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Abstract: Occupant behaviour plays a significant role in shaping the dynamics of energy consumption
in buildings, but the complex nature of occupant behaviour has hindered a deeper understanding of its
influence. A meta-analysis was conducted on 65 published studies that used data-driven quantitative
assessments to assess energy-related occupant behaviour using the Knowledge Discovery and Data
Mining (KDD) framework. Hierarchical clustering was utilised to categorise different modelling
techniques based on the intended outcomes of the model and the types of parameters used in various
models. This study will assist researchers in selecting the most appropriate parameters and methods
under various data constraints and research questions. The research revealed two distinct model
categories being used to study occupant behaviour-driven energy consumption, namely (i) occupancy
status models and (ii) energy-related behaviour models. Multiple studies have identified limitations
on data collection and privacy concerns as constraints of modelling occupant behaviour in residential
buildings. The “regression model” and its variants were found to be the preferred model types
for research that models “energy-related behaviour”, and “classification models” were found to
be preferable for modelling “occupancy” status. There were only limited instances of data-driven
studies that modelled occupant behaviour in low-income households, and there is a need to generate
region-specific models to accurately model energy-related behaviour.

Keywords: occupant behaviour; occupancy; low-income households; hierarchical clustering;
knowledge discovery and data mining; residential energy consumption

1. Introduction

Numerous studies have explored the behaviour of occupants within buildings and
have drawn a direct connection between occupant behaviour and energy consumption.
Most of these studies have focused on commercial building spaces. Only a few have
focused on residential areas, and even fewer have focused on low-income and vulnerable
households. Similarly, quantitative assessments of occupant behaviour and its interaction
with the building features, which also influence energy conservation measures for low-
income households, are rare. However, there are numerous qualitative research and
intervention studies that have analysed the impact of variations in occupant behaviour on
energy consumption.

Understanding the interactions between multiple parameters and more accurately
predicting occupant behaviour will provide new opportunities for promoting energy con-
servation and improving energy efficiency. Strategies can include adapting building design
in response to the effects of a specific occupant behaviour or developing technical or design
solutions that influence or modify specific human behaviour. Such approaches can also be
used to optimise energy consumption without compromising the indoor environmental
quality and comfort of occupants.

This article explores the latest statistical modelling techniques used to quantify and
understand the impacts of human interactions that influence energy consumption. Research
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focusing on dwellings, particularly those of low-income households, is also explored. A
meta-analysis is used to identify and categorise modelling techniques used in studies. In
addition, the outcomes of various statistical models and different interpretations of these
outcomes are explored in detail.

The meta-analysis considers studies of residential buildings, commercial buildings,
and institutional spaces. We compare studies of commercial and institutional spaces against
studies of residential buildings. The inclusion of non-residential spaces helps with the
exploration of different modelling techniques that are commonly used to study occupant be-
haviour. This literature review can be used as a reference for selecting suitable variables and
specifying the types of outcomes (behaviour or occupancy modelling) researchers intend to
obtain or for choosing the most appropriate modelling technique for undertaking research
on occupant behaviour. In addition, the systematic approach used in this meta-analysis can
be used as a framework for assimilating and organising relevant information from different
studies to select suitable modelling techniques and data points for specific experiments.

1.1. Background

The factors that contribute to energy use in buildings can be broadly grouped into two
categories: external factors and internal factors. Jia et al. [1] identified the building envelope,
building systems, equipment, and climate as external factors, and they identified occupant
behaviour, operation/maintenance, and indoor environmental conditions as internal fac-
tors. Yan et al. [2] stated that the relationship between occupant behaviour and energy
consumption is primarily governed by the occupants’ pursuit of environmental comfort.

It is widely believed that occupant behaviour is one of the most difficult internal factors
to model when it comes to predicting building energy consumption. That is, occupant
behaviour is more complicated to assess and quantify than a building’s envelope and
thermal properties [3]. Variables that influence occupancy and occupant interaction with
building features can be classified as (i) environment-related variables, (ii) time-related
variables, or (iii) other random variables that explore the psychology of occupants [4].

Buildings are often designed with the assumption that occupants are rational and
well-informed about the purpose and intent of the building design [5]. Additionally, it is
assumed that occupants will comply with the operational rules of the building. Clevenger
and Haymaker [6] showed that uncertainty related to occupant behaviour can limit the
accuracy of energy modelling and a variation by as high as 150%, as was observed for
school buildings while using standard energy modelling software such as DOE–2. Similarly,
in some cases, variations in occupant behaviour can account for as much as 100% of the
variation in residential energy consumption [7,8]. This discrepancy between actual and
modelled occupant behaviour is also attributed to the fact that many of these studies falsely
consider human behaviour as deterministic. Studies emphasise there is a need for more
comprehensive research that explores the relationship between behaviour and occupancy
patterns [7,8]. Hence, the modelling constraints and accuracy associated with predicting
occupant behaviour would benefit from further research.

Several studies have compared the effectiveness of deterministic and probabilistic
models of occupant behaviour (deterministic models use physical considerations to predict
an outcome, whereas a stochastic model probabilistically predicts an outcome). These
studies point out that assumptions regarding occupant behaviour can lead to shortcomings
in building design because there is a high likelihood that actual behaviour will deviate
from assumed norms. Daniel et al. [9] showed that simulation outcomes from AccuRate
(an Australian federal government-endorsed calculation engine) for occupied residential
buildings significantly deviated from the actual internal conditions. The closest matches
between predicted and actual outcomes were for unoccupied low-energy residential build-
ings. This indicates that occupant behaviour is not adequately factored into the AccuRate
software, and this is likely the case for other models that use similar assumptions. Most
building simulation tools use equations based on heat transfer and thermodynamic, with
occupant behaviour factored in using numerical approximations of predictable and repeat-
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able deterministic actions. Assumptions that occupant behaviours are driven by similar
non-dynamic constructs have been recognised as the main limitations in most simulation
tools [10,11].

