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Abstract: The energy transition has shown that fossil generation can be complemented with renew-
able energy and other resources capable of providing flexibility to the energy system’s operation,
in compliance with the wholesale electricity market’s rules. This paper proposes a market-based
methodology for introducing flexible demand in the energy dispatch, optimizing the scheduling
of electricity system operation in the short-term, and considers the challenge of implementing an
incentive scheme for participants in demand-response programs. The scheme includes the criteria of
the elasticity of substitution and a renewable energy quota. This methodology is focused on a strategic
demand shift to minimize the cost of supply; increase the dispatch of renewable energy; control
CO2 emissions; and satisfy the generation, demand, and transmission operating constraints. These
conditions encourage the development of a simulation tool that allows a sensitivity analysis to aid
decision-making by operators and agents. The proposed methodology optimizes the operational cost
of generation supply and specific performance indicators to determine the percentages of demand
shift, the amount of CO2 emissions, the ratio of unserved power, the demand benefits obtained from
an incentive scheme, and the natural market behavior.

Keywords: demand response; elasticity of substitution; renewable energy; wholesale electricity
market

1. Introduction

This paper proposes an alternative methodology for evaluating the economic and
environmental effects of applying an incentive-based demand-response program (DRP)
based on load-shifting strategies. The fundamental criteria that allow the demand flexibility
of resources are determined by employing demand segmentation and the constant elasticity
of substitution (CES). This methodology considers the declared availability profiles for vari-
able renewable energy production, maximizing its contribution. Additionally, the supply
costs are minimized, in accordance with the constraints determining the generation, grid,
and demand conditions. Limits are established for unserved energy and the displacement
of fossil generation, and the reduction in CO2 emissions is also evaluated.

Considering that demand can provide operational flexibility, demand response (DR)
has been defined as the ability to modify the profile of electricity consumption based on
changes in price signals or incentives applied in the electricity market in order to induce the
rational use of electricity and to mitigate vulnerable scenarios that threaten the reliability
of the electricity supply in the system [1,2]. The benefits of DR involve additional revenue
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and energy efficiency for the provider and the increased reliability and optimization of
the electricity infrastructure for all market players. The fundamental functions of DR
include demand-increase and -decrease activities utilizing load control and other integrated
resources, such as onsite generation and storage [3], allowing the injection of surpluses
into the grid. There are two strategies used in power system operation to meet demand
projections. One of these seeks a solution to the generation dispatch problem, and the other
focuses on the flexibility and availability of resources on the demand side [4]. In the second
case, utility providers and large consumers implement efficiency and load-management
programs, since flexible demand is seen as a way to mitigate the challenges of increasingly
volatile renewable energy sources (RESs), as it can ensure the security of supply [5,6]. The
fundamental goal of DR is to control the demand and move it along the time axis according
to the generation availability [7,8].

In [9], a DR program for Singapore’s wholesale electricity market was investigated.
The study included the constraints and modeling of an incentive payment mechanism. The
scheme proposed in [9] restricted the flexibility in response to price signals, limiting the
maximization of the DR benefits, in contrast to what is proposed in this paper. The authors
of [10] present a mathematical model of the application of DR at the individual-household,
aggregate-household, network, and market levels. Their approach left open the discussion
of possible barriers related to market structure and policies; these are addressed in the
proposal of this paper, which points out an opportunity to mitigate deviations in dispatch
operation programs.

According to [11], DR can be adapted to offer the following products and services to
the power system:

• Firm capacity during peak hours.
• Delivery of energy from electricity generators to consumers under minimum cost

conditions.
• Ancillary services to support grid stability.
• A temporary reinforcement of congested elements in transmission networks (TNs)

and distribution networks (DNs).

As a management activity, DR categorization addresses the resources required for its
implementation, which are subject to dispatch and discretionary conditions, as is illustrated
in Figure 1.

Energy resources that are not classified as own-generation activities are often consid-
ered unconventional energy sources, allowing various services in electricity markets to
be structured based on operational flexibility [12]. DR and energy storage (ES) are non-
generation techniques developed to complement the integration of high levels of variable
renewable energy [13], allowing safe and efficient operation [14]. Nowadays, technologies
and markets experience significant changes when implementing DR programs, due to the
future development needs of multienergy systems, where electricity, natural gas, and other
forms of energy participate in a new concept called integrated DR or energy hubs [15].
The process of energy transition experienced in the Wholesale Electricity Market (WEM) is
becoming more common today, since the greater dissemination of renewables and DR pro-
grams has created awareness of the effect that electricity demand has on the environment
and economy among those who are willing to change their load profile to improve the
performance of the system, minimizing the operating cost and maximizing the reliability.

The objective of this analysis is to put into context new possibilities for optimizing the
operation of energy systems and the electricity market based on DR programs and other
resources that have only been studied separately or have been poorly combined, such as
the technique of segmenting demand profiles by type of user, the reference values of the
elasticity of substitution with extensive implementation of Non-Conventional Renewable
Energy (NCRE), and the probabilistic indices for assessing the security of a supply. The
main contributions of this paper are the following:
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Figure 1. Demand-response categories [1].

• A methodology for evaluating the optimal operating cost of a generation supply
in the short-term, emphasizing the proliferation of variable renewable energy and
the integration of flexible demand that incentivizes users to shift their load profile
according to the constant elasticity of substitution determined by the market operator.

• The definition of the specifications for building a simulation tool to mitigate deviations
in the scheduling of an electric system’s operation, avoiding cost overruns due to
forced generation dispatch.

• The identification of performance indicators by optimizing energy prices and quanti-
ties in the market, based on criteria associated with demand-response programs and
the constant elasticity of substitution (CES) function.

This paper is structured as follows: Section 2 presents the structure and planning
criteria of the wholesale electricity market, including demand-response programs; Section 3
describes flexible demand-side resources, with an emphasis on strategies for modifying
electric load profiles and DR program specifications; Section 4 presents the applicability of
indicators for assessing DR programs; Section 5 explains the methodologies used to model
the demand-response and sustainability dimensions; Section 6 discusses the expected
results of the proposed methodology; and finally Section 7 provides conclusions related to
the contributions, limitations, and future directions of the study.

2. Wholesale Electricity Market: Structure and Planning Criteria Using
Demand Response

The conceptual map shown in Figure 2 illustrates how to incorporate flexibility in
the operation of a power system, considering the effect of an active DR in the WEM. DR
programs require the adjustment of the system’s operating plan to ensure a minimum
cost, subject to market rules. This section is focused on explaining the links between DR
programs and the planning criteria that control the minimum cost of the operation.
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Figure 2. Conceptual map of wholesale electricity market plan implementing demand response.

