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Abstract: Mobile robot path planning has passed through multiple phases of development and
took up several challenges. Up to now and with the new technology in hands, it becomes less
complicated to conduct path planning for mobile robots and avoid both static and dynamic obstacles,
so that collision-free navigation is ensured. Thorough state of the art review analysis with critical
scrutiny of both safe and optimal paths for autonomous vehicles is addressed in this study. Emphasis
is given to several developed techniques based using sampling algorithms, node-based optimal
algorithms, mathematic model-based algorithms, bio-inspired algorithms, which includes neural
network algorithms, and then multi-fusion-based algorithms, which combine different methods to
overcome the drawbacks of each. All of these approaches consider different conditions and they are
used for multiple domains.

Keywords: mobile robots; path planning; obstacle avoidance; optimal control; navigation systems

1. Introduction

Over the last three decades, the autonomous and electric vehicle, also known as
automated vehicle [1], has been the topic of unprecedented excitement. It is seen as the
future of motorized mobility, both in terms of ecology, by tightening emission standards,
reducing CO2 and pollutant emissions and environmental impacts, and in terms of safety,
including improved road safety [2], where main cause of accidents and crashes are due
to human errors. This solution will be accompanied by intelligent assistance to warn the
driver or decide and/or anticipate avoiding a collision with static or dynamic objects,
vehicles, or pedestrians. Nevertheless, this assistance can have an impact on mobility when
there are also non-autonomous vehicles in the same environment; this problem has two
solutions, either to have an area only for this type of navigation or to develop a cooperative
navigation with other road users. Research has been conducted on dynamic path planning
and more based on how to increase the performance of these vehicles in such a difficult
environment to avoid any strange and hazardous situation which the vehicle may be able
to confront in real navigation. The main purpose of planning and navigation is to provide
vehicles with a safe driving and collision-free path towards their destinations, accounting
for vehicle dynamics, maneuvering capabilities in the presence of obstacles, and traffic
rules and road boundaries.

A global reasoning of all possible paths should finally allow the finding of the best safe
path according to different criteria, such as safety distance, travel time, cost, and comfort,
while satisfying some dynamic constraints related to the environment. An intelligent
planning system should be able to consider the nature, size, and speed of the vehicle
or the robot [3]. In this study, we review different methods of path planning and path
optimization for mobile robots and autonomous vehicles.

The remainder of the present work is organized as follows. Section 2 presents a tax-
onomy of autonomous vehicles and their evolution within the six levels of automation.
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Section 3 consists of five sub-sections which refer to the five categories of path planning,
where a discussion of the existing methods in the literature for path planning for au-
tonomous vehicles is performed, whilst Section 4 compares the advantages and drawbacks
of these methods and reveals the best solution that gives the optimal path within the
environment complexities. A categorization is thus proposed of the different existing
approaches. Finally, some concluding remarks are addressed in Section 5.

2. Autonomous Vehicles Evolution

Nowadays, most vehicles are equipped with advanced driver-assistance systems
(ADAS) functions, including ACC, ABS, ESP, LKA, etc., which reminds to level one and
two of automation. Indeed, there exist six levels of automation according to SAE J3016
standard as can depicted in Figure 1, from 0 to 5, from a vehicle with only human control
to a vehicle totally autonomous without human interaction, such as Google self-driving
car Waymo.

• Level 0 is a no automation vehicle where the human driver monitors all aspects of
the dynamic driving tasks with a full-time performance and the vehicle is manually
controlled with no driving mode;

• Level 1 is a driver assistance system where the driver monitors the driving environ-
ment but there is only one automated driver assistance system for lateral control by
acting on steering angle (example of lane keeping assist system which can help the
driver to stay in his lane, if he drifts) or longitudinal control in which based on the
management of vehicle speed and inter-vehicular spacing by performing on throt-
tling/braking (example of adaptive cruise control can control speed, the driver has
to steer);

• The second level of automation is a partial automation which has an advanced driver as-
sistance system, so that the vehicle control both steering and acceleration/deceleration.
The system takes the execution of dynamic driving and the driver performs all remain-
ing aspects of the dynamic driving task. The human driver can take control of the car
at any time;