The review presented by Shrestha et al. [12] on household energy-saving behaviour
highlighted the importance of gender roles in energy-saving and management in house-
holds. The study further showed that occupant-specific variables such as gender, income,
family composition, education, headship, age-group, habits, and other socio-economic
factors significantly influence energy-saving behaviours. Furthermore, some earlier studies
such as that by Schipper et al. [13] presented analyses of different family typologies and
time-use schedules for residents and concluded that changes in lifestyle (duration and
location of leisure time) can alter energy consumption patterns in households.

A significant reduction in energy use in residential buildings can be brought about
by altering the behaviour of occupants. Hence, understanding how occupants interact
with buildings is an important topic for research. For example, Pisello and Asdrubali [14]
identified such measures related to behaviour change as “human-based energy retrofits”,
which are simple zero-cost actions that reduce energy consumption. The authors of the
study claimed that energy savings as high as 239 kWh per person per annum were achieved
for a village of green buildings in central Italy. Furthermore, qualitative studies of low-
income households, such as those by Langevin et al. [15], Vassileva and Campillo [16],
and Trombley and Halawa [17], have highlighted the importance of interventions for
creating behaviour change and improving energy consumption patterns. Ouyang and
Hokao [18] compared households that were trained in energy-efficient behaviour with
untrained households and found that, on average, there was a potential for a more than
10% reduction in energy usage via behavioural change.

1.2. Existing Modelling Approaches and Constraints in Modelling Occupant Behaviour

Residential buildings, unlike commercial buildings, are characterised by a higher di-
versity of occupancy hours and activities leading to behavioural diversities, which increase
the complexities of studying occupant behaviour [4]. In addition to these complexities,
privacy issues and ethical concerns also act as a significant hindrance to obtaining quality
data for accurate modelling. Many technologies used for data acquisition (e.g., image-
based technologies, radio-based technologies, and human-in-loop methods) face restricted
use for residential buildings due to privacy concerns [19]. In addition, constraint issues
such as a lack of compatibility between different simulation software programs and lim-
itations related to competencies in developing code and data-mining techniques result
in a failure to deliver effective occupant behaviour models [20,21]. The fact that humans
are emotional and sometimes irrational adds to the complexity of model development.
These constraints significantly impact the selection and use of parameters and advanced
data-driven modelling techniques.

The techniques used to model residential energy consumption are usually classified
as being top–down or bottom–up. In the top–down approach, macroeconomic variables
and aggregate estimates of energy consumption are used as input variables into energy
models (or subsets of the residential sector). This approach starts at the top and works its
way down rather than focusing on individual dwellings or consumers. The bottom–up
approach, on the other hand, calculates the energy consumption of individual residential
buildings or groups of households with similar attributes. These dwellings can be further
aggregated to understand and model energy consumption at a higher level of the hierarchy.
Swan and Ugursal [7] further classified bottom–up models into statistical and engineering
models, with statistical models being further divided into regression, conditional demand
analysis, and neural network models. Engineering models can be divided into population
distribution, archetype, and sample models. The behavioural models discussed in this
article use statistical modelling techniques that can improve the accuracy of the modelled
occupant behaviour of engineering models, which predominantly treat human behaviour
as deterministic.
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Many review articles have explored various methods and modelling techniques used
to examine occupant behaviour and its subsequent effects on energy consumption, and they
highlight need for better occupant behaviour models [22]. However, occupant behaviour
has mainly been studied with the intention to improve energy modelling for commercial
and institutional buildings without exclusively focusing on the data-driven modelling
involved in the research. The difficulty of monitoring occupant behaviour in residential
buildings has resulted in a knowledge gap. This is important because aggregate energy
consumption in residential buildings is significant [4]. This review article focuses on un-
derstanding the different data-driven quantitative modelling techniques that are currently
being used to understand the impacts of occupant behaviour on energy consumption using
a meta-analysis. This meta-analysis is tied back to the Knowledge Discovery and Data
Mining framework.

2. Scope and Methodology

Studies applying a quantitative modelling technique published between 2008 and
2020 were targeted for this review. Simple keyword searches used across multiple aca-
demic search engines identified hundreds of papers. The keywords used in this search
included various combinations and derivatives of words such as “occupant”,” occupancy”,
“behaviour”,” building”, ”residential”, ” dwelling”, ”low-income”, “household”, “energy”,
and “energy efficiency”. This process was not able to differentiate between papers of a
qualitative or quantitative nature (keyword search was conducted using search engines
associated with Scopus/Science direct, ASCE Library, IEEE Explore, and Google Scholar).
Each paper was then individually reviewed and placed on a shortlist if a quantitative
technique had been applied in the paper. During this deeper review process, the citations
within each paper were also checked for other undiscovered papers. A total of fifty-four
papers, consisting of eighty relevant modelling techniques, were identified. Each modelling
technique was entered into a database assessed against relevant criteria. The meta-analysis
was then used in a hierarchical clustering process.

The hierarchical clustering included studies for both residential buildings and com-
mercial and institutional spaces. Studies related to commercial or institutional spaces used
a larger number of data-driven and advanced modelling techniques that could be replicated
in residential buildings, provided sufficient data points were available. The inclusion of
non-residential spaces helped explore a wider variety of modelling techniques that had
been used to study occupant behaviour.

This review process organised and classified key aspects of different data-driven
modelling techniques used for modelling occupant behaviour. This review was intended to
identify the key areas of study, parameters, or data collection requirements and to identify
data-driven modelling techniques used for quantitative occupant behaviour modelling.
Researchers can use the results of this meta-analysis to classify their research objectives in a
broader field of study to identify the data collection and modelling technique requirements.

The subsequent subsections explain the Knowledge Discovery and Data Mining
framework and how this framework has been used to structure this meta-analysis.