A unidirectional sequence of activities supports the traditional electricity business
model. In this scheme, the generators sell their energy on the WEM, electricity is transported
and distributed under the control of a system operator, and retailing companies buy in bulk
and sell to end-users. The adequacy of the system and the provision of ancillary services that
support the reliability, efficiency, and quality of the services (such as frequency and reactive
energy regulation) are mainly ensured by generators and some large consumers. The
regulator establishes rules and monitors compliance, while the market operator values the
purchases and sales of electricity, ancillary services, and other complementary regulatory
mechanisms implemented.

According to [16], “Traditionally, electricity supply was a vertically integrated industry
in which the same company conducted all four major activities (generation, transmission,
distribution and retailing)”. The restructuring of the electric power industry has been estab-
lished in several countries since the 1990s, shifting from a vertically integrated monopoly
into a competitive market. In Figure 3, the relations between these activities and institutions
are shown.

Figure 3. Traditional wholesale electricity market.

DR planning in WEMs was promoted in the United States following the California
energy crisis in 2004, and system operators in Europe started to implement it in 2005 [6].
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In [17], it was concluded that the influence of DR on a WEM is more effective in a market
that integrates CO2 costs and subsidies with nonpolluting technologies in the long term.
Therefore, without proper DR planning, the effect of DR on the energy system/market may
not represent a substantial improvement [18].

Integrating energy resources, ES technologies, and DR have allowed emerging net-
works to implement flexibility criteria [19]. In [20], the storage and service-control criteria
are used to assess the demand flexibility in the residential and commercial sectors.

In [21], the authors explain in physical terms the options that exist to support flexibility
mechanisms in power systems and ensure the balance of generation and demand in real
time. On the supply side, they make reference to ramp-capacity resources in conventional
power plants, flexible generation, the diversification of the generation mix, etc. On the
demand side, the variety of options includes DR and energy-efficiency programs. The
demands can be managed with storage; EVs; and residential, commercial, and industrial
user loads. In the case of networks, flexibility options would allow reconfigurations,
meshed topologies, and the incorporation of technologies that allow for smart grid use.

The effect of applying flexibility mechanisms on the market may be permanent or
temporary. The first case pertains to the establishment of policies that prescribe fixed or
mandatory resources or programs (e.g., energy efficiency), and the second case is more
oriented towards short-term mechanisms that can safely minimize a power system’s opera-
tional costs (e.g., DR programs).

There are multiple challenges to integrating variable renewable energy with market
economics and system operation. However, we can consider as a case study Ireland’s
power system, in which trials have concluded that renewable and flexible technologies,
including wind energy, photovoltaic solar energy, demand-side management, and battery
storage, are admissible together with conventional generation [22].

With the deployment of flexible resources in the market, it is necessary to create new
mechanisms and business models to improve the performance of reserves and flexible
ramps. In this context, the authors of [23] describe a contracting methodology designed to
respond optimally to aggregate demand. In structural terms, new roles within the WEM
have had to be defined, as observed in the markets that include the figure of the aggregator
(Figure 4). To illustrate this case of the adaptation of the traditional operation of an electrical
system’s activities, the aggregator is responsible for managing distributed energy resources
(DER) as a new market participant.

Figure 4. The adaptation of the wholesale electricity market.
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Aggregators are mediators that offer DR services to market participants, system and
market operators, and end-users [24,25]. The activity of the aggregator allows small group-
ings of consumers, producers, and prosumers to participate in the electricity market as a
single entity, improving the operational flexibility of the system by managing and com-
mercializing demand and generation resources. Figure 4 illustrates the role of aggregators,
showing their value, their coordination with distribution system operators (DSO), and how
they can reduce market costs [26–29]. The proposed methodology is focused only on WEM
activities and does not consider the internal coordination that the aggregator must carry
out with end-users

We conducted a literature review focusing on investigations associated with the model
in Figure 4. The authors of [30] indicate that residential customers can implement DR
through household appliances such as refrigerators; freezers; washing machines; dryers;
and HVAC (heating, ventilation, and air conditioning) systems. In [31], the authors present
a business model that includes the figure of the aggregator as a price taker in energy markets
and reserve services through the charging and discharging of EVs. The participation of
the aggregator in the European energy balance markets is examined in [32]. Different
contract-modeling strategies for the aggregator in the market, such as load cuts, load
shifting, distributed generation, and ES, are presented in [33].

In situations of congestion and failure to provide ancillary services, or when it does
not have the availability of energy required, the aggregator may incur additional penalties
and costs for transferring energy from one point to another [34,35]. It should be noted that
congestion problems in DNs can influence TNs, causing congestion and the formation of
zonal prices. In [27], the economic fundamentals of the aggregator are assessed; the paper
evaluates technological and regulatory scenarios, characterizing the added value from a
transitory and opportunistic perspective.

The evolution of competitive electricity markets and the advancements in communica-
tion technology and control engineering have created the conditions for the development of
smart grids, motivating a reformation of the conventional DSM theoretical framework [36].
The main DSM concepts are associated with energy efficiency and DR. Several works have
shown that DR contributes to system stability, service quality, the security of supply, and
better market operation performance. Some authors use the terminology of Demand Side
Integration (DSI) to refer to the modern concept of DSM [4]. As DR is associated with DSI,
we also considered integrated resource planning, reliability, security, and electricity prices.

3. The Demand as a Flexible Resource
3.1. Strategies to Modify Load Profiles

The management of electricity load profiles is based on several strategies for adjusting
demand curves based on conditioning mechanisms, such as peak clipping, valley filling,
load shifting, strategic load increase, strategic conservation, and flexible load [37,38]. An-
other strategy for modifying load profiles and their impact on marginal prices and the cost
of supply is controlling onsite generation, as verified in the study conducted by the authors
of [39]. The broad objectives of the six ways of altering load shapes from the demand side
are illustrated in Figure 5.

