
����������
�������

Citation: Town, G.; Taghizadeh, S.;

Deilami, S. Review of Fast Charging

for Electrified Transport: Demand,

Technology, Systems, and Planning.

Energies 2022, 15, 1276. https://

doi.org/10.3390/en15041276

Academic Editors: Omar Hegazy

and Haifeng Dai

Received: 10 December 2021

Accepted: 28 January 2022

Published: 10 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

Review of Fast Charging for Electrified Transport: Demand,
Technology, Systems, and Planning
Graham Town 1 , Seyedfoad Taghizadeh 2 and Sara Deilami 2,*

1 School of Engineering, University of Waikato, Hamilton 3216, New Zealand; gtown@waikato.ac.nz
2 School of Engineering, Macquarie University, Sydney, NSW 2109, Australia;

seyedfoad.taghizadeh@mq.edu.au
* Correspondence: sara.deilami@mq.edu.au

Abstract: As the number and range of electric vehicles in use increases, and the size of batteries in
those vehicles increases, the demand for fast and ultra-fast charging infrastructure is also expected
to increase. The growth in the fast charging infrastructure raises a number of challenges to be
addressed; primarily, high peak loads and their impacts on the electricity network. This paper
reviews fast and ultra-fast charging technology and systems from a number of perspectives, including
the following: current and expected trends in fast charging demand; the particular temporal and
spatial characteristics of electricity demand associated with fast charging; the devices and circuit
technologies commonly used in fast chargers; the potential system impacts of fast charging on the
electricity distribution network and methods for managing those impacts; methods for long-term
planning of fast charging facilities; finally, expected future developments in fast charging technology
and systems.
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1. Introduction

The global transition to electrified transport is well underway, supported by the
development and rollout of electric vehicles (EVs) and the necessary charging infrastruc-
ture [1]. The development and rollout of fast chargers, i.e., which can recharge an EV in
approximately the same time as refilling an internal combustion engine (ICE) vehicle, is a
prerequisite for many e-transport services (e.g., long distance transport, high utilization
fleet vehicles), and facilitates the wider uptake of EVs [2,3]. Fast charging technology and
systems will therefore be of increasing importance in the transition to electrified transport.

The purpose of this review is to provide a wholistic overview of developments in
fast charging technologies and systems, from the expected demand and technology op-
tions, through system impacts and management, to network planning and potential future
developments. Whilst several reviews have been published to date on specific topics
relevant to fast charging—such as fast charger design [4–9], the impacts of fast charging
on battery lifetime [10] and on the electricity network [11–13], and the various methods
for limiting the negative impacts of fast charging [11,14–16], including integrated energy
storage [17–19]—none have reviewed fast charging from a systems perspective, highlight-
ing the interdependencies between the demand driving technical developments and the
various approaches to planning and management of future charging infrastructures. Fur-
thermore, fast charging technology and systems are rapidly developing areas; in the last
decade, the number of research publications on fast and ultra-fast charging technology and
applications has grown at an average rate of over 25% each year, and this trend shows no
sign of slowing.
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1.1. Definition and Standards

Electric vehicle charging rates are commonly referred to by the time required to
charge the drive battery as either slow (>1 h, or <1 C per hour), fast (less than 1 h, or
>1 C per hour), or ultra-fast (less than 20 min, or >3 C per hour); where C is the nominal
coulometric capacity in ampere-hours, and the C-rate is the current in amperes required to
fully discharge the battery in 1 h. Battery capacity may also be expressed in terms of the
nominal energy capacity, E, in kilowatt-hours, where the E-rate is the power in kilowatts
required to fully discharge the battery in 1 h. Due to internal losses, the useable proportion
of energy stored in a battery depends upon the rate at which it is charged and discharged.

There are several standards governing fast charging technology and practice, both
current and under development [1,8,11,20], as summarized in Figure 1 by Wang et al. [11];
however, there is no standard delineation between “fast” and “ultra-fast” and higher
charging rates. This is partly because the power required to charge a battery in a given
time depends upon battery capacity, amongst other factors, including the initial and final
state-of-charge (SoC), which for fast charging is typically less than 80% of the battery’s
nominal capacity. The International Energy Agency defines “fast” chargers as capable of
providing more than 22 kW with alternating current (AC) [21]; however, in this review,
“fast” chargers will be regarded as direct current (DC) fast chargers (i.e., DCFCs) capable of
providing 50 kW or more, including “ultra-fast” chargers, which are typically capable of
providing 150 kW or more. “Extreme-fast” chargers are also sometimes referred to [6,22,23],
in the context of charging to 80% SoC within 10 min, i.e., at rates of 6–9E, or at greater than
300 kW. The term “megacharger” is also emerging, primarily in the context of fast charging
for heavy vehicles [1].
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The defining features of all DCFCs are that (i) they are located external to the vehicle,
and (ii) they supply a DC charging current (typically up to 600 A) and voltage (typically up
to 1 kV) directly to the EV’s battery. The charging process is usually under the control of the
vehicle’s battery management system (BMS), as shown in Figure 2. Examples include Mode
4 chargers in IEC61851 [24], DC Level 2 DC chargers in SAE1772 [25], and Level 3 chargers
in NEC-1999 and IEEE 2030.1.1 [26]. The primary challenges faced by all DCFCs are similar,
i.e., to safely and efficiently supply a very high current to any vehicle under a wide range
of conditions whilst also preventing potential negative impacts on the electricity network
through additional charging management and/or integration with local energy storage.

1.2. Paper Overview

Whilst the bulk of electrical energy currently supplied to EVs is provided by “slow” (or
destination) chargers whilst parked for extended periods [1,27,28], the size of EV batteries
and the rate at which they can charge is increasing, as shown in Figure 3 [29], and so the
demand for faster charging services is also expected to increase [2,30]. The development
of fast charging technology will be assisted by improved understanding of load profiles
and patterns, which can currently only be estimated using either (i) bottom-up modelling,
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e.g., by aggregating the impact of many simulated agents, or (ii) top-down modelling, e.g.,
based on existing traffic patterns, and assuming these remain unchanged by the transition
to EVs. Methods used to estimate the future demand for DCFC infrastructure, and for
calculating characteristic load profiles and their distributions (e.g., taking into account
travel and/or charging behaviours), are reviewed in Section 2.
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The fundamental technologies required for implementing DCFC systems include the
following: long-life and high-power cables and connectors; reliable power semiconductor
devices, capable of operating at the necessary voltage and current; high-power energy
storage; efficient power control circuits; intelligent control methods [19]. As DCFCs are
not located on the vehicle, space and weight are not primary design concerns; however,
the chargers must be capable of working with a wide variety of vehicles (with respect
to connector types, voltage, charging rates), and must remain safe and efficient under a
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wide range of environmental conditions. Batteries are usually regarded as the target of the
charging system but are also likely to be the source in battery-supported DCFC systems.
It is well known that battery use and charging conditions, and particularly DCFC, can
negatively impact battery lifetime; however, such issues have been well reviewed elsewhere
for lithium-ion batteries [10,19], currently the most common battery technology used in EVs.
Section 3 of this review therefore focuses on technical challenges and solutions concerning
the power electronic devices, electrical circuits, and storage options used to realize DCFCs.