2.1. Knowledge Discovery and Data Mining Framework

The meta-analysis was structured based on the Knowledge Discovery and Data Min-
ing (KDD) framework shown in Figure 1 [23]. Giving due consideration to the prevailing
constraints in the behaviour modelling of occupants and the key areas of the KDD frame-
work, we focus on three main components that can improve the knowledge base and help
researchers in following a structured approach towards defining the research objective of
parameter and model selection.
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Figure 1. (i) Knowledge Discovery and Data-mining framework (ii) Framework for meta-analysis,
which is derived from the KDD framework.

The KDD process starts by looking at the problem statement and environment to
arrive at a clear definition of the end goals. However, in some cases, in line with the KDD
process, the goals may become redefined as the process proceeds. The description of goals
is followed by outlining the data required for building a knowledge base related to the
given goal. The available data are evaluated, and provisions for attaining additional data
are put in place. The selection of data is extremely crucial, as this forms the evidence base
for constructing the model and governs the complexity of the next step, which is data
pre-processing and cleaning. The pre-processing and cleaning are performed to enhance
the reliability of the data. The data are then transformed, including with dimensionality
reduction (including feature selection and record sampling) and attribute transformation
(discretisation and functional transformation) [23].

Data transformation is influenced by the KDD goals, data-selection, and the following
steps associated with modelling techniques: data mining, evaluation, and interpretation.
Data mining involves the selection of the data-mining task (such as classification, regression,
and clustering), the selection of the data-mining algorithm (such as a neural network or
decision tree), and the implementation of the data-mining algorithm. The data-mining stage
is followed by the evaluation of the model (such as assessing the accuracy of predictions)
or the interpretation of relationships, patterns, and other results. The final step involves
the use of domain knowledge or its incorporation into the system to address the problem
statement or to achieve a specific goal [23].

2.2. Meta-Analysis of Studies Using KDD Framework

This section explains the criteria derived from the KDD framework that was used for
the meta-analysis of modelling techniques used in different studies.
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2.2.1. Classification of Modelling Techniques Based on the Area of Study

We used areas of study (KDD goals), the use of dependent/independent variable
(selection of data), and type of model types (data mining, evaluation, and interpretation)
to assimilate relevant information on the data-driven modelling of occupant behaviour
(Figure 1). We identified two main KDD goals for studies on occupant behaviour based on
the meta-analysis. These goals were “occupancy status” and “energy-related behaviour”
and are referred to as the “area of study”. These are further explained in the upcoming
sections. Hence, the first level of classification for categorising modelling techniques for
this meta-analysis was on the basis of the “field of study”.

2.2.2. Categorisation of Modelling Techniques Based on Area of Study and
Independent Variables

For the second level of classification, a sparse matrix was used to list different variables
used for different modelling techniques. The compiled sparse matrix had 80 rows, one
row for each of the modelling techniques, and 12 columns, one column for each parameter
category (which included both independent variable and dependent variables for training
the models), and the presence or absence of the parameters in a study was recorded as
either 1 (“present”) or 0 (“absent”). In addition to these 12 columns of parameter categories,
the area of study (i.e., energy-related behaviour or occupancy status) was used as an
input for categorising the 80 modelling techniques (Figure 2). That is, each modelling
technique was considered as a data point that was identified by its variables and the area
of study/outcome of the model. The clustering process, which was used for categorising
different modelling techniques, is represented in Figure 2.
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The result of clustering is represented as a dendrogram and was generated using
Euclidean distance as the dissimilarity structure and Ward’s method as the agglomeration



Energies 2022, 15, 1219 7 of 23

method [24–27]. Ward’s method states that the distance between two clusters, A and B, is
the increase in the sum of squares as we merge them; that is, for two clusters A and B:

∇(A, B) =
nAnB

nA + nB
|mA −mB|2 (1)

where mj is the centre of the cluster j, nj is the number of points in it, and delta (∇) is the
merging cost of combining clusters A and B. The agglomerative approach of clustering is a
bottom–up approach that starts with each of the nodes as a single cluster. The algorithm
groups the smaller clusters into a larger cluster and calculates the corresponding distances.
The resulting clusters are shown using a tree dendrogram (Figure 3), which shows the
Euclidean distance (y) between different clusters that are formed at various levels of
the hierarchy.
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2.2.3. Classification of Data-Driven Modelling Techniques

The data-mining taxonomy shown in Figure 3 has been used to classify the modelling
techniques that were identified for this meta-analysis [23]. The data-mining methods
can be grouped into either the verification-oriented approach where the system focuses
on verifying a hypothesis or the discovery-oriented approach where the system finds
new rules and patterns in the data. The verification-oriented approach comprises more
traditional statistical methods such as the t-test and ANOVA, whereas, the discovery-
oriented techniques are based on inductive learning and involve the construction of a
model, either explicitly or implicitly, by generalising the observation from a training sample.

The discovery approach is further divided into predictive modelling and descriptive
modelling, which are also known as supervised and unsupervised learning, respectively, in
machine learning terminology. The descriptive approach assesses a sample without a target
attribute or dependent variable. The supervised learning or predictive approach focuses on
discovering and generalising the relationship between the input parameters (dependent
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variables) and target attribute (independent variables). The predictive approach is further
divided into regression and classification models. The classification model based on the
classifier, architecture, and algorithmic approach can be further categorised into other
sub-categories (Figure 3). Hence, as the third level of classification for this meta-analysis,
the modelling techniques in different studies were classified into five model type categories:
clustering, classification, regression, verification, and others.

The insights from this meta-analysis of different modelling techniques will be helpful
for classifying studies based on modelling outcomes (occupancy status or energy-related
behaviour), the complexity of an experiment based on its data collection requirements, and
the nature/complexity of modelling techniques. The comprehensive list of parameters pre-
sented in Appendix B can also help in evaluating the options for data collection for a given
research structure or for better understanding the ethics implications for an experiment.
For example, the options available for capturing the presence or absence of occupants can
be evaluated and compared using this review to select the best-suited alternative based on
the existing ethical considerations for a study.