According to the authors of [4], the mechanisms of peak clipping, valley filling, load
shifting, and strategic load growth are associated with dynamic demand-side manage-
ment terminology (DDSM) and the mechanisms of strategic conservation and flexible
load shape with static demand-side management (SDSM). Users adopt different energy-
consumption patterns in the dynamic scheme, although the electrical system parameters
remain unchanged. In the case of the static scheme, users adopt fixed consumption patterns
as long as the electrical system parameters do not show substantial variations [40]. The
application of these strategies requires adaptations in the grid to incorporate automatisms
capable of triggering cuts, increases, reductions, and displacements of demand, motivat-
ing the conformation of the intelligent grid [40]. A brief description of each strategy is
shown below:
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Figure 5. Objectives of demand-response strategies.

3.1.1. Peak Clipping

This mechanism reduces loads by opening circuits during peak demand periods,
delaying new investment requirements in generation technology due to a net reduction in
demand. Usually, its implementation is carried out through the direct load control (DLC)
of actuation devices that require automatic communication systems or actions provided
directly by the consumer [37].

3.1.2. Valley Filling

This strategy involves building up loads at off-peak times, typically encouraged by
cheap off-peak tariffs. The energy resources used for filling valleys are varied and include
the planning and programming of domestic, industrial, and commercial loads, such as
household appliances, battery-based storage systems, heating and cooling equipment, and
EVs [37]. As electricity prices are lower in off-peak periods, the strategy takes advantage of
the opportunity to increase consumption and consumer profits. Additionally, it improves
the load factor of the system, compensating for the losses generated by consumption at the
peak and shoulder periods of the daily load curve [41].

3.1.3. Load Shifting

The load-shifting strategy provides flexibility for utility companies, allowing schedule
changes by moving partial loads from peak to off-peak hours, depending on low electricity
prices. Unlike energy-efficiency programs that seek a general reduction in demand, load-
shifting mechanisms take advantage of the price difference. Programs based on time-of-use
pricing (TOU) and real-time pricing are ideal for this type of strategy [42].

3.1.4. Strategic Load Growth

An increase in consumption represents the possibility of guaranteeing supply with
other sources of energy [43]. With the restructuring of the electricity industry, strategic
load growth has not been favored in the face of minimizing the cost of supplying markets,
limiting its use in regions that are able to take advantage of integrating renewable energy
on the demand side [44].

3.1.5. Strategic Conservation

Strategic conservation applies load-reduction methods to the facilities of the electricity
service user through optimization mechanisms [45]. Usually, utility providers do not
use this type of strategy in their demand-management programs because a reduction in
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electricity sales caused by this action does not always represent a reduction in the maximum
demand for the system.

3.1.6. Flexible Load

The flexible load shape is equivalent to combining peak clipping, valley filling, and
load shifting. This modification of the daily load curve is more complicated for the system
operator in terms of planning and operation. However, it responds with more elasticity
depending on the end-user’s needs [46]. An advantage of this practice is the value added
to the system’s reliability by identifying a flexible demand, especially during peak peri-
ods [47]. Reducing demand through this scheme allows grid operators to interrupt loads,
with consequent changes in the reliability and quality of the service [43]. The technolog-
ical equipment applied with this technique can be autonomous or manually activated,
employing controllable energy-management systems [37].

3.2. Demand-Response Programs

The design of DR programs is oriented towards one of two main groups, called
price-based programs and incentive-based programs. In price-based programs, electricity
customers modify their electricity-consumption pattern in response to the WEM price. In
the case of incentive-based programs, a mechanism is structured to provide an economic
stimulus based on the participants’ performance.

3.2.1. Price-Based DR (Time-Sensitive Pricing)

Time-of-use (TOU) pricing, critical peak pricing (CPP), real-time pricing (RTP), and
peak-time rebate (PTR) are rate schemes employed by price-based programs that provide
economic signals to influence the reduction in energy consumption during peak periods
due to the high prices that electricity reaches [48]. Price-responsive programs operate on
passive demand, based on voluntary actions by electricity consumers. Brief details for each
case are shown below.

Time-of-Use (TOU) Pricing

In this program, the expected changes in the electricity consumption profile are con-
ditioned by the prices set for each time block. Regularly, usage rates vary over several
periods within a day. A typical scheme defines the daily peak, shoulder, and valley prices
according to the pattern of the daily load curve [1]. Time-of-use tariffs for the consump-
tion of electricity motivate users to change their habits to take advantage of lower prices,
reducing peak demand for electricity at critical times [49].

In the case of Malaysia, most consumers prefer static TOU rates applied in price-
based DR programs due to the transition processes they must face with retailers when
formalizing plan changes [18]. A case study based on price responsiveness has been
modeled on residential electricity demand, combining a TOU policy with a block pricing
policy, verifying that this can help reduce the annual consumption of electricity below 1%.
This effect is not desirable compared to the TOU scheme with a 1.4–3.0% reduction. As
noted in the study, the combination of TOU with a block pricing policy performs worse
in reducing electricity consumption, probably because the users do not know which price
they should respond to and are confused about the nonlinear nature of block pricing [50].

The authors of [51] presented a simulation model of buildings in Ireland that allowed
them to calculate the effectiveness of DR programs based on rules and machine-learning
algorithms (predictive algorithms), applying different TOU rates. The results indicated that
it is possible to obtain reductions in end-use electricity expenditure, utility generation costs,
and carbon emissions, with proportions close to 20% in the rule-based algorithm and 40%
in the predictive algorithm.



Energies 2022, 15, 1307 9 of 28

Critical Peak Pricing (CPP)

Critical peak pricing is a dynamic way of applying prices via a TOU scheme when
shortage conditions are detected in the electrical system. In this case, users have to pay
higher prices if there is no generation or if events disconnect grid elements [52]. As
indicated above, CPP is a variant of the TOU scheme that expresses the volatility of peak
prices in the electricity market.

Real-Time Pricing (RTP)

RTP expresses the prices that result in the WEM at hourly intervals or other lengths
of time established by the regulations, exposing the user to the variability that represents
the real costs of supplying to utility providers and other consumers [11]. The study in [53]
proposes a novel methodology that combines real-time pricing with real-time incentives.

Peak Time Rebate (PTR)

According to the authors of [54], PTR programs recognize users with monetary dis-
counts that respond to a reduction in electricity consumption during peak hours, because
the highest costs are reached in this block of hours. Consumers who do not display this
flexibility pay the standard tariff. For this reason, PTR programs typically see much higher
participation rates than many other DR programs. In addition, PTR programs have high
customer satisfaction ratings, and on the utility side, PTR programs do not require any
changes in rate design. PTR programs can benefit both customers and utility providers,
resulting in a win-win outcome if PTR rebate levels are set correctly.