Fast chargers are likely to have a significant impact on the electricity grid, largely
due to the relatively high peak power they supply [11]. In general, the demand for EV
charging, and hence its grid impacts, will vary with both time and location, with demand
for high power charging infrastructure expected to be particularly concentrated along
highways [31], and in facilities for charging fleets of heavy vehicles [32]. The grid impacts
may be exacerbated by the distance from, and/or the limited capacity, of the nearest
substation. The two main approaches to limiting the negative impacts of DCFCs on the
electricity network are (i) demand management (e.g., charge scheduling) and (ii) supply
augmentation (e.g., with local storage). The expected impacts of DCFCs on the electricity
grid, methods for minimising and managing potential negative impacts, and associated
system design issues are reviewed in Section 4.

A longer-term problem concerns how best to upgrade and develop electricity net-
works as the uptake of EVs progresses towards 100% [33]. A significant proportion of
DCFC demand is then likely to be opportunity charging, i.e., en route, unscheduled, with
minimal flexibility; consequently, supply augmentation is likely to be necessary. Short-term
augmentation and system support can be provided by local storage, but in the longer term,
coordinated network planning and development will be required [34]. The advantages and
disadvantages of various methods proposed for long-term planning of DCFC infrastructure
are reviewed in Section 5.

Fast charging technology is a rapidly developing area, driven by demand to make the
EV charging experience as similar as possible to refuelling ICE vehicles. Most developments
to date have targeted light EVs; however, future developments are expected to extend to
ultra-high-power chargers (>1 MW), e.g., for heavy EVs [35]. Further development and use
of communication technologies in smart grids are likely to enable additional functionality
and better management of charging technologies and systems [36]. Likely extensions to
charging interfaces and functionality under development include charging by wireless
power transfer [37,38], vehicle-to-vehicle and vehicle-to-grid energy transfers [39,40], and
real-time communications to optimise battery charging [41]—all of which should assist in
minimising the time needed to charge the vehicle and/or the grid impacts. These and other
potential developments in DCFC technology and systems are reviewed in Section 6.

2. Fast Charging Demand

Estimation of electricity demand distributions and load profiles resulting from EV charg-
ing is an active area of research, with important applications in the design of charging stations
(Section 3), estimation of system impacts and development of demand management strategies
(Section 4), and planning of charging and associated electrical infrastructure (Section 5).

The overall increase in demand for electrical energy is closely linked to the uptake of
EVs. It has been estimated that even if all road transport was electrified, it would consume
approximately 20% of all electricity generated in 2050 [42]. However, whilst the increase in
overall electricity demand due to EVs is moderate, simulations show that, if EV charging is
uncontrolled, then the peak demand on a typical electricity distribution feeder will increase
disproportionately [43], even with slow charging [44]. The challenge for technology and
system designers and planners is to determine how the additional demand is distributed as
a function of time and location. This is particularly difficult in the case of fast or opportunity
charging, which typically supplies only 20% of all energy consumed by EVs, but at a much
higher rate [1]. Consequently, the peak load and the peak-to-average load ratio due to
DCFCs are expected to be higher and less predictable than for slow charging.



Energies 2022, 15, 1276 5 of 30

Predicting when and where DCFC demand will occur is further complicated by the
fact that the demand for charging services depends on multiple factors, such as the type
of vehicle (battery size, charging power), price, proximity, potential flexibility in travel
and charging plans, the number of EVs, and any demand management techniques in
use [45–48]. Moreover, the electricity demand due to DCFCs is of interest over a wide range
of scales with respect to both time and location, i.e., depending on whether information is
needed for grid operation or grid planning. Methods for modelling the use of EVs have
been systematically surveyed with respect to timescale and methodology [49].

Three fundamental approaches have been reported to date to estimate demand for
charging services and their grid impacts: (i) extrapolation from historical travel survey data
taken from internal combustion engine (ICE) vehicles, e.g., [50]; (ii) real-time monitoring of
EV usage and charging, e.g., [51,52]; (iii) computer simulation, e.g., of multiple EV agents in
a computer environment [53]. Each of these approaches has limitations; nevertheless, these
can also provide useful insights into the factors affecting the demand for fast charging.

(i) If one assumes that the need for road transport will remain unchanged, then one
may use historical travel survey data from ICEs to determine the likely travel pattens
of EVs, and the associated times and/or locations they could or would recharge.
Translating ICE travel data to EVs requires a number of assumptions to be made about
the EVs, e.g., the types and numbers of different EVs, their state-of-charge (SoC) at
the beginning of each journey, charging behaviours, etc. Nevertheless, it has been
shown that this approach can produce accurate and useful predictions of charging
demand [54].

For example, based on long-distance travel data in the US, it was estimated that as
battery size increases, DCFC demand will shift from suburban to regional areas, with an
increase in the energy provided overnight by slow chargers [34]. Another study, based
on 75,000 trips in northwest USA, estimated that if all vehicles were electric then there
would be 5000 fast charging sessions per day per million EVs, that the peak demand for fast
charging services would occur between 15:00 and 19:00 on weekdays, and that fast charging
at 32 km/min (or 400 kW) would be required to satisfy 80% of journeys [30]. Similarly,
travel survey data together with parking lot occupancy data can be used to estimate the
demand and opportunities for provision of charging services in car parks [55].

(ii) Direct monitoring is limited to contemporary EV usage and charging behaviours,
i.e., with the exception of some countries and regions with high rates of EV uptake,
most data to date is derived from trials with relatively small numbers of vehicles
and charging options. Extrapolating from current usage patterns to future usage
patterns has risks, though arguably less so than if extrapolating from ICE survey
data. Additionally, the data from direct monitoring can be used to analyse the various
factors which affect EV driving and DCFC behaviour and demand presently, and,
quite likely, into the future [56].

For example, analysis of data on vehicles from 35 EVs in the UK showed that the
number of DCFC sessions per day increases approximately linearly with travel distance
per day (the range of the vehicles was 150 km) [2]. A corollary to the latter relationship is
that as battery size and vehicle range increases, one would expect the number of DCFC
sessions required by individual vehicles each day to decrease; however, the power of the
DCFCs would need to increase.

The correlation between EV battery size and peak power in fast charging is illustrated
well in Figure 4 [57], which shows the results of an EV charging trial in Arizona involving
70 mid-range EVs (mainly Nissan LEAFs) with access to a variety of chargers (mainly
Level 2, and ~20% DC fast chargers). The impact of 6 Teslas (Model S and X) which joined
only in the last third of the trial is clearly evident from the increases in both the peak power
and the peak-to-average power ratio.
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Figure 4. Total charging power consumed by 65 EVs during a US trial held from May 2016 to February
2018. The impact of 6 EVs with higher battery capacity and charging rate, added into the trial in July
2017, is very evident (Reprinted with permission from Ref. [57]. Copyright 2018 EPRI).