• Level 3 is the beginning of the automated driving system that monitors driving
environment. The level 3 is a conditional automation where the vehicle has an object
and event detection and appropriate response (OEDR) to these objects and events. The
human override is required;

• The fourth is a high automation level, the vehicle performs all driving tasks under
specific conditions but he human input as a driver is still required;

• The last is full automation level where the vehicle can navigate and handle all different
sorts of driving modes, different driving conditions, and roads autonomously without
the need for human driver interaction. The vehicle performs in all driving tasks under
all circumstances.

Today, in the vehicles market, we can only find vehicles with level 2 and level 3 of
driving automation, because of the navigation environment and inter-vehicular communi-
cation in real roads which is not yet allowed. Therefore, it is important to study the impact
of different levels of automation on the mobility of people, especially for full driving au-
tomation (level 6) which is still under development [4]. However, most intelligent systems
acquire information from sensors. These are limited and some data cannot be accessed
by the sensors. The solution is therefore based on the use of wireless communication to
exchange information between vehicles and between infrastructures and vehicles, which
remains the subject of several researches.

Research has been conducted on dynamic path planning and more based on how to
increase the performance of these vehicles in such a difficult environment to avoid any
strange situation the vehicle may be able to confront in real driving. The main objective of
planning and navigation is to provide vehicles with safe and collision-free driving towards
their final goal, taking into account vehicle dynamics, obstacle maneuvering capabilities,
and traffic rules.
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3. Path Planning and Navigation Technique for Autonomous Vehicles

Road accidents and time wasted in traffic jams and health problems caused by local
air pollution are the most challenging and complicated issues in city life. To deal with these
problems and security issues, autonomous driving (self-driving) is therefore a promising
alternative. To develop this solution, path planning must come first after the perception
layer, as its modules are responsible for generating a reference path for the vehicle which
could avoid obstacles and satisfy vehicle dynamics constraints [5,6]. The main challenge for
all the already conducted works is to improve performance through the use of the proposed
models which present the dynamics of the vehicle in the nearest way to real dynamics. The
trajectory planning is based on generating a set of possible paths starting from the initial
position toward the final position; to do this operation we need first all the information
about the surrounding environment that we can get from special sensors as lidar, RGB
camera, radar, etc.

Knowing the position of each object existing in the environment, either local or global,
the proposed method can be applied to find the desired trajectory that could be the only
one or the optimal among others. Since the desired trajectory is found, the vehicle should
track the planned path while avoiding 3D objects. The state-of-the-art planning offers
different approaches. It can be broken down into the architecture that uses one single
real-time algorithm to plan and track the trajectory, and the architecture that uses two
separate algorithms where the first one is an offline planner and the second is a real-time
tracker, and there are others using a divided trajectory planning and tracking but with
real-time algorithms.

After all, as the implementation of some approaches for the task of path planning for
autonomous vehicles was quite difficult due to many complexities, such as environmental
disturbances, weather, noise and so on, the implementation of these methods using a
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mobile robot, which represents a vehicle well, shows the effectiveness of the proposed
method. Then, we used simulators, such as ‘Carmaker’, in order to simulate the possible
real-world disturbances to ensure the performance of the method. In this study, we have
presented several works in which the authors deal with the trajectory planning of mobile
robots that can also be used for the development of autonomous vehicles.

This section intends to discuss the different methods of path planning for autonomous
vehicles. Planning takes into account path decision and optimization. Mobile robot navi-
gation needs a pre-planned path to ensure a safe trajectory, so that path planning can be
decomposed in five categories, as illustrated in Figure 2; we will discuss each method by
categories in the next sub-sections.