3.2.2. Incentive-Based DR

In literature reports, incentive-based programs are classified into classical and market-
based programs. In the first group, participants receive credit or a discount during the
billing process for reducing their consumption. In the second group, participating users
receive a reward proportional to the change in their electricity consumption during the
peak hour block [55]. The purpose of incentive-based programs is to flatten the daily load
curve by taking advantage of market price variations. The demand reduction contracts
are signed and activated when the market exhibits high prices or the system operator
understands that reliability is compromised [7].

The reliability of an electrical system can be evaluated over time through the dimen-
sions of security, firmness, adequacy, and strategic planning. DR programs contribute to
the reliability of capacity, frequency-regulation reserves, and energy from the perspective of
the service and the incentives involved. Additionally, flexibility and contingency could be
categorized as special reserve markets for frequency regulation. In the case of a flexibility
service, an additional load is required following significant unforecasted wind or solar
ramps, and a contingency service responds rapidly to a loss in supply energy [56]. A
description of service attribute areas is given in [11]. Below is a brief review:

Capacity

This service offers a displacement of traditional generation, motivating the controlled
dispatch of load through DR programs. The required balance between generation and
demand is preserved since an increased load in a bus of the system is offset by the de-
creased load committed in the DR program in another bus, without dispatching addi-
tional megawatts of generation. The participation of DR in capacity markets can combat
the increase in capacity prices, mitigating the challenge of integrating high levels of re-
newables [57], strengthening supply security, and reducing residual loads in the peak
period [58]. There are several metrics for measuring this resource. Among them are cited
the loss of load probability (LOLP), the loss of load expectation (LOLE), and the expected
unserved energy (EUE).
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Frequency-Regulation Reserve

The effect of DR reserves is the same as synchronized spinning reserves, since they
can be activated automatically in a very short time, during the first seconds or minutes
after a failure. A frequency-regulation reserve provides the response required to balance
generation and demand after a contingency event for a transmission failure or the loss of a
generation unit [59]. In the case of non-spinning and non-synchronized operating reserves,
the actuation time can also be adjusted to use DR reserves according to the necessities of
the system’s stability [60].

Emergency

From the operational planning perspective, the generation needs can be complemented
with the energy balance of DR programs, facilitating the optimization of the process,
especially in emergency situations or shortages due to the lack of the reliability of generation
units [61]. A pilot study of this scheme is evaluated in [62].

4. Performance Indicators of Demand-Response Programs in Wholesale
Electricity Markets

It is necessary to identify indicators to assess the performance of electricity markets;
deciding which are directly related to the market being analyzed will favor the quality of
the process assessment and the proposed decisions. Some authors present the following
calculations as key performance indicators to respond to and evaluate market behavior:
wholesale generation costs, acquisition costs of reserved generation capacity, environmental
impact measured by the costs associated with CO2 emissions minus the costs avoided
by the reduction of SO2 and NOX emissions, reduction of peak prices, lost renewable
energy, valuation of unserved energy, percentage of renewable generation, and imported
net energy [63].

Several works describe the energy market based on performance indicators. In [64,65],
the generation costs are associated with CO2 emissions, the use of primary energy, the load
factor of the generators, and the number of hours for which it is possible to disconnect the
thermal generators to meet the demand for energy with renewables. In these cases, demand
management is expected to influence the efficient operation of electricity generation and
the increase in the implementation of RESs to meet the energy demand.

The future poses the challenges of generating electricity with low carbon emissions
and providing greater access to energy. For this reason, it is necessary to include objectives
related to social and environmental concerns in energy system design [66].

The use of storage systems helps increase the participation of renewable energies in
the coverage of demand and the use of available intermittent resources [67]. From the
perspective of demand, the influence of the availability of renewable energy in distributed
storage systems will guide decision-making in managing the electricity market [68].

Other authors have shown that integrating different energy sources is essential for
energy management through intelligent systems [69] and increasing the implementation
of renewables, thus reducing the instability of the quality parameters of the electricity
supply. In this sense, it is necessary to identify indicators that allow the valuation of
market scenarios.

• Key Performance Indicators related to DR

In energy-use management, DR has become a valuable mechanism that impacts costs,
the environment, and the well-being of society; however, there are challenges to exploiting
its potential, considering the technological and contextual diversity of its application by
users and utility providers. The following Key Performance Indicators (KPIs) are used
by the authors of [70] to assess the applicability of DR programs: Percentage of varia-
tions in electricity load during the peak hour block, percentage of variations in electricity
load during the off-peak hour block, percentage ratio of unserved energy from baseline
consumption, percentage of consumer participation, and percentage of consumer response.
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In [71], the energy intensity of the industrial sector was related to the flexibility of load
per inhabitant and was used as a successful indicator of DR implementation. The study
verified that the number of energy-intensive industries is directly related to the potential
for the deployment of DR. According to the authors of [18], in Malaysia, the intensity
of electricity consumption increased favorably by 8.5% according to the gross domestic
product due to the appropriate planning of the energy balance.

For the use of public funds, specifically in subsidies, a model can be used where the
DR’s deployment level is established as a parameter [72]. This task involves the analysis of
the electricity consumption and the required tariff structure to determine the will and the
payment capacity of the population.

The authors of [73] classified KPIs according to social, economic, technical, environ-
mental, and legal concerns from the stakeholder perspective. In the group of technical KPIs
related to DR in the WEM, they proposed: Percentage implementation of renewables to
meet thermal generation needs, percentage of energy resources distributed in the genera-
tion mix, reduction percentage of peak plants based on the ratio of renewable energy to
total energy, and average interruption frequency and average interruption duration.

• The elasticity of the demand

The elasticity of demand measures the sensitivity or responsiveness experienced by
the quantity demanded when there is a percentage change in its price. Based on this simple
definition, the elastic behavior of consumer demand indicates that minor variations in
prices produce significant variations in the quantity demanded.

In WEMs, the participation of active demand directly affects prices and generation
dispatch. This participation can be understood as a DR when it presents an elastic condition,
especially in periods of high prices. The work carried out by the authors of [74] simulates
the impact of demand price elasticity in programs based on real-time pricing (RTP) and
peak-time rebate (PTR). Other works that have modeled demand price elasticity in the
market can also be consulted [75–80]. Equation (1) represents the price elasticity of demand
(ε) and is explained in [81].