(iii) Agent-based computer simulations of EV travel and charging patterns attempt to
predict the value of key parameters, such as charging time, location, and the associated
impacts on the electricity grid, and to test the sensitivity of those parameters to factors
such as the mix of EVs and charging options, the topology and scale of the road and
electricity networks, driver behaviours, the cost to charge, and various other factors of
interest [53,58–61]. The simulation results are readily tested against real data to refine
the models and reveal useful insights. Simulation is the only way to explore future
charging scenarios, and a number of software packages have been developed for this
purpose, e.g., [62–64].

Monte Carlo modelling can be used to introduce random variation into the EV driving
and/or charging patterns derived using the methods above, thereby providing more
realistic results [65–69]. To simplify further analysis and guide design, the results can be
represented stochastically, i.e., in terms of a characteristic probability distribution function,
mean, and variance [31,50,53,55,65,70–75].

3. Fast Charging Technologies and Architectures
3.1. Fast Charger Unit Topologies and Circuits

Fast chargers deliver DC power to the EV’s battery through a power conversion
system which requires galvanic isolation, i.e., to meet the IEC 61851-23 standard [76].
Several state-of-the-art DCFCs with different technical specifications (i.e., power, voltage,
current, efficiency, weight, etc.) are available in the market, as summarised in Table 1,
from Tu et al. [6]. To ensure compatibility, it is mandatory for the EV chargers to follow
the IEC 62196-3 standard, which defines four standard coupler configurations, as follows:
Configuration AA, introduced by CHAdeMO Association, Configuration BB, available in
China, Configuration EE, used in North America, and Configuration FF, used in Europe
and Australia (see also Figure 1). Tesla uses an exclusive configuration for its superchargers.
Among different standards, CHAdeMO has the highest power capacity which either
requires a charging cable with larger diameter to allow the transfer of more current without
overheating, or to transfer power with high voltage level to reduce the weight of the
cable [77,78].
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Table 1. Technical specifications of the state-of-the-art DCFCs (Reprinted with permission from
Ref. [6]. Copyright 2019 IEEE).

Model Power
(kW)

Input
Voltage

(Vac)

Output
Voltage
(Vdc)

Output
Current

(A)
Efficiency Volume

(L)
Weight
(kg)

Time for
200 Miles Drive

(Min)

ABB Terra 53
(CCS Type 1

CHAdeMo 1)
50 480 200–500

50–500 120 94% 78 400 72

Tritium Veefil-RT
(CCS Type 1&2
CHAdeMo 1)

50 380–480 200–500
50–500 125 >92% 495 165 72

Phihong
Integrated (GB/T) 120 380 (±15%)

480 (±15%) 200–750 240 93.5% 591 240 30

Tesla Supercharger 135 380–480 50–410 330 91% 1047 600 27
EVTEC

espresso&charge
(SAE Combo-1
CHAdeMo 1)

150 400 (±10%) 170–500 300 93% 1581 400 24

ABB Terra HP
(SAE Combo-1
CHAdeMo 1.2)

350 400 (±10%) 150–92 375 95% 1894 1340 10

Whilst the technical specifications of the chargers summarized in Table 1 differ, the
chargers all use an AC-to-DC (AC/DC) converter with power factor correction (PFC) to
convert the AC voltage to DC, a DC-to-DC (DC/DC) converter for voltage adjustment
between the DC-link and the EV’s battery, and an isolation transformer on either the grid or
the battery side. Multiple parallel charger modules may be used internally to transfer very
high power, e.g., the Tesla 135-kW Supercharger is made with 12 parallel modules [23].

3.2. Fast Charging Station Topologies and Circuits

Fast charging stations may be designed with various topologies, architectures, and
connections to the grid. To avoid overloading, DCFCs are usually connected directly to the
medium voltage (MV) network through an LV/MV step-up transformer [6,11,23,79]. The
internal network of the charging station at the LV side contains several AC/DC and/or
DC/DC converters to connect EVs, energy storage, and any renewable energy sources (if
applicable), such as shown in Figure 5 [6].

The configuration in Figure 5a uses separate DC/AC and DC/DC converter units to
interconnect the EV and battery/photovoltaic (PV) sources. As a result of using more con-
verters, the system’s complexity and losses are increased. In the configuration in Figure 5b,
the only conversion is performed by a DC/DC converter between each EV/PV/battery
unit and the DC bus, hence system complexity and losses can be lower; however, a cen-
tralized grid-facing AC/DC rectifier is required between the MV/LV transformer and the
internal DC network of the charging station. The authors of [23] proposed replacing both
the grid-facing rectifier and the MV/LV transformer with a solid-state transformer which
offers smaller size, lower losses, and fewer costs. More details regarding the comparison
between the two internal distribution network configurations can be found in [6].

The grid-facing AC/DC rectifier in Figure 5b may be designed using various converter
topologies; the most popular ones are shown in Figure 6 [8]. The design criteria of this
converter are to achieve high power quality and controllable power factor at the AC side,
regulated voltage at the DC side, and low complexity and cost [80,81].
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The PWM rectifier in Figure 6a includes 6 IGBTs, no diodes, and an LCL filter. With
a simple control system, it can operate in bidirectional mode with low total harmonic
distortion (THD) and wide power factor regulation at the AC side, and controllable voltage
at the DC side [82]. The NPC rectifier in Figure 6b uses 12 IGBTs, 6 diodes, and an LCL filter
and can operate bidirectionally. Due to the additional switches a lower THD is achieved
at the AC side; however, a more complex control system is required [83–86]. The Vienna
rectifier is another commonly used rectifier with 6 IGBTs, 6 diodes, and an LCL filter.
This converter is unidirectional with limited power factor range control. Like the NPC
topology, it has the advantage of low THD at the AC side [87–89]. The fourth rectifier is
the buck-type rectifier (Figure 6d). This converter has 6 IGBTs, 6 diodes, and an LC filter,
whilst having an additional inductor on the DC side. This converter is simple to control,
but it is unidirectional and is only able to offer limited power factor range control at the AC
side [90–92]. As a summary, among the four options, the PWM rectifier and NPC converter
are bidirectional, whilst the Vienna and buck-type rectifiers are unidirectional. The NPC
and Vienna rectifiers have lower THD at the AC side but require a more complex control
system than the PWM and buck-type rectifiers. The PWM and NPC converters offer a
wider range of power factor control than the Vienna and Buck type rectifiers.
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After the grid-facing AC/DC rectifier, DC/DC converters provide an interface to the
EV, battery, and renewable energy source (e.g., PV). The DC/DC converter can be isolated
using one of the following topologies; phase-shift full-bridge (PSFB), LLC, dual-active
bridge (DAB), or CLLC, as shown in Figure 7 [8]. Alternatively, non-isolated topologies are
the boost converter, interleaved boost converter, unidirectional three-level boost converter,
bidirectional three-level boost converter, or three-level flying capacitor converter, as shown
in Figure 8 [8]. Comprehensive reviews of isolated DC/DC converters for EV DCFCs can
be found in [93,94].