3.1. Sampling-Based Algorithms

Sampling-based algorithms can be divided (Figure 3) into two parts, active and passive.
Active algorithms have a processing procedure to achieve the best possible path to the
objective. Rapidly exploring random tree (RRT) method is an active sampling-based
algorithm proposed by LaValle. This approach is very used to solving path planning
problems of different kinematic constraints and it has the ability to handle multi-DOF
problems. The principle of RRT is to rapidly search the configuration space to generate
the path that connects the start node and the goal node. Indoor space can be a tunnel or
underground parking where the absence of the network and the performance of some
sensors is poor, which can affect the input data. A study of an optimal path planning of
a mobile robot in an unknown indoor space is presented in [7]. It implements a process
by using deep learning “GoogLeNet” for obstacles classification, then applying RRT for
robot path planning in order to ensure an intelligent path process while avoiding obstacles
with a ray tracing technique. An algorithm grows a tree of feasible trajectories originating
from the current vehicle position that attempts to reach a desired final goal position. It
aims at using multi-directional rapidly exploring trees for path planning [8]. Besides, this
method is implemented to deal with a degree of directional instability using the flexible
multi-directional rapidly exploring trees method that built at each level a tree on demand.
Then, based on the previous path exploration vertices, they use a fusion method of all trees
to generate a local optimal path based on a complete and optimal path.

Moreover, there exist other RRT variants in literature trying to adapt and solve complex
path planning problems with static and dynamic objects, and differential constraints as
non-holonomic and kino dynamic constraints. RRT- Connect builds only two random trees
then generates an optimal path. RRT* uses a predefined cost function to choose the optimal
path that has a low cost and ensures the computational complexity. RRT*smart (Stretch) it
is an extension of RRT* that accelerates the convergence rate by optimizing the path and
sampling in a smarter way [9]. RRT* Connect unifies the RRT- connect and RRT* in order
to ensure optimality [10].

BIT Conventional and MPC [11] proposes a path planning method with modified
Conventional BIT* “Batch Informed Trees” based on informed RRT*, in order to accelerate
the convergence rate and also to decrease operation time to reach the final goal with a
collision free path. The authors integrate a stretch method that improves the path point’s
connections. Then, they added an MPC method for trajectory tracking and motion control
for obstacles avoidance and to ensure safety. The work in [12] explains the purpose of using
a MPC for autonomous vehicles considering the nonlinearity of the vehicle dynamic model.



Energies 2022, 15, 1358 5 of 19
Energies 2022, 15, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 2. Scheme of path planning methods classified by five categories.  Figure 2. Scheme of path planning methods classified by five categories.



Energies 2022, 15, 1358 6 of 19

Artificial potential field APF approach is well used in this field [13] and it will be
presented in following; the gradient of a potential field is constructed by virtual forces. The
path can be achieved along the steepest gradient of the potential field. The artificial potential
field is able to ensure a collision-free path, but it can fall into a local minimum problem. It
needs whole workspace sampling information to escape from local minima. A membrane
evolutionary artificial potential field is a combined method to find parameters to come up
with a possible and safe path toward the target in static and dynamic environments [14].
In [15], the authors introduce a discrete artificial potential field that can be used with near
real time of operation for practical applications in complex environments. For a discrete
configuration, this approach uses the APF, then customizes it and adapts in order to achieve
a fast and effective solver of complex problems.

The second type of sampling-based algorithms are passive algorithms, which only
generate a route net from start to the goal, therefore a combination of search algorithms
to pick up the best feasible path between all feasible paths existing in the net map. In
this category, probabilistic road maps PRM approach is introduced. It is a technique
that samples some points in the map, then connects these points to construct a graph that
contains feasible routes with collision-free edges. To pick up the optimal path, it is necessary
to use graph search algorithm. The authors in [16] try to optimize a path by eliminating
unnecessary nodes and repositioning the nodes to form the best route toward the ending
point. Another approach is called fast marching trees [17], which comes with a combination
of both advantages of RRT and PRM seen before. 3D Voronoi works as a PRM which cannot
generate an optimal path itself. In general, this method forms a 3D obstacle avoidance
network based on pre-known knowledge of the environment. The Voronoi method permits
robot to navigate at equidistant value with respect to its surrounding objects [18].
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3.2. Node-Based Optimal Algorithms