ε =
∆%D
∆%P

=
∆D
D

∆P
P

=

(D1−D0)
D0

(P1−P0)
P0

=
(D1 − D0)

(P1 − P0)
× P0

D0
(1)

where ε = the price elasticity of demand; D1 = the quantity of demand 1; D0 = the quantity
of demand 0; P1 = the price of demand 1; and P0 = the price of demand 0.

In [82], the behavior of price elasticity is compared across a time horizon, showing a
more significant price in the long term. Consequently, electricity users are more sensitive to
price and policy changes in the long term, while in the short term, price policy may have a
moderate impact, according to the investigations into residential customers.

• Constant elasticity of substitution

The elasticity of substitution indicates the level of sensitivity that the relationship
between two production or utility function factors displays when the marginal rate of
its products or profits varies. It measures the curvature of an isoquant, or a curve of
indifference, and the possibility of substituting factors or goods.

In [83], the substitution elasticity constant was used to develop a DR program applica-
tion model derived from a time-based tariff. Unlike DR models based on price elasticity,
the proposed model evaluated a continuous decision-making process, allowing greater
flexibility. Another model of elasticity of substitution, which considers the DR during peak
and valley periods, is explained in [84], based on an incentive scheme that allows profit
maximization for an electricity retailer.

Usually, models use the price elasticity of demand, assuming that the consumer
behavior at a particular point of the demand curve is like any other. They linearize the
demand curve with a present value of the price elasticity, motivating assumptions that
produce discontinuities in the decision-making process [83]. The appropriate treatment
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is to overcome the elasticity of substitution instead of the price elasticity of demand. The
substitution elasticity function for two products (X1, X2) is presented in Equation (2):

U(X1, X2) = γ
(

αX−ρ
1 + (1 − α)X−ρ

2

)− ϑ
ρ (2)

where γ = the efficiency parameter; α = the intensity factor of good X1; (1 − α) = the
intensity factor of good X2; ϑ = the degree of scale; and ρ = the substitution parameter.

The utility function corresponding to the constant elasticity of substitution (CES) is
prevalent in applications that include multiproduct scenarios in microeconomics [83].

The application of this function in the electricity market assumes that the energy
supply is different for each period, motivating different prices in the consumer profile. In
this case, the coefficient of elasticity of substitution can be determined from the expression
(1 − ρ)−1. The elasticity substitution constant is usually applied to evaluate integrated
general equilibrium models [85].

The authors of [85] indicate that the flexibility of substituting demand in quantity
and time can define the evaluation criteria for DR programs. Therefore, the elasticity of
substitution parameter is essential to determine the benefits of DR programs and to define
whether they are implemented according to the objective function of reducing the costs
of the electricity supply, considering the ability of users to reschedule their consumption
routines for different periods if given an incentive of reduced prices or other income.

5. Methodologies Used to Model Demand-Response and Sustainability Dimensions

Some authors have considered models for integrating decision variables to manage an
adequate DR due to the flexibility conditions that it represents in the context of the planning
and operation of the system and the electricity market. Technical, economic, social, and
environmental parameters are considered for decision-making assistance, even if they are
dispersed, due to the complexity of the electricity sector. Optimization tools are used to
respond to these requirements, such as EFOM, OREM, GAMS, HOMER, EnergyPLAN, ED,
OseMOSYS, PLEXOS, MESSAGE, MARKAL, TIMES, LEAP, and MATLAB [86–92].

• Methodologies used to model DR

In the literature, models for decision-making combine different technical aspects and
scenarios with RESs to evaluate DR programs in WEMs, microgrids, or DNs.

According to the authors of [93], the models that consider the integration of renewables
and the implementation of flexible resources, such as storage and DR, can be classified into
three general categories: optimization, partial or total equilibrium, and alternative models.
In the first case, continuous, integer, and stochastic programming techniques are applied.
In the second case, optimizations include functions that evaluate cost minimization. In
the last category, models of probabilistic order, life-cycle evaluation, econometrics, and the
modern theory of portfolio management are incorporated. In recent years, the perspective
of Stackelberg has been analyzed as a case of game theory and used to model problems in
the context of the smart grid [94]. This classification of related works has been reviewed
and summarized in Table 1, where DR is demand response, RESs are renewable energy
sources, WEM is wholesale electricity market, DN is distribution network, MG is microgrid,
EV is electric vehicle, and ES is energy storage.
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Table 1. Characterization of methodologies for modeling demand response.

Case Model Software Tools Objective Criteria Contribution Limitation Reference

DR + RES Energy-planning model TIMES Minimizing cost through
long-term planning

Maintaining a given level
of reliability

Increasing the implementation
of intermittent renewable

energies reduces the reliability
of the supply, meaning the DR
resource can be considered to

guarantee the required balance
between generation and

electrical load.

For this long-term planning
approach, it is suggested that the

reliability assessment should
concentrate on the sufficiency

aspects related to the capacity and
investment in renewable sources.

The variability experienced by
renewable sources and its impact

on the balance between
generation and demand can be
more rigorously evaluated in a

short-term scope.

[95]

DR + MG + EV + ES Load-scheduling model ANYLOGIC
Minimizing cost

through residential
microgrid devices

Flexibility aggregator

The flexible resources with the
most potential to provide the

renewable generation portfolio
of an aggregator are

concentrated in residential
demand, with the participation
of EVs, batteries, and heaters.

It is pertinent to incorporate
scenarios that can simulate
air-conditioning equipment,

considering that it is an important
consumption component in the
cost of electricity for residential

users in some countries.

[96]

DR + WEM
A two-stage stochastic
model incorporating

game theory
GAMS/CPLEX

Minimizing total
operational cost using
Security-Constrained

Unit Commitment

Oligopolistic environment

Results reveal that DR
programs affect oligopoly

activities in the market in the
presence of renewable

energy resources.

Operational flexibility is of greater
importance as the implementation
of variable renewables increases.

Therefore, the study can be
complemented by incorporating

flexible resources, such as
battery storage.

[97]

DR + EV + ES A two-stage
stochastic model GAMS/CPLEX Maximizing total expected

profits of domestic energy
Smart-home modeled like

a price taker

The TOU pricing scheme
benefits the market due to its

contribution to reducing
operating costs and increasing

the smart-home
user’s profitability

The domestic load scheduling that
minimizes energy consumption,

considering the comfort
preferences of the participating

users, may imply an extra cost for
the operation of the wholesale

electricity market because higher
levels of the reserve may be

required for the provision of the
regulation service frequency

under conditions of
demand uncertainties.