This meta-analysis will add value to specific steps of the quantitative study of occu-
pant behaviour. These steps are: (1) defining the research objective, (2) structuring the
experiment and defining the scope for the data collection for the analysis, and (3) selecting
the model type. In addition, the meta-analysis also presents a structured and scalable
approach that can be used to identify, assimilate, and organise relevant information for
evaluating different statistical modelling techniques. The algorithmic approach used in this
meta-analysis (hierarchical clustering) makes it scalable for studying a larger number of
modelling techniques.

3. Results and Discussions

This section summarises the insights from the meta-analysis approach described in
the previous section. The analysis classified the 80 modelling techniques from 65 studies
using three levels of classification: (1) field of study, (2) the use of dependent/independent
variables, and (3) model type.

3.1. Defining the Area of Study: Difference between Occupancy Status and Energy-
Related Behaviour

Variations in occupant behaviour are the result of two variables: occupancy and
behaviour. The behaviour of an occupant relates to how they interact with the building in
relation to energy consumption. This behaviour is referred to as “energy-related behaviour”
in the upcoming sections. Energy-related behaviour mainly refers to the interaction of
occupants with different features of the building, the habitual behaviours of the occupants,
and personality traits or lifestyles that influence energy consumption in the household.
Occupancy is defined as the presence and absence of occupants in a building over time [1].
Occupancy in a building is referred to as “occupancy status” in the upcoming sections.
Occupancy status could be further extended to include the number of occupants, the
physical distribution of occupants and other static information related to the occupants,
e.g., age, ethnicity, or level of education.

We contend that occupancy status and energy-related behaviour need to be treated as
separate entities, as this enables these two distinct concepts to be explored in greater detail.
This is done because the methods that need to be applied for studying occupancy status
and energy-related behaviour are very different. This difference is particularly evident
when it comes to model types, data requirements, data acquisition, and the application
of resultant models in simulation tools. To this end, we distinguished between these two
concepts when reviewing and assessing the literature and the methods that were applied.

In residential buildings, occupancy status profile may not show frequent changes over
time. A study of time-use data in Spain identified three peaks in the occupancy status of
dwellings that coincided with morning, noon, and evening [28]. Additionally, occupancy
levels for a dwelling usually remain static unless ownership changes [29]. However,



Energies 2022, 15, 1219 9 of 23

changes in factors such as lifestyle, income, health, and comfort can drive occupancy status
and trigger changes in behaviour that alter their interactions with features of a dwelling,
resulting in shifts in energy consumption patterns.

Based on the discussion in this section, modelling techniques are classified based on
the intended outcome of the model, which can either be ‘occupancy status’ or the ‘energy-
related behaviour’ of the occupant (Figure 2). However, there have been instances where
‘occupancy status’ or ‘energy-related behaviour’ were explicitly modelled for achieving
a separate research objective. For example, the primary objective of the study of Perez-
Fargallo et al. [30] was to develop a thermal comfort model. This involved modelling
energy-related behaviour in terms of occupant’s preferences and acceptance of thermal
conditions in low-income households. This study was included in this review and was
classified as a research on energy-related behaviour. The results of the classification of
studies based on the area of study are provided in Appendix A.

3.2. Identifying Data or Parameters Categories Required for Occupancy Status or Energy-Related
Behaviour Models

This section explores different parameters used in modelling occupant behaviour and
categorises them in generic groups based on the nature of information these parameters
are adding to the model.

3.2.1. Classification of Data Used for Occupant Behaviour

A wide range of parameters are used in different modelling approaches; hence we
grouped the parameters into different categories based on the purpose and nature of the
data provided by them. For example, data from Wi-Fi connections, occupancy schedules,
time-use surveys, video recordings, photographs, and motion sensors were grouped into
a category called “presence and absence status” because these parameters were used to
ascertain the presence of occupants during a specific time period or under particular
conditions. The estimation of occupancy using CO2 concentration or other models (such
as DeST (Designer’s Simulation Toolkit)) were not included in “presence and absence
status” because they are not direct measurements. All the parameters and their respective
parameter categories for the 54 reviewed articles are provided in Appendix B.

We identified 12 parameter categories that could be used to summarise the data used
in research focused on modelling occupancy status or energy-related behaviour. These
categories are: (1) presence and absence status, (2) indoor environment, (3) outdoor envi-
ronment, (4) occupant’s profile, (5) time-use survey, (6) lifestyle, (7) energy consumption,
(8) building design, (9) thermal comfort, (10) interaction with the building, and (11) building
controls. The data that did not fall in these categories were placed into a separate 12th
category called “other parameters”. A list of the input data that were grouped under each
of the above-mentioned categories is shown in Appendix B.

The “indoor and outdoor environment” parameter categories include temperature,
relative humidity, air velocity, air pressure, CO2 concentration, and lighting conditions.
The “occupant’s profile” category captures details regarding the occupant, such as age and
gender; in some cases, these represent consolidated demographic data for a cohort. More
information about the occupant is captured using the “time-use survey” data, which usually
detail routine activities done by an occupant. Similarly, parameters under the “lifestyle”
category capture details such as perceived behavioural control, attitude towards energy
conservation, degree of physical activity, frugality, family type, and bill consciousness.
“Energy consumption” is another important parameter category that captures details related
to gas-consumption readings and electricity-consumption data, which are consolidated
values or (in some cases) appliance-specific.

“Interaction with building features” is an important parameter used in studies that
have modelled “energy-related behaviour” and covers data such as the opening/closing of
the windows, the use of lighting systems, the use of fans, and preferred thermostat settings.
The data under this category were found to mainly be collected through surveys or by
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passive data collection techniques using sensors and audio-visual tools. “Building controls”
capture details related to automated controls or pre-set schedules in a building. These could
be data related to plug load controls or automated or pre-set schedules for equipment such
as washing machines, water heaters, HVAC systems, and lighting systems. Data related to
“thermal comfort” comprise a separate category. Data under this category were found to
usually be collected through surveys that cover the level of perceived thermal comfort by
an occupant and their requirements for thermal comfort.