Node-based optimal algorithms (Figure 4) based on certain graph decomposition is a
method can find an optimal path, with a principle of exploring among a set of cells in the
map, where information sensing and processing procedures are already executed. It can
be divided into two groups: the first group is the grid search algorithms, the grid based
or evidential occupancy grid method is widely used in the field of autonomous driving,
especially in low-speed scenes as they are not suitable for high-speed driving, as it consists
of mapping the environment to a set of cells, and each cell represents the presence of an
obstacle at that position; if it contains information in the evidence form, such as the mass
or the belief value, which is called the evidential occupancy grid. This approach needs an
algorithm to generate a feasible path toward the final goal. In [19], the authors use two
optimal search algorithms A* and D* to find the global optimal path that connects the initial
position of each cell to the goal position (will be discussed in the next section). Researchers
in [20] use the clothoïd tentacles method for generating a set of clothoïds tentacles as
feasible trajectories on an egocentric occupancy grid around the vehicle in operation. The
clothoïd tentacles are a geometrical shape which is able to model possible trajectories. They
are also known by considering the vehicle’s current steering angle and making smooth
variations in the vehicle’s main dynamic variables, such as the yaw rate, the side-slip angle,
and the steering angle. In this work [21], a local trajectory planning is built based on the
following of a desired reference trajectory defined on the map while avoiding collisions
by using the perception information that represents the environment. The authors create
and update the occupancy grid with sensors data, the generated tentacles will represent
the feasible trajectories, and then the best tentacle is chosen. The main objective of this
method is to integrate and manage uncertainties of the environment for trajectory planning
for autonomous driving [22].

In [23], the authors present a trajectory planning approach using clothoid tentacles
which are generated in an ego-centered grid representing feasible and realistic trajectories
by the vehicle; then, the problem is formulated as a Markov decision process in order to
choose the best one.

This paper [24] presents a way to organize all environmental information/sensor’s
data by means of a map, which is the semantic map. It includes high-level features that
model the human concepts: objects, shapes, places, and the relationships of all these.
Additionally, a metric map is to add semantic information on top of the semantic map
to retain all geometrical features the robot should be aware of in order to safely navigate
within its surroundings. The purpose of this method [25] is to build a planning scheme
using semantic maps in order to improve the goal reaching capabilities of the robot in a task-
planning scenario. This method can integrate existing path planners into the topological
graph planner that produces faster reaching of goals. Semantic mapping paradigms have
been employed both in indoor and outdoor interpretations.

After discretizing the map into a graph, the second group, which is the graph search
algorithms, came to complete the first type. Dijkstra is a special form of dynamic program-
ming and A* is the heuristic search algorithms in artificial intelligence. These algorithms
are widely used in robot operation system; they are both improved by finding the path with
the least cost by reducing the number of searching grids through a heuristic estimation. In
this work [26], the authors combine both Dijkstra and dynamic window approach (DWA)
for the global and the local path planning algorithms in order to avoid obstacles from the
initial position and reach the goal position in a smooth and shortest-planned path.

A* (A star) is known by its simple principle, easy implementation, high efficiency, it
is very effective in a search path optimization algorithm, and it is faster than the Dijkstra
algorithm [27]. A* is based on a heuristic function to estimate the closest point on the map
and gives several path choices to pick up the optimized one; it assures a safe path planning
of mobile robot in complex terrains [28,29]. Lifelong Planning A* (LPA*) algorithm is a
repeating version of A* and it is characterized by the ability to handle dynamic threats.
LPA* is a simple principle that is easier to understand and to analyze, and is easier to extend
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than A* algorithm and is also more efficient. As A* worked well for path planning for
mobile robots, researchers in [30] developed a virtual sensor called D* algorithm, which is
a real time sensor-based algorithm that deals with dynamic obstacles and forms a temporal
map for the robots movement from the initial position to the final position. D* knows an
unrealistic distance problem but it has a fast searching ability and deals with dynamic
environments. Plus, an extension and a simplified version of D* algorithm is developed
based on LPA*, where in each iteration of re-planning the goal changed; this approach is
named D* -Lite [18].