[68]
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Table 1. Cont.

Case Model Software Tools Objective Criteria Contribution Limitation Reference

DR + Carbon Scenarios Long-term model OSeMOSYS
Minimizing cost of
operation and total
installed capacity

Planning operation

The assessment of DR
implementation could be

verified by reducing the cost of
operation and total installed

capacity significantly when the
renewable capacity and

generation increase.

The application of this study
should be extended to the case of

electrical systems in island
countries, where it is not possible

to take advantage of the
interconnections of electrical

systems in neighboring countries;
a comparison should be made
with the peninsular-base case

of Portugal.

[6]

DR + ES + RES Energy-hub model GAMS/CPLEX Minimizing total cost
of energy

Divide complex problem
of energy-hub model into

smaller subproblems

The methodology of dividing
the complex problem of the

energy-hub model allows the
transformation from nonlinear

to linear without the loss of
relevant information.

The prioritization criteria should
be defined according to the

energy source that participates in
the demand-response programs;
the stochastic weighting of the

objectives related to increases in
benefits and user comfort and the
reduction of operating costs in the

markets should also be defined.

[98]

DR + RES + ES + MG Multiple-year
planning model GAMS/CPLEX Maximizing social benefits Integration of RESs and ES.

Implementing DR with
renewable energy resources and
storage in remote communities

can improve social welfare.

Although some of the users in
these remote communities can

assume a change in their
consumption pattern to reduce
fuel costs, the inclusion of an

incentive scheme can be explored
to motivate greater participation.

[99]

DR + ES + RES + MG Enhanced rural
electrification model HOMER

Minimizing the levelized
cost of energy, the net
present cost, and the

carbon dioxide
(CO2) emissions

Sizing of an integrated
renewable energy system

Combining DR with a level of
participation of renewable

energies reduces the levelized
cost of energy.

The determination of the levelized
cost of energy in this study does
not consider the inconveniences

of the commercial management of
electricity services in rural
communities that are being

electrified. This variable can be
incorporated into the model,

considering that these users must
assume a new commitment and,

therefore, a new habit.

[100]

DR + RES + WEM Optimal-dispatch model MATLAB

Minimizing the costs of
operation, incentive, and

expected
unsupplied energy

Reliability

The design of a dynamic
incentive mechanism and a new

expected-energy formulation
could determine the conditions
that must be sustained to carry

out the electrical system’s
economical and

reliable operation.

The security concept considered
for the short term should be

defined to clarify the reliability
dimension of the model.

[101]
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Table 1. Cont.

Case Model Software Tools Objective Criteria Contribution Limitation Reference

DR + WEM DR model based
on incentive MATLAB Maximizing retailer

benefits
Utility and

elasticity of customers

The sensitivities of the criteria
of utility and the elasticity of

the customers allow innovation
in determining the optimal

incentive price for each period
in the electricity load curve.

This model explores retailer
maximization derived from an

incentive-based demand-response
program. The model does not

necessarily represent the total net
benefit of all market agents,

motivating the need to determine
if its application minimizes the

operational cost of supply.

[84]

DR + ES + RES DR model based on
interruptible load

Program based on
genetic algorithm

Maximizing
consumer benefits Maximum demand index

The application of the
interruptible-load model

contributes to the reduction of
invoicing and

customer demand.

The results obtained from the
load-interruption program do not

mean that there would be a
reduction in the maximum

coincident demand of the system,
which motivates the evaluation of

this condition.

[102]

DR + RES + DN DN model based on Nash
equilibrium

TIMES
OSeMOSYS
ETEM-SG

Minimizing grid
operator cost

DER and reactive
power compensation

The implementation levels of
renewable energies favor the
inclusion of DR in distributed

energy markets.

The results should be compared
with other modeling tools,

indicating the conditions required
to be chosen.

[103]
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• Sustainability dimensions in DR models

Energy modeling is a multidimensional concept that is challenging to explain from a
single methodological perspective. One of the most frequently used classifications in the
literature, dedicated to disaggregating the different dimensions applicable in development
models, such as those that incorporate renewable energy and flexible resources in electrical
systems, is related to the concept of sustainable development (SD). This conception rests on
three fundamental pillars (social, economic, and environmental). It has been a ubiquitous
concept since 1987, when it was proposed by the United Nations as a process leading to
“development that meets the needs of the present without compromising the ability of
future generations to meet their own need” [104,105]. The conditions required to maintain
the balance between the three components of SD are not easy to achieve, since the goals of
each pillar must respect the interests of the remaining pillars [106]. Figure 6 summarizes
the taxonomy of SD in a Venn–Euler diagram.

Figure 6. Venn diagram of SD. Adapted from [106].

The analysis of energy demand is a vital part of planning studies for meeting the
energy needs of a nation and determining their impact on society, the economy, and the
environment [107,108]. Table 2 contextualizes the research related to the evaluation of DR
and its integration in the planning and operation of electrical systems.

Table 2. Sustainability categories used for assessing demand response.

Energy Activity Combined with DR
Sustainability Category From the Objective

Function Perspective Reference Model
Included Excluded

Microgrid + distributed ES devices Economic Environmental,
Social Minimizing total cost of energy. [109]

Wind energy + pump storage Economic Environmental,
Social

Maximizing net profit considering
risk-averse day-ahead bidding. [110]

Energy hub Economic Environmental,
Social Minimizing total cost of energy. [98]

Microgrid + storage + renewable
energy resources

Economic,
Social Environmental Maximizing the social benefits of

the customers. [99]

Energy flexibility of buildings Environmental,
Economic Social Price modulation to reduce CO2

emissions and cost savings. [111]

Microgrid + distributed energy
generation

Environmental,
Economic Social Minimizing total cost of energy. [112]

Microgrid + storage Environmental,
Economic Social

Minimizing levelized cost of
energy, net present cost, and

carbon dioxide (CO2) emissions.
[100,113]

Smart grid Environmental,
Economic, social -

The implementation of the
aggregator figure results to reduce

CO2, with social and economic
benefits for the customers.

[114]
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Several methodologies for the economic assessment of DR programs differ primarily
by the perspective used to analyze the cost–benefit ratio.

• Based on the utility test

This perspective is often referred to as the Program Administrator Cost (PAC) or Utility
Cost Test (UCT). This methodology measures the impact on the income company. The
benefits included are the avoided transmission costs, including operation and maintenance
(OM) costs. These costs have a more significant impact in the case of energy efficiency
programs, where there is a net reduction in energy that the company sells to a customer.
The energy-saving cost is a helpful metric for program administrators and regulators [115].

