to assess
the impact of network depth on the CNN. In Figure 5, the accuracy of convolutional neural
networks at estimating SOH is recorded, first, as a function of network depth (number of
layers) and, second, as a function of the amount of training data used during the training
process. Clearly, deeper networks achieve increased estimation accuracy since going from
1 convolutional layer to 6 reduced the MAE by more than 60%.

In Figure 5b, the estimation accuracy over a validation dataset examined as a function
of the amount of training is reduced. However, the argument to use more than 13 or
21 datasets during training becomes hard to substantiate given the diminishing improve-
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ment in accuracy. Models trained on battery measurements generated in the lab can be
very sensitive to measurement noise, offsets and gains typically present in real world sce-
narios. Therefore, we tested the robustness of the CNN by using data that was intentionally
augmented. In Figure 6 and in Table 4, the results for SOH estimation for augmented vali-
dation data are shown. Specifically, normally distributed random noise with mean 0 and
standard deviation of 1%, 1.5% and 5% was added to the voltage, current and temperature
measurements, respectively. An offset of 5 mV, 50 mA and 2 C was added to the voltage,
current and temperature measurements, respectively. A gain of 2% was only applied to
the current measurements. The CNN showed good robustness since performance over the
augmented validation dataset resulted in a slightly higher MAE of 1.7%.
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Figure 6. (a) Augmented and unaugmented voltage, current and temperature signals of validation
dataset. (b) Estimation accuracy and error for augmented and unaugmented battery validation data.
Please see Table 4 for detailed results.

Table 4. Results showing effect of augmented versus unaugmented validation dataset.

Validation Data Augmentation MAE (%) STDDEV (%) MAX (%)

No 1.4 0.9 3.2
Yes 1 1.7 1.3 4.0

Architecture; L1–L4: 32@(31,1), FC1: 64 neurons, 1 Augmented by injection of noise, gains, and offsets.
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4.2. State-of-Health Estimation Using Partial Charge Profiles

Although the CNN achieved great performance in the previous subsection, the charge
profiles used were fixed, such that the SOC ranged between 0% and about 60%. As de-
scribed above, batteries are typically never fully discharged down to SOC = 0%. Therefore,
to increase the practicality of this method, the CNN was trained over partial charge curves.
However, differences between charge curves having different SOC ranges around the same
SOH value can be subtle. Therefore, it becomes necessary to include something other
than voltage, current and temperature as an input so that these subtle differences can be
recognized by the CNN. Hence, SOC, which is assumed to be continuously monitored by
an electric vehicle, for example, is included as an input to the CNN. The reference profiles
ranging from SOC = 0% to SOC = 100% are typically longer than 1000 time steps, making it
possible to select many different 256-length chunks to train on. Since the profiles were sam-
pled once every 10 s, this meant that the length of each partial reference profile was about
43 min. It is important to note that in all the results of this subsection, all the stated ranges
of the partial profiles were ranges of the new battery cell before it had aged. Although
subsequent aged partial reference profiles started at the same SOC, they ended at a slightly
lower state of charge. This can also be observed from the plots in Figures 7b and 8b.
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In Figures 7 and 8, the SOH was estimated by the CNN using partial charge curves.
In Figure 7, the SOC range of 30% to about 85% was used while in Figure 8 an SOC
range of 60% to about 92% was utilized. Table 5 shows further results from other partial
charge profiles having different SOC ranges. The SOC in these validation datasets was
assumed to have a mean error of under 4% to simulate a real-world scenario. Although not
overwhelmingly obvious, the results show that the larger SOC ranges generally resulted in
better SOH estimation results. This is most likely attributed to the longer ranges of data



Energies 2022, 15, 1185 12 of 15

which reveal more of the battery’s aging signature. However, the smaller SOC range of
85% to 97% achieved an MAE and a MAX of 1.6% and 3.5% which was nevertheless still
good performance.

Table 5. SOH estimation error for different input SOC ranges. The stated ranges are for the battery
when it was new.

SOC Range MAE (%) STDDEV (%) MAX (%)

25 to 84% 1.6 1.1 3.6
40 to 89% 1.6 1.0 3.5
60 to 92% 0.8 0.7 2.7
85 to 97% 1.6 0.9 3.5

Architecture; L1 & L2: 64@(31,1), L3 & L4: 64@(16,1).