The parameter categories (Appendix B) have been used in different contexts, i.e.,
for training (either as dependent or independent variables) or interpreting a model. For
example, the parameters in the “building design” category were used as independent
variables in models for studying ‘energy-related’ behaviour” [31,32] and, in some cases, as
a supplementary/explanatory data for case selection or for interpreting results. [30,33,34].
Similarly, some parameters in “presence and absent status” were used as dependent
variables in studies on “occupancy status” [35]; it was also used as an independent variable
while modelling “energy-related behaviour” [31,32].

3.2.2. Parameters Use in Modelling Occupancy Status and Energy-Related Behaviour

Figures 4 and 5 summarise the meta-analysis of modelling techniques based on the
independent/dependent variables and the area of study. Figure 4 is a dendrogram that
shows the level hierarchy of the clusters identified by the clustering algorithm. Each of
the numbers at the lowest level of the dendrogram (Figure 4) represents the individual
modelling technique, and the number denotes the identification assigned to each of the
modelling techniques during the clustering process. The parameters used by modelling
techniques in clusters C and D are related to the internal environment and the status of
occupancy (presence/absence) (Figure 4). Clusters A and B contain modelling techniques
that use a broader range of parameters and have predominantly been used for modelling
energy-related behaviour.

The techniques in cluster B frequently use parameters that explore the outdoor/indoor
environment, presence or absence status, and the interaction of an occupant with the
building features, hence focusing on more dynamic and measured parameters. The models
in cluster A more frequently use static parameters compared to the models in cluster B. The
use of parameters related to occupant’s profile (e.g., age and occupation), lifestyle-related
data, and building design are more frequently seen in cluster A. The modelling techniques
used in clusters C and D generate models that predict or study the occupancy status profile
(Figure 5). Techniques in cluster C use the internal environment to predict occupancy status
(presence/absence), whereas the techniques in cluster D map presence/absence or time-
use patterns against timestamps. The colour of bars represents one of the two modelling
outcomes, namely ‘occupancy status (blue)’ and ‘energy-related behaviour (red)’. The y-
axis of the bar charts in Figure 5 is the parameter categories representing different variables
listed in Appendix B. The x-axis shows “frequency of use”, representing the number of
modelling techniques (within a cluster) that use variables in that parameter category.

Techniques for modelling energy-related behaviour use a wider variety of parameters.
However, the types of variables used for behaviour modelling depend upon the type
of behaviour that is being modelled. For example, the modelling of behaviour in the
context of energy use would require variables related to energy consumption, occupant
profile, and data from a time-use survey [3]. Modelling approaches aimed at modelling
other energy-related behaviours, such as understanding the agreeableness to behaviour
change and the impact of normative feedback, would require total energy consumption
and occupant profiles [36]. Studies that target intentions for energy conservation would
focus more on certain variables that are listed under the “lifestyle (behaviour-specific data)”
parameter category in Appendix B [37,38]. Additionally, if interaction with a building
feature is the outcome, then the variables used would mainly be in the categories of
“internal environment”, “external environment”, and “interaction with building” (also refer
to Appendix B) [39,40]. Furthermore, models for studying energy-related behaviour are
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more complicated than models for studying occupancy status. However, the computational
power required for both the outcomes also depends on the data points and the size of
the cohort. Furthermore, it is interesting to note that none of these studies considered co-
benefits such as the health and social benefits resulting from an energy-related behaviour.
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3.2.3. Importance of Developing Region-Specific Models

The nature of the parameters that are used for behaviour modelling can vary from
one geographical region to another. Figure 4 shows that the main parameter groups that
are used in behaviour modelling are “interaction with the building features”, “weather
data (outdoor environment)”, “occupant’s profile”, “energy consumption”, “building
design”, and “behaviour data related to lifestyle”. These parameters are usually specific to
a region, and as such, it is evident that geographic location and demographic features affect
behaviour models. Additionally, there have independent studies such as that by Lenzen [41]
that have corroborated the claim that the resource endowments of a region, historical events,
socio-cultural norms, behavioural attributes, and current market conditions determine the
household energy consumption in a country. In addition to this, energy tariff structures,
policies in the power sector, and the penetration of rooftop photovoltaic solutions can
directly or indirectly impact energy consumption in the buildings of a particular country
or a state [42,43]. Hence, we can infer that for a country or region, indigenous research
into occupant behaviour is crucial. Furthermore, due to the varied climatic conditions in
a geographically vast country, models need to be region-specific to generate an accurate
prediction of occupant behaviour for energy modelling. To ensure the accuracy of models
over time, these region-specific models need to be continuously updated to capture the
impacts of changes in policies and the introduction of new technologies.

3.3. Types of Modelling Techniques

Regression is the most preferred model type used in categories A and B, followed
by model types such as classification and clustering. These categories (A and B) mainly
include research that model energy-related behaviour. The studies in cluster C and D model
occupancy status, and classification is the most frequently used model type.

The modelling techniques utilised in all studies included in this meta-analysis in-
cluded model types that use a discovery approach (as per data-mining taxonomy). Fur-
thermore, the majority of these studies used predictive modelling using regression or
classification model types, with a few studies also following a descriptive approach us-
ing clustering/other model types. Additionally, it was observed that most of the recent
studies, especially the ones exploring occupancy status in commercial spaces (mainly in
category C and D), used the neural networks and other advanced supervised learning
approaches (classification model type). For studies focusing on dwellings, instances of
advance supervised learning could be seen in experiments (mainly in category B) that
explored the interaction of occupants with building features. However, the use of advanced
unsupervised learning was found to be more prevalent in studies focusing on commercial
and institutional buildings. The descriptive approach of data mining that uses methods
such as clustering or other mathematical models was mainly found in exploratory studies
on occupant behaviour.