The various topologies of isolated DC-DC converters have their respective advantages
and disadvantages. The specific topology of the DC/DC converter is chosen depending
upon technical requirements and factors, such as the difference between the voltage levels
of the battery and the DC side of the grid-facing rectifier, the current-carrying capability
of the converter, and the magnitude of the current ripple seen by the battery, efficiency,
harmonic performance, etc. For example, a 100 kW EV charger with three-phase interleaved
boost converter (Figure 8b) operates in discontinuous conduction mode (DCM) but can
achieve zero-voltage switching (ZVS) for all switches. The unidirectional and bidirectional
three-level boost converter EV chargers presented in [95,96], use the topology in Figure 8c,d,
respectively, and exhibit better efficiency and harmonic performance, which can reduce
power quality issues (refer also to Section 4.3). The main advantages and disadvantages of
isolated and non-isolated DC-DC converters are summarised in Table 2 [6].
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Table 2. Comparison of various isolated and non-isolated DC/DC converter topologies for DCFCs
(Reprinted with permission from Ref. [6]. Copyright 2019 IEEE).

Converter Type Switches/Diodes Bidirectional Advantages/Disadvantages

PFSB converter Isolated 4/4 No

• Simple control, wide output range.
• High switching and duty cycle losses in

primary and hard to achieve ZVS at
light load.

LLC converter Isolated 4/4 No

• ZVS on primary and ZCS in secondary,
low reactive current.

• Limited controllability, hard to achieve
high efficiency and ZVS under wide
operating range.

DAB converter Isolated 8/0 Yes

• Wide output range.
• Inherent reactive current, trade-off

between reactive current and
ZVS condition.

CLLC converter Isolated 8/0 Yes • Wide ZVS range, low reactive current.
• Limited controllability.

Boost Converter Non-isolated 2/0 Yes • Simple control.
• Limited current and voltage range.

Interleaved boost
converter Non-isolated 6/0 Yes

• Simple control, low current ripple, high
current range.

• Limited voltage range.

Three-level boost
converter Non-isolated 4/0 Yes

• Low current ripple, high voltage range.
• Not suitable for interleaving due to

circulating current.

Flying capacitor
converter Non-isolated 4/0 Yes • High voltage range, good scalability.

• Complex short circuit protection.

3.3. Switching Devices for Fast Chargers

Silicon-based semiconductor devices, such as the silicon-IGBT and silicon-MOSFET,
are commonly used in the DC/DC converters in DCFCs. These devices offer a maximum
efficiency of 94%, switching frequency of 100 kHz, and power density of 12 W/in3 [9,97].
Emerging wide bandgap (WBG) semiconductors for DCFCs provide significant improve-
ments, such as higher power density (~50 W/in3), larger breakdown electrical field, higher
switching frequency (~5 GHz), higher temperature tolerance (~300 ◦C), lower switch-
ing losses, and, overall, a more compact converter [98]. Amongst the different types of
WBG semiconductors, silicon-carbide (SiC) devices are the most suitable switches for
high-powered DC/DC converters because of their high power capability (~100 kW), more
suitable packaging, high temperature handling, and market availability. Gallium-nitride
(GaN) semiconductors are the most recent generation of WBG power switching devices;
however, the breakdown voltage is typically limited to 600 V and power handling to less
than 5 kW [99,100]. Whilst there has recently been some progress in improving the perfor-
mance of GaN semiconductors (e.g., [101]), they are still held back for very high power
applications (i.e., in DCFCs) due to their limited power capability, less proven reliability,
and higher prices, relative to established alternatives. Reviews of recent developments in
WBG semiconductors, including comparisons between GaN and silicon and silicon carbide
devices, and their impact on the development of EV charging equipment may be found
in [101,102].

Figure 9 (from [97]) compares the measured efficiency of a boost DC/DC converter
(BC) and a multidevice interleaved DC/DC bidirectional converter (MDIBC) using silicon
versus SiC switches. For the same switching frequency of 20 kHz, SiC switches offer 6.9%
and 7.2% improvements in efficiency in BC and MDIBC, respectively. When the switching
frequency is increased to 80 kHz, the efficiency of silicon switches reduces significantly,
relative to SiC switches.
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3.4. Fast Charger Architecture to Reduce Grid Impact

Fast charging aims to significantly reduce EV charging time, but at the expense of
creating relatively large loads for power networks. For instance, a 30 kWDCFC can create
a bulk load which is 20 times the power needed by a typical house [103]. As a result,
high penetration of DCFCs may impact the grid by causing overloading, transients, and
regulatory violations of the grid voltage and harmonics [104–106]. It should be noted that,
based on the IEC standard 60,038, in an AC grid, the voltage fluctuation allowed is 10% of
the nominal rms value, whilst based on the European EN 50,160 standard, this value can
sometimes exceed to 15% [107]. For DC systems, a steady voltage is measured (instead the
RMS value) over an arbitrary time interval (e.g., 1 s).

Several approaches to reducing the potential impacts of DCFCs on the grid have
been suggested, which may be categorized as hardware-based and/or software-based
solutions. For example, a hardware-based solution might be to install a local battery energy
storage system (BESS) in the charging station to minimise large fluctuations in grid loading.
Three configurations of local BESS units are recommended in the literature, as shown
in Figure 10 [108].

Based on the first configuration, the BESS and the other chargers are connected in
parallel to the AC bus. In the second configuration, the BESS and the chargers are connected
in parallel to a DC bus and then connected to the AC grid through a rectifier. In the third
configuration, each charger is equipped with a BESS separately, and the whole charging
station is connected to the AC grid. The second configuration is improved in [109], by
replacing the rectifier with a 12-pulse rectifier. The modified system offers less ripple on
the DC bus voltage as well as lower harmonics in the AC current.
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with the DC bus (Reprinted from Ref. [108]).
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In [110], a central grid BESS assists to stabilise the terminal voltage during fast charging.
Based on another approach, the BESS is installed as a buffer between the AC grid and the
charging station, and the EVs receive charging power directly from the BESS instead of the
grid [111]. As a result, the voltage fluctuations on both DC and AC buses are significantly
reduced the drawback is the potential delay required to recharge the BESS before arrival of
the next EV to the station.

Flywheels can also provide alternative or additional energy storage to support DCFC
operation [112,113]. Compared with BESS, flywheels benefit from faster dynamic response
and higher power density and so can respond better to the large change in load power
caused by plugging in and plugging out of a charging station. In [114], a hybrid unit,
including flywheel, BESS, and supercapacitor, was installed in a charging station offering a
higher power density and prolonged BESS lifespan.