• Based on the participant cost test

This method compares bill savings against incremental costs of the efficient equip-
ment [116]. The benefits include incentives received by the customer and reductions in
energy bills. This test is a good indicator of how acceptable a DR program would be for
customers and therefore helps determine the likelihood of acceptance by clients.

• Based on the total resource cost test

This test measures the benefit–cost ratio from a broader perspective and includes all
the costs and benefits of a DR program. Benefits include the avoided costs of transmission,
distribution, power generation capacity, and losses. Additionally, it considers OM costs,
administrative costs, opportunity costs to reduce losses in networks, and investment
resources required in DR programs [115].

• Based on the total societal cost

This test only measures if the total cost is reduced by applying DR programs and,
therefore, if the programs are beneficial to society. The other tests measure how the company,
participants, and customers distribute the costs and benefits. This methodology compares
the costs and benefits for utility providers, customers, and society [117].

6. Model Scheme Proposed Based on the Literature Review

The state of the art covered in this research on DR transcends the descriptive level
when verifying new possibilities in the WEM. The low number of publications addressing
operational flexibility is notable and is partly due to the traditional activities and roles
of the different agents that participate in the WEM. With this epistemological support, a
methodology is constructed to model DR programs in the market, which considers the
concepts of segmentation, the elasticity of substitution, and DR programs, combined with
high implementation levels of variable renewable energies. Therefore, several resources are
associated with the same operating model.

The complexity of a model grows with the number of variables and restrictions that
must be considered to optimize an objective function. The proposed model shows a weekly
operation program for an electrical power system that includes a generation mix with the
significant participation of variable renewable energy, TNs, and end-users who are willing
to receive an incentive for managing the demand with flexibility criteria.

The proposed methodology is based on the following elements: the prospecting of
variable renewable energy; the segmentation of consumption profiles according to the
elasticity of substitution; a program of DR based on incentives; and the determination of
the cost of supply, considering economic, social, and environmental criteria. The novelty of
this modeling method focuses on the combination of variable renewable energy prospects
and the application of segmentation techniques for consumer user profiles, based on the
levels of flexibility adjusted using CES applied to DR programs, which encourage the
load-shifting strategy.

In the literature, some criteria have been used to validate the hypothesis that an
increase in the level of the participation of variable renewable energies in the WEM pro-
duces a reduction in energy prices, especially in the short term. However, the premise
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of reducing prices by increasing renewable generation may be conditioned by flexibility
incentives [118]. In [119], several studies are analyzed that evaluate the impact of variable
renewable energies in the wholesale generation markets of the United States, highlighting
the trend that an average reduction of -$0.37/MWh occurs with a 1% increase in the imple-
mentation of variable renewable energies. These price variation conditions are subject to
the specifications of the markets and the electrical systems, such as the generation mix, the
ancillary services offered, the safety criteria required in the operation, and the regulatory
policies established to minimize the generation dispatch cost and to maximize the net social
benefit of the agents in the WEM.

In [76], the authors propose a price-based DR model for residential customers who
can change their consumption profile, maximizing profits. Although the model proposal
responds to an incentive-based design, it is complemented by the strategy of shifting load
between hourly blocks, from peak to valley and from shoulder to valley periods, through a
process of iterations.

Additionally, this methodology considers a novel segmentation of demand, supported
by statistical criteria and a constant return to scale, ensuring that the budget destined for the
payment of energy consumption costs is not affected by increases in the price components
of the hourly blocks. The effect of increasing the returns to scale of the CES function is
shown in [120], demonstrating consistency with the average and marginal profits under
conditions approaching the limits of the production factors.

Most of the mechanisms analyzed based on the CES function correspond to long-term
programs due to the essence of the macroeconomic problems of production and profits, as
deduced in [121–126]. This has led to a gap in the research exploring the behavior of the
WEM in short-term applications, which is addresses in our methodology.

As shown in Figure 7, this methodology is supported in a multiobjective iterative pro-
cess, in which the cost of supplying a base scenario is minimized without the participation
of DR programs. The load-shifting error based on coefficients that represent the elasticity of
substitution between periods and the cost of applying for an active and flexible DR program
with an increasing level of renewable energy in the WEM motivate the determination of the
cost of supply in these new conditions and their comparison with the results of the baseline
scenario.

Figure 7. Sequential modeling scheme.

The dimensioning of the model was expressed through a modular separation of the
entire process, simplifying the optimization problem. This work scheme facilitates the
analysis of results and the identification or anticipation of possible difficulties.

The proposed methodology operates in a sequential form, based on a generation
model for performing an economic operation dispatch and guaranteeing the minimization
of the supply cost. The demand parameters used will be managed in a base scenario
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that includes all demand. In an adjusted final case, part four of the sequential model, the
cost of CO2 emissions and the segmentation of the flexible load profiles, defined by the
elasticity of substitution model, are considered to apply the strategy of shifting demand
from the peak periods of the daily load curve to the valley and shoulder periods. In this
case, demand in the WEM is concentrated in large/industrial consumers and the figure of
the retailing agent.

Usually, large/industrial consumers have the advantage of negotiating prices under
unregulated conditions in the WEM. The participation of residential and commercial users
is more complicated, considering that they cannot establish significant modifications in the
records. The aggregators verify the consumption profiles, offering DR programs based on
participation options that guarantee market incentives. Therefore, it is justified that utility
providers and end-users study the different consumer segments based on characteristics
that allow the management of previously identified user clusters.

The structure of the model takes into account concepts such as economic dispatch, as
developed by [90]; the treatment of renewable generation and demand response according
to [83,127–129]; the coefficient of elasticity of substitution (CES) outlined by [130]; and CO2
emission control described by [131], associated with the methodology of the Intergovern-
mental Panel on Climate Change (IPCC), used to quantify CO2 emissions at three levels
of detail. The main modeling specifications for the proposed methodology are shown in
Table 3. The details of the restrictions are not contemplated in this work; however, they
should be considered during the development of the optimization program to delimit
ranges, ramps, reserves, and other aspects of the operation that respond to the topological
particularities of the network, the generation plants, the demand, and the market rules.

Table 3. Main modeling specifications.