Modelling techniques that are employed to study or model occupancy status and some
energy-related behaviours use classification model types powered by machine learning
algorithms. Among these classification model types, the K-nearest neighbours algorithm
(KNN) [44–46], which uses the Euclidian distance of a specific data-point from the cen-
troid of a group of data-points, has been one of the most frequently used models for
predicting occupancy status through classification. Apart from KNN models, classifica-
tion models based on support vector machine (SVMs) [45,47], which are highly efficient
for non-linear classification (using kernel), have also been frequently used. Models that
use the Markov chain [48–52] or artificial neural networks (ANNs) [45,47,49,50,53] are
also common. Similarly, different variants of regression models [20,29,32–34,39,40,54–62]
and combinations of regression models that incorporate concepts such as the Theory of
Planned Behaviour [37,38] and other classification models including reinforcement learning
(RL) [63–65] have typically been used for modelling energy-related behaviour. In addition,
Markov models have also been used in multiple studies on energy-related behaviour. Mod-
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els that neglect to incorporate occupancy status as part of their assessment are missing an
important explanatory information for modelling energy consumption.

Most studies aiming to understand occupancy status were found to have monitored
a particular building or space rather than examining the occupants themselves. On the
other hand, studies aiming to understand occupant behaviour could be classified as a
building-space monitoring study or have been conducted on a fixed number of occupants
or cohorts. A fixed cohort can be a fixed number of households or a sample of occupants.
Studies focused on interaction with specific building features have usually studied a fixed
cohort in a living space or building.

Comparing the Accuracy of Modelling Techniques

Some studies on occupancy and energy-related behaviour in this review compared
the accuracy of different models. RMSE (root mean square error) [45,47,49], MAE (mean
average error) [45,49], MAPE (mean average percentage error) [45], and R-squared val-
ues [60] were mostly used to identify which models were more accurate. The accuracy of
the modelling techniques varied in different studies. Classification models such as support
vector machines were found to be more accurate than ANN and KNN models for modelling
occupancy status using Wi-Fi data, whereas the ANN model showed the best performance
when Wi-Fi data were combined with environment data [45]. Linear regression was found
to be superior to SVM classification and support vector regression (SVR) in modelling
occupant-group schedules in office buildings using appliance-specific power consumption
data [64].

The Markov chain model was found to be superior to the ANN and SVR models for
the short-term prediction of occupant numbers, whereas it was slightly less accurate for
predicting the presence and absence of occupants for 15 min, 30 min, and 1 h forecasts [49].
At the same time, a nearest neighbour (NN) model using a customised distance function
along with association rule outperformed the Markov chain model with respect to mod-
elling occupant coordination and generalisation of behaviour patterns while using time-use
data for households [66]. ANN and SVR showed higher accuracies in predicting occupancy
counts using CO2 concentration compared to dynamic physical models [47]. Another study
by Candanedo [60] on low-energy buildings compared multiple linear regression, support
vector machine (using radial kernel), random forest, and gradient boosting machine (GBM);
compared to the other two model types, GBM and the random forest classification model
showed improved RMSE and variance (R squared) for the predictions. It was also observed
that specific studies combined multiple modelling techniques to increase the accuracy of
their outcomes.

3.4. Studies on Residential Buildings

Most of the studies on energy-related behaviour in dwellings were recent (post−2013)
and focused on areas of study related to temperature preference, time use, energy-saving
practices, interaction with the building, and other actions that influence energy consump-
tion. Furthermore, studies on residential buildings mainly used survey data to obtain
estimations of occupancy status rather than using passive data collection tools. Addition-
ally, some studies used existing models to estimate parameters such as energy use [29,38],
occupancy [29,31], building features [29], and other specific details for modelling energy-
related behaviour. When it comes to low-income households, there is considerable space
for more detailed data-driven research that focuses on occupant behaviour.

Some behaviour models for residential buildings mainly used regression modelling
and other descriptive statistical approaches. On the other hand, some studies combined
statistical modelling with certain theoretical approaches to explore the role of behaviour
in energy conservation. For example, the Theory of Planned Behaviour was used in
combination with hierarchical regression in multiple instances to study practices and
motivations pertaining to energy conservation [37,38].
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In comparison to the behavioural modelling techniques used for institutional and
commercial buildings, modern data-intensive methods such as deep learning, reinforce-
ment learning, and machine learning have been less frequently used for research into
residential buildings. While regression remains the most preferred model type, clustering
and classification have also been used. It should be noted that this review considered the
modelling techniques of a limited number of studies, so the frequency and the preferences
concerning the use of a specific model cannot be inferred with absolute certainty. However,
in general, a preference for regression model type was observed.

It has been noted that there were only a limited number of papers that explicitly
explored energy-related behaviour or occupancy status in low-income households. Al-
though many qualitative studies have focused on energy consumption-related behaviours
in low-income households, there have been very few studies that adopted a quantitative
approach. Hence, there is a need for data-driven models to design effective initiatives for
optimising energy consumption in low-income households.

The energy-related behaviours of low-income and other vulnerable households may be
different from the behaviours of typical households. The disposable income of a household
plays a significant role in energy-related behaviour. The use of appliances in low-income
households is different from their use in high-income households. Specifically, the use of
appliances such as dishwashers, air conditioners, and microwaves is higher for wealthier
households [67]. Cayla [68] showed that income has a vital impact on energy consumption.
Low-income households exhibit capital constraints in the purchase of appliances and in
their use; the research also revealed that income influences the use of space heating and
thermal comfort inside dwellings.

Studies in the USA have related occupants’ profiles, incomes and other vulnerability
indices to health outcomes. These studies further stated that deaths due to exposure to
extreme weather are more prominent in aged populations, with ethnicity, location, and
income being other determining factors [69]. Additionally, it is important to note that
the study of energy use and occupant behaviour in low-income households has been less
explored because these households are difficult to reach and are typically not modernised
for facilitating the retrieval of quality data for analysis (e.g., availability of smart meters to
collect utility data) [70].