Superconducting magnetic energy storage (SMES) is another alternative which can
used to limit the voltage fluctuations caused by DCFC operation [115]. An SMES system
has been modelled with two classes of current source converters (CSC) and voltage source
converters (VSC) [116,117]. Both CSC and VSC can control active and reactive power
between the SMES and the grid. CSC-based SMES have the advantage of a simple structure,
fast response, low cost, and simple controllability. In [118], the SMES is controlled by
an energy management system (EMS), which performs a smart power sharing between
photovoltaic (PV), SMES, and EVs in a charging station. A controlled hydrogen energy
storage unit can also be used in a DCFC station to improve the transient stability of the
terminal voltage [119].

Although the above-mentioned solutions are effective to support and protect the
grid against transients caused by DCFC operation, they inevitably increase the cost and
bulkiness of a charging station by adding additional hardware into the system. To avoid
this, a number of software-based solutions have been proposed. For example, a wide-area
controller was designed to stabilize the grid voltage during the charging of 800 EVs in a
12-bus microgrid system [120]. The wide-area controller continuously monitors the data of
all generators and stabilizes and regulates the generators’ output power using an automatic
voltage regulator (AVR). While this software-based method is effective to stabilize the grid
voltage without using any additional hardware, it has the drawback of complexity and
being reliant on communication between the control centre and generators.

To diminish the negative impact of EV chargers on the grid voltage, EV chargers can
also utilise reactive power support using optimisation techniques, such as the water cycle
algorithm (WCA), the genetic algorithm (GA), and Benders decomposition (BD) [121–124].
A power or voltage (P/V) droop control strategy was employed for EV charging stations in
a DC microgrid to stabilise the power balance between generation and load demand, hence
stabilising the DC bus voltage [125–127]. Selection of the appropriate droop coefficient was
investigated in [128,129].

4. Fast Charging System Impacts and Management

In the previous section, the potential unwanted impacts of DCFCs on electricity
networks in the immediate vicinity of individual DCFCs were reviewed, together with
some of the hardware and software techniques for managing those impacts. In this section,
the potential impacts of collections of DCFCs on wider system performance measures,
such as power quality, stability, reliability, and resilience, are reviewed, together with the
multiple factors underlying the grid impacts of DCFCs and systemic approaches to their
management. Table 3 summarizes the potential grid impacts of DCFCs, and associated
management methods.
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Table 3. DC fast charging grid impacts and management.

DCFC Grid Impact Factors Planning or Management Approach References

Peak demand
SoC, start time, travel distance,

environment, i.e., weather, and ambient
temperature, electricity price.

Monte Carlo simulations, controlled charging,
TOU, demand side management. [11,67,130–136]

Harmonic distortions Harmonic emissions, Supraharmonics,
Harmonic stability.

S-VSC and AFE, battery storage, flywheel,
SMES, controlled charging. [11,112,113,137,138]

Transformer overloading Cable, line loading, infrastructure, losses. Controlled charging, Monte Carlo simulations. [139–143]
Voltage fluctuations Light flicker, SoC, EV arrival time. Controlled charging, Monte Carlo simulations. [11,131,132]

4.1. Peak Demand Issues

Fast chargers can cause a significant increase in peak electricity demand, reshaping
the load curve. The impact is exacerbated if multiple EVs are charged simultaneously,
particularly if they are co-located [144,145]. Electrical generation and supply must increase
to meet the increased demand, and the highly unpredictable load profiles caused by DCFCs
may also require additional system balancing. Further complications are that the grid
impacts of DCFCs depend upon a variety of parameters that are independent of the charger,
such as the EV’s SoC and travel plans, EV penetration levels, the use of controlled versus
uncontrolled charging strategies, the amount of distributed and variable generation (e.g.,
solar, wind) in the network, and the topology of the network itself.

Several studies have been published on optimizing EV scheduling and charge control
strategies for managing the peak demand of DCFCs, e.g., [67,146]. Monte Carlo simulations
have also been used to simulate the impact of DCFCs on the power grid based on EV
penetration levels and queueing time [145]. The latter study takes advantage of other
research findings on the duration of the EV charging loads in the queue at the “socket”
of the DCFC and looks at the impact of the “socket-to-EV ratio”, highlighting an inverse
relationship between the waiting time and the peak load. For example, with 100% EV
penetration, the peak power demand and network capacity (i.e., the total rated power of all
installed DCFCs) can be reduced by 34% if the EVs’ waiting time is increased from 5 min to
60 min. However, in some circumstances, e.g., on highways, EVs cannot afford to wait and
require a short charging time, so other load management methods may be needed, such as
discussed in Section 3.4.

4.1.1. Annual Electricity Costs

One of the main factors to consider with DCFCs is how peak demand can impact the
monthly and annual cost of electricity, and vice versa [133,134]. The results in [133] suggest
that the addition of battery storage to the DCFCs not only reduces the operating cost, but
also addresses the negative impacts of high peak demand. In [134], the likely impacts of EV
charging were determined through the energy consumption of DCFCs in non-residential
and large retail stores in Centennial, Colorado. Monte Carlo simulations were used to
determine the EV’s arrival time and waiting duration and predicted a significant increase
in monthly peak demand but not in monthly electricity usage. The study concluded that
the grid capacity is most impacted when building load demands and DCFC loads overlap
and recommended placing two fast chargers with capacity of 50 kW and 150 kW, whilst
also disabling the building’s cooling system. Interestingly, the research findings in [134]
revealed that provision of EV charging in cold climates with lower air conditioning loads
and high demand charges can increase the annual cost of electricity by up to 88%.

4.1.2. Battery State-of-Charge and Electric Vehicle Travel Distance

Battery state-of-charge (SoC) is one of the main factors affecting EV charging demand
and impact analysis (i.e., along with other influential factors such as travel distance, driving
speed, and temperature) [56,131]. Studies on the impact of EV SoC levels show that the
lower the initial SoC, the greater the demand for fast charging [56]. The study in [147]
showed how the SoC, start travel time, and the distance from the charging point can affect
charging options. Travel distance affects the power demand directly, and can necessitate



Energies 2022, 15, 1276 16 of 30

fast charging availability. The charging start time can also have significant influence on the
distribution system impacts, especially during peak hours [148]. Research is continuing on
demand side management techniques (e.g., time-of-use tariffs) and smart control strategies
to address these issues.

4.1.3. Weather and Environmental Factors

Weather, temperature, and wind are among the environmental factors that can affect
the charging of EVs, especially at high power. For example, the ambient temperature
can have a significant impact on energy efficiency and consumption, and thus may affect
the driving cycle and charging behaviour [135]. By considering different routes, driving
cycles, and driving styles, it was found that energy consumption increased with decreas-
ing temperature due to an increase in battery internal resistance and associated drop in
efficiency. The study also indicated that among the various factors of interest, only the
ambient temperature could be measured directly.