We performed SOH estimation with partial charge curves that sweep initial SOC from
0% to as high as 96% and the results are shown in Figure 9. The charge profiles begin at
different SOC values, however, as mentioned above, they all have the same length of time
of about 43 min. Interestingly, charge profiles beginning between an SOC of 5% and 20%
and between an SOC of 50% and 70% had the lowest MAE and MAX error values. Those
starting between an SOC of 30% and 40% had the highest. This can be attributed to the
fact that the rate of change of the voltage is typically lower at an SOC of 30% to 40% and
therefore this region has relatively fewer distinctive ageing features. Nevertheless, as can
be observed from Figure 9, any 43 min window of data collected during a charge event,
regardless of the initial SOC, can be used to achieve competitive SOH estimation accuracy.
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Figure 9. MAE and MAX values of SOH estimation performed over charge profiles beginning at
various SOC values. The partial charge profiles are obtained from the NASA prognostics repository
and are about 43 min long. The stated ranges of the partial profiles are ranges of the new battery cell
before it has aged.

For the results in Figure 9, there are 95 trained CNNs, one for each value of starting
SOC. While this allows the SOH to be estimated with charge data starting at any SOC value,
storing the parameters for all 95 CNNs would require an excessive amount of memory in a
real-time application. The following design approach is therefore recommended: (1) Train
CNNs with a wide range of starting SOC values, as shown in Figure 9; (2) Select the most
accurate CNN in several different SOC ranges; (3) Implement the selected CNNs in the
real time processor and update SOH whenever a charge with data in the corresponding
SOC range is performed. As an example, three CNNs are marked in Figure 9 which are
the most accurate in the nearby SOC range, those starting at 13% SOC, 63% SOC, and
83% SOC. Example charging data for these different SOC ranges is plotted in Figure 10
below, showing that as the battery aged, the current response during charging changed
significantly, providing an excellent indicator of the SOH. In the real-time application,
SOH would then be updated whenever a charge was performed that covered the 13 to
75%, 63 to 90%, or 83 to 95% SOC range. This methodology allows for more regular and
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accurate updating of the SOH estimate without requiring an excessive amount of memory
for CNN parameters.
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Figure 10. Examples of voltage, current, and SOC time domain charging measurements used for
training SOH algorithm. Each set of partial SOC charge data is 2560 s long, the input data length for
the CNN.

5. Conclusions

This paper introduced a deep learning technique for state-of-health estimation. Specif-
ically, convolutional neural networks were used to extract ageing signatures from reference
charge profiles and, in turn, estimate SOH. Time domain voltage, current, and temperature
measurements were used as inputs to the CNN, and accuracy was found to be improved
when data pooling was used and when the data was augmented with some noise and error
to make it more representative of data from a real-world system. The use of more convolu-
tional layers, up to six, was shown to reduce error. Little benefit was found for increasing
the number of cells in the training dataset beyond 13, giving insight into how much battery
testing is necessary to create an accurate machine learning-based SOH estimation algorithm.
It was also demonstrated that by training the CNN with data at two different temperatures,
the network accurately estimates SOH for charges at both temperature values. For appli-
cations with a wide temperature range, it is therefore recommended to train the network
with data covering the whole span of operating temperatures. Importantly, it was shown
that the CNN can accurately estimate SOH even when data is only available for a partial
charge. A very wide range of partial charge cases were investigated, starting anywhere
between 0 and 95% SOC, and ending between around 60 and 100% SOC, and MAE was
no higher than 2.3% for these cases. A design approach is recommended where multiple
CNNs are implemented in the real application, each trained for a different SOC range.

While other papers have utilized CNNs to estimate SOH from impedance spectroscopy
data or combined CNNs with additional algorithms or methods for creating new features
from the data, this work has shown that with proper CNN sizing and structure, sufficient
data, and augmentation of the data through the addition of noise and error, a very low
error of around 1% MAE or less can be achieved. The presented methodology is, overall,
less complex than some of the prior art while still achieving good performance, making it a
promising candidate for many applications.
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