Residential energy consumption influences and, in some instances, drives the living
standards of occupants. Occupancy status and energy-related behaviour can therefore
be seen as the two main pillars of human behaviour that have significant impacts on the
energy consumption of buildings. Specific sub-populations of society such as vulnera-
ble households and low-income households are more impacted by changes in energy
consumption patterns since household income is a determining factor in energy-related
expenditure [71]. Furthermore, James and Ambrose [72] observed that in low-income
households, an approach that focused on both building retrofits and behavioural change
resulted in a reduction of energy consumption by 18% as opposed to a much lower 11.6%
reduction when only building retrofits were performed. Accurate energy modelling that
focuses on understanding human behaviour and the factors behind improved energy con-
sumption for vulnerable low-income households can pave the way for more tailor-made
and practical approaches for optimising energy consumption. This can further add to the
eradication of energy poverty, improvements in living standards, and the maximising of
certain co-benefits such as thermal comfort.

4. Limitations

This meta-analysis specifically considered studies that involved data-driven mod-
elling techniques to model or analyse occupant behaviour. There are less data-intensive
and qualitative studies of occupant behaviour that approached this area from different
dimensions, but these qualitive approaches were not covered in this meta-analysis and
were beyond the scope of this review article.
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While efforts were made to cover a variety of quantitative studies on occupant be-
haviour, the studies presented in this meta-analysis should not be seen as an exhaustive
representation of all the available quantitative studies on this topic. The constraints around
the keyword search mentioned in Section 2 comprise an important factor that feeds into
this limitation.

5. Conclusions

There is an urgent need for more data-intensive occupant behaviour models for
low-income households. Privacy issues related to data collection, as well as the ethical
considerations related to these issues, need to be addressed to ensure that quality data are
available for quantitative behaviour modelling. Other important findings are as follows:

• The review process identified two high-level research goals in studies exploring occu-
pant behaviour: the modelling of “occupancy status” and “energy-related behaviour”.
Studies on occupancy status were found to deal with the presence and absence status
of the occupant, whereas studies on energy-related behaviour were found to explore
specific behavioural traits, lifestyles, and interactions of occupants with the building
that influence energy consumption.

• A detailed list of different parameters or data that were used in modelling occupant
behaviour is presented in Appendix B. These parameters were grouped into 12 cat-
egories. We used these parameter categories to further group modelling techniques
into four separate categories. Category D uses time-series fluctuation in the occupant
number to model the “occupancy status” in a building. Studies in category C predict
the “occupancy status” based on the changes in the indoor environment of a building.
The categories A and B mainly contain models that study “energy-related behaviour”
and use a more significant number of parameters. The models in category B frequently
use dynamic and measurable parameters, and the modelling techniques in category A
frequently use static occupant-related parameters.

• The is a need for region-specific studies (e.g., for Australia) for developing customised
behaviour models, as there are many parameters that vary depending on geography,
demographics, and other macroeconomic factors.

• This study will assist in the selection of appropriate data-mining approaches and
model types for studies on occupant behaviour based on the category-specific and
goal-specific description of model types.

Furthermore, the applications of machine learning, reinforcement learning, ANN, and
other advanced computational algorithms need further exploration in regard to their use in
behaviour modelling in dwellings. These approaches can contribute to the development
of more accurate, dynamic, and intuitive models that will enable researchers to better
understand occupancy status and energy-related behaviour in dwellings.
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Appendix A

Table A1. List of Studies Used in the Meta-Analysis.

Reference Title Outcome/Area of Study

[36] Personality Traits and Energy Conservation Energy-related behaviour

[63]
A Stochastic Model of Integrating Occupant Behaviour into Energy Simulation
with Respect to Actual Energy Consumption in High-Rise Apartment
Buildings

Energy-related behaviour

[73] Simulating the Human–Building Interaction: Development and Validation of
an Agent-Based model of Office Occupant behaviours Energy-related behaviour

[20]
Integrating Building Performance Simulation in Agent-Based Modelling Using
Regression Surrogate Models: A Novel Human-In-The-Loop Energy
Modelling Approach

Energy-related behaviour

[5] Designing Buildings for Real Occupants: An Agent-Based Approach Energy-related behaviour

[30] Development of a New Adaptive Comfort Model for Low-Income Housing in
the Central-South of Chile Energy-related behaviour

[74] Development of an Occupancy Prediction Model Using Indoor Environmental
Data Based on Machine Learning Techniques Occupancy status

[44] Occupancy Determination Based on Time Series of CO2 Concentration,
Temperature and Relative Humidity Occupancy status

[45] Occupancy Prediction through Machine Learning and Data Fusion of
Environmental Sensing and Wi-Fi Sensing in Buildings Occupancy status

[35] Modelling and Predicting Occupancy Profile in Office Space with a Wi-Fi
Probe-based Dynamic Markov Time-Window Inference Approach Occupancy status

[48] A High-Resolution Domestic Building Occupancy Model for Energy Demand
Simulations Occupancy status

[66] Accurate Household Occupant Behaviour Modelling Based on Data-Mining
Techniques Energy-related behaviour

[60] Data-Driven Prediction Models of Energy Use of Appliances in a Low-Energy
House Energy-related behaviour

[75] A Novel Feature Selection Framework with Hybrid Feature-Scaled Extreme
Learning Machine (HFS-ELM) for Indoor Occupancy Estimation Occupancy status

[76] Application of Mobile Positioning Occupancy Data for Building Energy
Simulation: An Engineering Case Study Occupancy status

[49] Short-Term Predictions of Occupancy in Commercial Buildings—Performance
Analysis for Stochastic Models and Machine Learning Approaches Occupancy status
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Table A1. Cont.