Statistical analyses of DCFC charging have been used to investigate the impacts of
temperature on EV charging behaviours and processes [136]. The impacts of SoC and
ambient temperature data on the EV fast charging rate were studied and analysed. The
results showed that cold weather has an adverse impact on the DCFC rate, which maybe
significantly reduced. In [143], the impact of ambient temperature and driving conditions on
EV charging and consumption, especially due to regional differences, was investigated. The
research revealed that battery efficiency decreases in both hot and cold weather, resulting
in higher energy consumption. The impact of the ambient temperature on the EV hosting
capacity of a MV/LV distribution system was also evaluated and indicated a 30% decrease
in hosting capacity during colder months due to reduced battery efficiency.

4.2. Distribution Transformer Overloading

Power transformers and cables are grid assets with substantial upfront, operation,
and planning costs. The capacity of the grid cannot increase instantly, and so the addition
of DCFCs and their impact on the loading and lifecycle of these components should not
be neglected.

Some studies have investigated the impacts of low-voltage (LV) EV charging on aging
of overhead distribution transformers. For example, it was found there was a significant
decrease in transformer aging when using a controlled Level 2 charging strategy [139].
The impact of the EV charging on distribution transformers has also been investigated
and reported in [140,141]. A similar study, [142], looked at the impact of EV charging on
distribution cable and line loading. Another recent study, [143], investigated the impact of
DCFC on transformer loading in northern Sweden in which the aggregated load profile due
to EV charging stations was estimated using Monte Carlo methods; the results indicated
an overloading incident. This research also offered reliability assessments based on the
location of the DCFC; reliability indices were evaluated, and the best loading point was
recommended accordingly.

4.3. Power Quality Issues

Increasing numbers of EVs and DCFCs could adversely affect grid power quality
through the introduction of increasing harmonic distortions, voltage fluctuations, losses,
and even feeder overloading [149]. Studies reported in [11] highlight the following charac-
teristics of DCFCs: high power, centralized load demand, and pulsating load profile due to
the shorter charging duration. The latter characteristics can often result in reduced power
quality, e.g., in [150], the adverse impacts of pulsed power loads in a microgrid power
system were reported. The proposed management strategy offers an optimal charging
profile using pulsed power loads with capacitive energy storage, which effectively reduces
the associated impacts, such as minimising the power disturbance metric and improving
the voltage profile. In [151], it is emphasized that the nonlinearity of pulsed power loads
may cause network instability and power quality issues.
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Due to the high power requirements of DCFCs they are usually connected to MV
distribution networks [11,132]. The power quality of the DCFC at the point of common
coupling (PCC) can be affected by the charger, its harmonic emissions, and the properties
of the loads or the sources [11].

4.3.1. Harmonic Distortions

Harmonic distortion is defined as deviations of the voltage and current waveforms
from a simple sinusoidal waveform, and may lead to excessive heating, overloading, and
losses to the grid distribution systems and utility supply. With recent improvements in
charger circuits and control techniques, harmonic distortion levels have been reduced,
especially the voltage harmonics.

Electric vehicle charging cycles are usually a combination of constant current (CC) and
constant voltage (CV) sections. The main charging period is CC where the battery voltage
starts to increase with SoC, followed by CV, until fully charged. During CC, the harmonic
distortion is low but when moving to the CV region, the distortion can increase [137].
Research was conducted by the Idaho National Laboratory (INL) to determine the power
quality performance characteristic of a 50 kW ABB DCFC with 480 VAC input power when
charging a Nissan Leaf. The results indicated that in CC mode, the DC current was up to
115.4 A with average power factor of 0.98, and the total harmonic distortion (THD) in the
current was 11%; whereas, in CV mode, the voltage was 397 VDC with leading power factor
ranging from 0.5 to 0.99 and the current THD was between 9.3% and 30.7%. Figures 11
and 12 show the fast charge events in CC and CV modes and the voltage and current THDs
at 50 kW [152].
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In [137], the THD in the voltage and current waveforms generated by the DCFC
was investigated. The voltage and current THD and total demand distortion (TDD) were
measured to ensure they were within the limits defined by IEEE standard 519-1992 [153],
and IEC 61000-2-4 [154] and IEC 61000-3-12 [155]. The findings indicated that TDD is a
better measure compared with THD for harmonic distortion calculations, as it uses the
maximum load; whereas, the THD uses the fundamental value of the current for the
calculation of the distortion. The estimated voltage THD and TDD for the charger were
within the standard limit of 1.3% and 12%, respectively.

Investigations of harmonic emissions from DCFCs and their impacts were reported
in [11,131]. To study the impact of harmonic distortions produced by DCFCs, the chargers
were modelled as current sources injecting harmonics to the system. The study shows in
detail the harmonic current emission, the stability of the system, and the Nyquist stability
criteria, and showed that system stability can be achieved by balancing the grid impedance,
Zg, and the DCFC’s input impedance. The studies reported in [11,144] also show that
when a VSC connects to the grid in parallel with several other units that its stability
maybe compromised.

The results of harmonic resonance when a DCFC is connected to an MV network are
discussed in [156]. Specifically, unacceptable harmonic voltage distortion occurred due
to a VSC-based converter and an ultra-fast charger (250 kW × 4) causing a resonance in
network impedance in an MV power grid in the Netherlands.

To resolve the impact of the DCFC surge current on the grid, battery storage with
bundling options, such as superconducting magnetic energy storage [112], flywheel [113],
or super-capacitors [138], are recommended. However, it has also been suggested that
using a DCFC with an active front end (AFE) can resolve this issue [157]. The latter research
proposed an S-VSC control strategy applied to the AFE of bidirectional DCFCs including
battery storage to provide grid ancillary services, such as frequency regulation, harmonic
mitigation, reactive power support, etc. This control strategy can provide dynamic and
transient support to the grid, and can complement D-STATCOM operation by injecting
or absorbing reactive power. The proposed control strategy can also track the generated
reference Q changing from 0.3 pu to 0.4 pu. This shows the capability of reactive power
support and the contribution of S-VSC to voltage regulation. The proposed S-VSC algorithm
is also able to compensate for harmonic distortion. Reference [157] compares the S-VSC
with D-STATCOM performance and reveals that a STATCOM could perform the same
function, but it needs a modified control strategy.

Very high power DCFCs can lead to superharmonic disturbances on LV and MV
grid distribution networks. The main sources of supraharmonics are power electronic
converters within the frequency range of 2–150 kHz [149,158]. Supraharmonics have a
detrimental impact on power quality in electrical distribution systems [158]. This may lead
to additional heating, reduced lifetime, malfunctioning of equipment, tripping of residual
current devices, increased capacitive currents and associated safety risks, and protection
device and security system failures [11,158]. Supraharmonics generated by inverters used in
renewable energy generation and their negative impacts on distribution grids are discussed
in [158]. Research on the sources and impacts of superharmonic emissions in microgrids,
and how the integration of new technologies, such as renewable energy generation and
DCFCs, can worsen the negative impacts of supraharmonics in microgrids, is discussed
in [11,158].