Stage Concept
Description Module 0 Module 1 Module 2 Module 3

Input Data

Start-up cost,
shutdown cost,

variable production
cost, the value of
lost load, water
value, demand,

spinning reserve,
technical characteristics

of generation,
and network

Hourly demand
and demand

grouped by blocks,
participants in

DRP, parameters in
CES function,
marginal costs

Hourly demand and
demand grouped by

blocks, technical
characteristics of

demand, scenarios of
demand probabilities

Includes data from
modules 0 and 2,

parameters for CO2
emission control

Process
Decision variables

Energy generation,
demand pumping,
unserved energy

Residuals from the
CES function

Energy demand
adjusted by DRP, the

incentive for
participants in DRP

Energy generation,
demand pumping,
unserved energy,
emissions of CO2

Objective function Minimizing
operation cost

Minimizing
residuals from the

approximate
CES function

Maximizing
incentive scheme

Minimizing operating
cost, including

emissions of CO2

Model type MIP NLP NLP MIP

Output Main results

Operating cost,
power and reserve

outputs of
each generator,
marginal costs

New demand
blocks

New hourly demand,
the incentive for

participants in DRP

Operating cost, power
and reserve outputs of

each generator,
marginal costs, CO2

emissions, profit, and
KPIs to evaluate DRP

Table 4 summarizes some works that model energy management based on the elasticity
of substitution constant, taken as a parameter for developing the methodology proposed in
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this research. The following criteria have been identified for comparative purposes: load-
change profile, energy technology change, variable renewable energy, and CO2 emissions.

Table 4. Summary of energy management proposals based on CES function.

Reference Main Objective

Highlighted Concepts for Comparative Purposes

CES
Function

Load-Shifting
Profile

Energy
Technology

Change

Variable
Renewable

Energy
CO2

Emissions

[132]

Determine investment in
renewables and storage to

expand the electric
power system.

x x

[133]

Analyze the response of
consumers with different

incomes, according to changes
in carbon allowance prices, in

the long and short term.

x x

[134]

Develop a methodology to
determine the technological
change from capital, labor,

and energy.

x x

[135]

Manage industrial loads from
a demand-response program

based on real-time pricing,
considering adaptability and

adjustability criteria.

x x

[136]

Describe the main aspects of
the econometric specification

of the CES function for capital,
labor, and energy inputs.

x x

The main contribution of the proposed methodology is focused on assessing the
performance of DR programs from the perspective of the WEM. The causes of operational
inflexibility in generation dispatch are highlighted due to possible increases in marginal
energy costs, grid congestion, and insufficient power at peak hours. These issues are
characterized by unserved energy scenarios, poor electricity service quality, and the need
to intervene through subsidies, as described in Figure 8. It is necessary to have specialized
tools to evaluate these cases, as indicated in the structure of this proposal, in order to
facilitate decision-making in the activities, institutions, and government agencies related to
the electricity sector.

According to [137], the future of renewables cannot exclude DR, considering their
contribution to reducing investments in on-peak generation technology and battery stor-
age. The expected results of this research can provide the baseline information to open a
discussion on regulatory, economic, social, and environmental issues in terms of:

• Control deviations in the operation of electrical systems.
• The characterization of DR programs according to the elasticity of substitution of

participating flexible consumer segments.
• Model validation based on the planning and operational methodology proposed.
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Figure 8. Causes of operational inflexibility and effects on WEM.

7. Conclusions

This work provides an overview of the conceptual literature used to plan, model, and
evaluate DR programs in the WEM. This paper explains different strategies for changing
load profiles. Additionally, it describes the DR programs and the methodologies used to
implement these resources in electricity supply operations.

In its main section, this paper presents a methodology for optimizing energy dispatch
that considers a demand-shifting strategy supported by an incentive scheme based on
demand-segmentation characteristics, utility functions in the elasticity of substitution
coefficients, and extensive use of non-conventional renewable energy.

Therefore, this proposed market mechanism, supported by demand-response pro-
grams, can be evaluated as providing viable alternatives to improve the quality of service
and mitigate subsidy programs. This paper presents an approach to integrating demand-
response programs based on load shifting and increasing variable renewable energy imple-
mentation in the wholesale electricity market. The main contributions of the methodology
based on the literature review can be summarized as follows:

1. Strategic demand shifts are proposed, focused on taking advantage of the availability
of renewable resources and the budgetary restrictions established based on the elastic-
ity of substitution. The methodology takes into account the context of the scheduled
operation of the electric system, the need to consider safety criteria, and the limitations
of the generation and transmission network.

2. The methodology facilitates the construction of a simulation tool to evaluate scenarios
that minimize operating costs, guaranteeing the incentives of flexible demand and
mitigating possible deviations in the scheduling of the operation of the electricity
system, avoiding cost overruns caused by the forced operation of generation plants.

3. The performance indicators are used to define a method of sensitivity analysis to aid
the decision-making process by determining the percentages of demand-shift on the
load curve, the rate of unserved power, the incentives of consumers participating in
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demand-response programs, the natural behavior of prices in the market, and the
reduction of CO2 emissions.

Finally, it is important to highlight that the proposed methodology is not a tool to
minimize costs or reduce CO2 emissions for all cases. The optimization problem’s solution
depends on the electrical system’s generation mix and the technologies used to compensate
for the fluctuations.

The future development of this research will contemplate the forecasting of variable
renewables, flexible demand segmentation, and the definition of a mechanism to recognize
the firm capacity contribution of variable renewable technologies and their remuneration,
providing greater availability when complemented by demand-response programs during
generation shortage hours in the daily load curve.
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Abbreviations

CES Constant Elasticity of Substitution
CPP Critical Peak Pricing
DDSM Dynamic Demand-Side Management
DLC Direct Load Control
DNs Distribution Networks
DR Demand Response
DSI Demand-Side Integration
DSM Demand-Side Management
DRP Demand-Response Program
ES Energy Storage
EUE Expected Unserved Energy
EVs Electric Vehicles
HVAC Heating, Ventilation, and Air Conditioning
IPCC Intergovernmental Panel on Climate Change
KPIs Key Performance Indicators
LOLE Loss-Of-Load Expectation
LOLP Loss-Of-Load Probability
NCRE Non-Conventional Renewable Energy
O&M Operation and Maintenance
PAC Program Administrator Cost
PTR Peak Time Rebate
RESs Renewable Energy Sources
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RTP Real-Time Pricing
SD Sustainable Development
SDSM Static Demand-Side Management
TNs Transmission Networks
TOU Time-Of-Use Pricing
UCT Utility Cost Test
WEM Wholesale Electricity Market
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