Reference Title Outcome/Area of Study

[77] Occupancy Estimation with Environmental Sensing via Non-Iterative LRF
Feature Learning in Time and Frequency Domains Occupancy status

[78] Understanding Occupancy Pattern and Improving Building Energy Efficiency
through Wi-Fi-Based Indoor Positioning Occupancy status

[79] Method for Room Occupancy Detection Based on Trajectory of Indoor Climate
Sensor Data Occupancy status

[61] Analysis of Occupants’ Behaviour Related to the Use of Windows in
German Households Energy-related behaviour

[80] Indoor Occupancy Estimation from Carbon Dioxide Concentration Occupancy status

[81] Detection of Occupancy Profile Based on Carbon Dioxide Concentration
Pattern Matching Occupancy status

[50] Occupancy Prediction through Markov-Based Feedback Recurrent Neural
Network (M-FRNN) Algorithm with Wi-Fi Probe Technology Occupancy status

[82] Occupancy Estimation from Environmental Parameters Using Wrapper and
Hybrid Feature Selection Occupancy status

[51] A Methodology Based on Hidden Markov Models for Occupancy Detection
and a Case Study in a Low-Energy Residential Building Occupancy status

[46] Modelling Occupancy Distribution in Large Spaces with Multi-Feature
Classification Algorithm Occupancy status

[47] Predicting Occupancy Counts Using Physical and Statistical CO2-Based
Modelling Methodologies Occupancy status

[3]
Modelling Energy Consumption in Residential Buildings: A Bottom–Up
Analysis Based on Occupant Behaviour Pattern Clustering and
Stochastic Simulation

Energy-related behaviour

[83] Extracting Typical Occupancy Data of Different Buildings from Mobile
Positioning Data Occupancy status

[84] Modelling and Analysing Occupant Behaviours in Building Energy Analysis
Using an Information Space Approach Energy-related behaviour

[85] Spatial-Temporal Event-Driven Modelling for Occupant Behaviour Studies
Using Immersive Virtual Environments Energy-related behaviour

[86] A Simulation Approach to Estimate Energy Savings Potential of Occupant
Behaviour Measures Energy-related behaviour

[87] Methodology for Detection of Occupant Actions in Residential Buildings
Using Indoor Environment Monitoring Systems Energy-related behaviour

[88] Non-Intrusive Occupancy Monitoring for Energy Conservation in
Commercial Buildings Occupancy status

[64] Occupant Behaviour and Schedule Modelling for Building Energy Simulation
through Office Appliance Power Consumption Data Mining Energy-related behaviour

[65] LightLearn: An Adaptive and Occupant-Centred Controller for Lighting Based
on Reinforcement Learning Energy-related behaviour

[89] Analysis of User Behaviour Profiles and Impact on The Indoor Environment in
Social Housing of Mild Climate Countries Energy-related behaviour

[90] Inference of Thermal Preference Profiles for Personalized Thermal
Environments with Actual Building Occupants Energy-related behaviour

[91] Occupant Behaviour in Building Energy Simulation: Towards a
Fit-For-Purpose Modelling Strategy Energy-related behaviour
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Table A1. Cont.

Reference Title Outcome/Area of Study

[92] Air-Conditioning Usage Conditional Probability Model for
Residential Buildings Energy-related behaviour

[33] Window Opening Behaviour of Occupants in Residential Buildings in Beijing Energy-related behaviour

[31] A Preliminary Research on the Derivation of Typical Occupant Behaviour
Based on Large-Scale Questionnaire Surveys Energy-related behaviour

[39] Comparison of Theoretical and Statistical Models of Air-Conditioning-Unit
Usage Behaviour in a Residential Setting Under Japanese Climatic Conditions Energy-related behaviour

[34] Window Opening Behaviour Modelled from Measurements in
Danish Dwellings Energy-related behaviour

[93] Verification of Stochastic Behavioural Models of occupants’ Interactions with
Windows in Residential Buildings Energy-related behaviour

[94] Clustering Household Energy-Saving Behaviours by Behavioural Attribute Energy-related behaviour

[37] Thermal Comfort or Money Saving? Exploring Intentions to Conserve Energy
among Low-Income Households in the United States Energy-related behaviour

[38] How Do Socio-Demographic and Psychological Factors relate to Households’
Direct and Indirect Energy Use and Savings? Energy-related behaviour

[62] Factors Influencing Energy-Saving Behaviour of Urban Households in
Jiangsu Province Energy-related behaviour

[32] The Effect of Occupancy and Building Characteristics on Energy Use for Space
and Water Heating in Dutch Residential Stock Energy-related behaviour

[54] On Uses of Energy in Buildings: Extracting Influencing Factors of Occupant
Behaviour by Means of a Questionnaire Survey Energy-related behaviour

[29] Sensitivity Analysis of the Effect of Occupant Behaviour on the Energy
Consumption of Passive House Dwellings Energy-related behaviour

[95] Behavioural Patterns and User Profiles Related to Energy Consumption
for Heating Energy-related behaviour

[28] Analysis and Modelling of Active Occupancy of the Residential Sector in
Spain: An Indicator of Residential Electricity Consumption Occupancy status

[59] Air-Conditioning Use Behaviours when Elevated Air Movement Is Available Energy-related behaviour

[58] Development of Integrated Occupant-Behavioural Stochastic Model Including
the Fan Use in Japanese Dwellings Energy-related behaviour

[96] Linking Energy–Cyber–Physical Systems with Occupancy Prediction and
Interpretation through Wi-Fi Probe-Based Ensemble Classification Occupancy status

[97] Carbon Dioxide-Based Occupancy Estimation Using Stochastic
Differential Equations Occupancy status

[52] A Markov-Switching Model for Building Occupant Activity Estimation Occupancy status

[98]
How Do Urban Residents Use Energy for Winter Heating at Home? A
Large-Scale Survey in the Hot Summer and Cold Winter Climate Zone in the
Yangtze River Region

Energy-related behaviour

[57] Do Preferred Thermostat Settings Differ by Sex? Energy-related behaviour

[56] Contextualising Adaptive Comfort Behaviour within Low-Income Housing of
Mumbai, India Energy-related behaviour

[55] Data-Driven Occupant Action Prediction to Achieve an Intelligent Building Energy-related behaviour

[53] Prediction of Occupancy Level and Energy Consumption in Office Building
Using Blind System Identification and Neural Networks Occupancy status

[99] A Scalable Bluetooth Low Energy Approach to Identify Occupancy Patterns
and Profiles in Office Spaces Occupancy status
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