4.3.2. Voltage Fluctuations

As discussed in previous sections, the high currents drawn and supplied by DCFCs
may cause unacceptable power quality issues, including voltage excursions in LV and MV
distribution networks, especially when several DCFCs are co-located. These impacts can
be affected by factors external to the DCFCs, such as SoC and EV arrival time, which, in
turn, determine the peak charging demand. For example, a Monte Carlo simulation of
a medium voltage distribution system in Thailand was used to investigate the impact of
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a 110.85 kW DCFC facility with 8 charging points; they considered 2 scenarios, i.e., with
500 and 2500 EVs, with an initial SoC of 50% at the time of charging. The network voltage
and the load profile were calculated and showed large fluctuations, especially at the end of
the distribution feeders [131]. Voltage fluctuations caused by DCFCs in LV power grids can
also be especially large at the beginning and end of charging sessions, due to the large load
transients and cable impedance [11].

Voltage flicker and associated issues can also be caused by DCFCs. In [11,132], the EV
charging commencement time at the changing point is considered as one of the main factors.
Reference [132] focuses on the power demand profiles of different DCFC implementing
a Monte Carlo simulation to generate the DCFC power profiles and assess the voltage
flicker according to the IEEE 141 standard, which relies on general electric curves [159].
The results showed the largest voltage flicker at low frequencies. Considering light flicker
in this study, the voltage fluctuations appear to be within the acceptable certain limit in
case of 60 kW and will then exceed beyond the limit if the rated power demand increases
up to 150 kW, 240 kW, and 350 kW.

4.3.3. Network Stability

Network stability is fundamentally important to power system performance, but may
be compromised by introducing DCFCs and associated sudden load changes into the power
distribution grid. The power electronic circuits and interface filters in DCFCs can also cause
significant power quality and instability issues, especially if not designed to be connected
into a network with other DCFCs, etc. A stability analysis reported in [107] indicated that
the addition of distributed generation may also increase instability and oscillations at both
high and low frequencies. Instabilities may result in excessive heating, stress, and aging of
network components, and is likely to result in poor system performance with respect to
charging coordination, integration of renewable energy sources, and overall grid control
and management.

5. Planning Fast Charging Facilities

The demand for fast charging infrastructure and its expected growth were reviewed
in Section 2. Fast charging technology and systems were reviewed in Sections 3 and 4,
respectively, together with their potential impacts on the electricity distribution system
and methods to limit and manage those impacts. In this section, we address the question
of how best to plan long-term development of the electricity distribution network to
meet the growing demand expected for DCFC services. Careful long-term planning and
development of electricity and transport networks is important as both usually involve
significant investments in expensive infrastructure.

In discussing planning, it should first be noted that if the primary grid impacts associ-
ated with fast charging of EVs can be prevented by appropriate design and management
of each DCFC facility (e.g., by incorporating sufficient local storage to supply the peak
load), then the problem largely reduces to planning for the average increase in electricity
demand due to EVs, whether from fast (opportunity) charging and/or slow (destination)
charging. The key issues for planning are then to understand how future demand for
charging services is likely to be distributed in both space and time, i.e., relative to other
loads and the capacity of the distribution network.

It should also be noted that there are many demand management and control tech-
niques (e.g., booking, pricing, coordinated scheduling, or control of DCFCs [16,160,161]),
including methods discussed in Section 4, that can significantly modify charging demand
distributions and load profiles, and hence the electrical infrastructure required to support
charging services. Demand management and control techniques may usually be regarded
as fallback strategies for system operators where DCFC and/or grid infrastructure devel-
opments are inadequate or misplaced.
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5.1. Planning Scenarios

For the purposes of planning and optimising DCFC services, two main scenarios may
be defined, depending upon whether the service is (a) discretionary (e.g., in a suburban
road network), or (b) non-discretionary (e.g., on a long motorway). In the first case, the
planning problem is primarily one of locating the charging facility, whilst in the second
case, the planning problem is primarily one of scaling the charging facility to meet the
expected demand.

In each scenario, the optimisation problem may be defined in terms of minimising the
cost and/or maximising quality of service provided, as defined from the perspective of one
or more stakeholders; EV drivers, the charging facility provider, the electricity distributor,
traffic management authorities, etc. [67,162]. Additionally, the optimisation problem may
be constrained by factors such as the finance available and the geography, etc.

5.1.1. Siting of Fast Charging Facilities

The simplest approach to siting discretionary charging facilities is to aim to capture
the greatest proportion of expected demand [163]. In the context of transport, based on
existing or known road layouts and traffic flows, this is commonly known as the flow
refuelling location model (FRLM) and formulated as a mixed-integer linear programming
problem (MILP) [164]. Variants and extensions of the FLRM have been proposed that take
into account multiple optimisation objectives and/or constraints, such as system budget or
scale [165], energy cost [166], uncertainties in travel range [167], and electric infrastructure
capacity constraints [168]. Due to the size and nature of the problem, heuristic optimisation
methods (e.g., genetic algorithms) usually perform better than exact methods (e.g., MILP
solvers) in optimising charger location planning [169,170].

An alternative approach to locating discretionary DCFC stations based on traffic flows
and/or demand is to simply place them at locations with excess capacity in the electricity
distribution system. In general, studies show that the average demand for electricity due
to fast or opportunity charging is more concentrated in both space and time, relative to the
average demand for electricity due to slow or destination charging [27]. For a variety of
reasons, EV drivers currently use destination charging most of the time, e.g., at home or
the workplace, and use DCFCs only when necessary, e.g., on long journeys. Differences in
demand distributions between fast and slow charging services provide opportunities for
establishing DCFC facilities without the need for network upgrades.

5.1.2. Sizing of Fast Charging Facilities

In cases where the choice of location of the charging facility is determined or con-
strained, e.g., on long highways or other remote locations, then the primary problem is
to scale the charging facility to meet the expected demand [171–174]. Design decisions
and trade-offs must then be made concerning the number and type of charging points to
be provided, the resulting quality of service provided [145,160,175], and the cost of that
service [67]. For example, in any DCFC facility there is a trade-off between the number
of available charging points, their power rating or service rate (i.e., time to charge), and
the waiting time for EVs to access a charging point during periods of high demand. Al-
ternatively, the trade-off may be regarded as being between the total system cost and the
price customers would be willing to pay for access. Optimisation of these trade-offs by
appropriate sizing of charging facilities, with respect to the number and power rating of
charging points, is important for maximising utilisation and minimising costs. If local
battery storage is needed to manage the impacts of DCFC on the local electricity grid, then
the capacity of that battery can also be optimised based upon the type and number of
charging points provided and their expected usage patterns [162,176–178].

5.1.3. Siting and Sizing of Fast Charging Facilities

In some cases, it may be advantageous to co-optimise both the location and scale of
the charging facility. Co-optimization of the site and size of discretionary charging facilities,
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whilst also taking into account uncertainties in expected traffic flows and electricity demand,
together with various constraints on the stability and available capacity of the electricity
network, may be formulated as a mixed-integer optimization problem [168,179]. Using a
similar approach, it is also possible to determine the optimal mix of charging types [180,181]
and the optimal size of charging facilities over time, allowing for growth with increasing
EV penetration ratio [182].

Unless the problem is constrained in some way (e.g., limited to bus or taxi recharging
network optimisation [183]), the scale and complexity of the problem often makes it
intractable to classical solution methods. Various approaches to solving the problem have
been demonstrated, including solving the siting and sizing problems consecutively [184],
the use of heuristic methods, such as genetic algorithms [185] and game theory [186],
and the use of graph-computing techniques [187], etc. Convex optimisation has been
shown to be a powerful tool for solving large mixed-integer optimisation problems, such
as co-optimised siting and scaling of EV charging facilities [182].

5.2. Co-Planning of Transport and Electricity Infrastructure

In future, transport and electricity infrastructures will, to some extent, be interdepen-
dent, i.e., new roads and the EVs that use them will modify the distribution of demand
for electricity in both time and space, and new DCFC facilities could modify traffic flows.
Recent studies have allowed for this interdependence in co-optimising the design of trans-
port and electricity infrastructures [33,168,188]. Co-optimisation carries potential benefits,
e.g., with respect to improving the overall quality of service and/or minimising the cost of
transport and energy infrastructures, but could also carry risks associated with increased
co-dependence, which would need to be mitigated; such issues remain an open area
for investigation.

6. Future Developments in Fast Charging

The overall aim of DCFC is to minimise the time required to charge vehicles. This
has obvious benefits for drivers but also provides secondary benefits, such as minimising
the number of charging points required to service a given flow of vehicles without the
vehicles losing time through queuing and waiting [175]. Strategies to reduce the time EVs
occupy charging infrastructure include the following: (i) increase the rate of charging (i.e.,
increased charger power), (ii) utilizing information (e.g., as per smart grid standards) to
minimise the time the charger needs to be occupied, and (iii) improve the physical charging
interface to minimise the time required to connect to and disconnect from the charger (e.g.,
using wireless power transfer).

Of the latter strategies, increasing charging power would generally have the greatest
impact; nevertheless, in fast charging, every minute counts, and so the latter two strategies
are also likely to reduce charger occupancy and thereby increase the service rate and
utilisation of DCFC facilities. All such strategies will be important for charging future fleets
of autonomous vehicles [189]. A fourth potential strategy that could also reduce charger
occupancy is to transfer charge directly between vehicles, i.e., vehicle-to-vehicle (V2V) fast
charging [40,190]; in some instances, this could be done without the use of a grid-connected
charging infrastructure.

6.1. Charging Power

As the battery capacity and range of EVs increases, to remain “fast”, EV chargers
will need to provide increased power, and future EVs will need to accept higher charging
rates. Fast chargers for light EVs already supply relatively large currents (typically 125 A
for 50 kW). Resistive losses and associated heat dissipation increases with the square of
current, hence, to significantly increase, charging rates will require cables with increased
size and complexity (i.e., increased weight and cost), or increased charging voltage, or both.
Whilst most light EVs currently have 400 V batteries, those capable of ultra-fast charging
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have 800 V batteries [191], and further increases in the voltage of EV batteries and chargers
cannot be ruled out.

DCFCs operating at higher power for increasing numbers of EVs will exacerbate both
(i) the technical challenges, discussed in Section 3, and (ii) the system impacts, discussed in
Section 4. Consequently, there is considerable scope for further research and development
to optimise DCFC technology and systems.

6.2. Intelligent Charging Interfaces and Grid Integration of EVs

Smart grid standards (e.g., IEEE2030) and open communication protocols for EVs (e.g.,
IEC63110) facilitate the use of information technology for optimising the control and coordi-
nation of distributed energy technology and systems, including EVs [192–195]. For example,
chargers compliant with the ISO15118 vehicle-to-grid communication interface standard
have a “plug and charge” capability, by which secure financial transactions for energy
consumption (or provision) can be made directly with the vehicle without driver interven-
tion, which increases the convenience and speed of access to charging services [196,197].
However, it has been pointed out that further development and application of open com-
munication standards for EV charging is required [198,199].

Furthermore, intelligent charging platforms [200] and compatible vehicles can use
information to take on tasks and rapidly make decisions to optimise the charging process,
both for the individual and/or for the system [41,201]. For example, an intelligent and open
charging platform could maximise DCFC utilisation by minimising the charging period
for each vehicle (including an appropriate safety margin), taking into account real-time
information on the state of the electricity and traffic networks, the type of vehicle, its recent
energy usage, and travel plans communicated by vehicle’s navigation systems.

6.3. Physical Charging Interface

Physically, the charging process for EVs is currently similar to refuelling and both
involve connecting, and afterwards disconnecting, a large conduit to transfer energy to the
vehicle. In the case of EVs, there is significant scope to improve both the convenience and
speed of the refuelling process using wireless power transfer technology. Wireless charging
interfaces will be especially important for charging heavy EVs, such as buses, en route, and
for autonomous vehicles, but will also enable faster charging of light EVs. In recent years,
design optimisation has enabled the realisation of high-power wireless transfer systems
with end-to-end efficiency around 95%, which are suitable for incorporation into DCFC
systems [202–204]. Further increases in the power and efficiency of wireless charging
systems are foreseeable.

7. Conclusions

Fast charging systems are important for the future of two major areas of infrastructure
currently in transition; electricity and transport. This presents some significant challenges
to the technology designers and system planners developing these large, important and
costly infrastructures. Fast charging is, perhaps unexpectedly, a broad and complex field as
the demand for both electricity and transport have both temporal and spatial dimensions,
these dimensions span a wide range of scales, and both areas of infrastructure are impacted
and linked through multiple technical and social factors associated with the uptake and
use of EVs.

The aim of this review was to provide a wholistic overview of current knowledge and
practice relevant to fast charging and to assist readers understand this complex and rapidly
evolving field from a variety of perspectives. The review commenced with a summary
of key research linking technical and social drivers to the expected growth in demand
for fast charging services and electricity. This was followed by a review of current fast
charging technologies and issues, including potential short and long-term impacts on
the electricity system and various technical and non-technical strategies for managing
those impacts. This was followed by an overview of current approaches to long-term
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planning and development of fast charging infrastructure. The review concluded with
some likely future developments in fast charging technology and services being enabled by
emerging standards.

In conclusion, it is hoped that this review will provide a point of reference for those
working in transport electrification and related areas to understand the main issues and
tradeoffs associated with provision of fast charging services, and will assist informed
decision making and coordinated planning of future fast charging technology and systems.
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