Theta* and Lazy Theta* are proposed and compared to A* algorithm. Theta has the
ability to obtain several system constrains in the 3D environment and find shorter and
more realistic paths. This comparison is made to prove that Theta* reduces the searching
and acts well compared to A*. Lazy Theta* is proposed to avoid unnecessary checks of
unexpected neighbors in 3D environment. The process of Lazy Theta* may cause extra
computational consumption; however, it can deal with dynamical threats and converge
fast to the final goal.
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3.3. Mathematic Model Based Algorithms

The third category of path planning is the mathematic model-based algorithms pre-
sented in Figure 5. This field can be split into two subcategories: linear algorithms and
optimal control. In general, this category is based on geometrical approaches that model
the environment and the system in order to build the kinematic and dynamic system. Then,
a cost function is used to achieve an optimal solution.

The linear algorithms include flatness, which employs differential flatness to ensure
control flatness along the reference path; it deals with control disturbance and its uncertainty.
Mixed integer linear programming MILP and binary linear programming BLP, which is a
special case of linear programming, is found in some works to have variables that have
only 0 and 1 integer values. MILP combines both binary and integer logical constraints
which offer a close representation of the environment, so as the system [31].

In robotics, the optimal control is considered as a path planning problem optimization
by finding the control-oriented path based on differential equations. This work [32] shows
a method that gives an optimal path selection based on discrete optimization, which has
very great success in autonomous driving. This method contains three levels, which are the
center line construction, path candidate generation, and then the path selection. Discrete
optimization selects an optimal path from a generated finite set of path candidates, and
at the same time determines appropriate vehicle acceleration and speed to reach the goal
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position. This approach is able to identify a safe and comfortable path for vehicles in
operation, but this work deals only with one dynamic obstacle.

The second method in this area is called limit cycle [33,34]. It is a control architec-
ture that generates robot trajectories, which are defined according to a set of differential
equations where the stability is proven by Lyapunov function. This method generates a
cylindrical box of each object existing in the environment, where the center of the cylinder
is respectively the object position. The robot follows the given cycle in order to avoid
obstacles with an optimal path in case of a feasible collision-free and the safety distance
is respected. This approach is known by this optimality and it uses specific reactive rules
which allows the robot to avoid deadlocks, local minima, and oscillations. Furthermore,
two extensions of the limit cycle exist, called elliptic limit cycle and parallel elliptic limit
cycle “PELC” [35,36], which are characterized by their elliptic boxes instead of cylindrical
ones. Two methods were combined to predict the robot trajectory to avoid obstacles in [37].
The approach uses the ‘ELC’ elliptic limit cycle which is a mathematical method and neural
network method called the “DBN” dynamic bayesian network which is a maneuvering
recognition-based method for decision-making.
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3.4. Bio-Inspired Algorithms

In the light of the inspired technique from biological behavior, we reach bio-inspired
algorithms, in Figure 6. The principle of these methods is to search a near optimal path
based on stochastic approaches. It is characterized by solving the “NP” problems, which
are nonlinear problems with a large number of variables, and are known by the nonlinear
objective functions with a high complexity to overcome the algorithms fails or falling into
local minima.

This method includes both neural network and evolutionary algorithms, such as
genetic algorithm “GA”, particle swarm optimization PSO, ant colony optimization “ACO”,
shuffled frog leaping algorithm “SFLA”, and so on.

3.4.1. Evolutionary Algorithms

In evolutionary algorithms, path planning of mobile robots based on an improved
genetic algorithm performs well in overcoming the problem of falling into local optimal
solutions easily and the low search efficiency in path planning, and presents an improved
genetic algorithm. In [38], one presents a collision-free path for mobile robot navigation
based on improved genetic algorithm; they use a grid method to describe the operating
environment of the robot, then two fitness functions for collision avoidance and for the
shortest path from the start point to the final point. These functions have an influence on
the convergence and the stability of the algorithm.
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PSO is inspired by the living mode of movement of a group of birds. In an area
where particles are positioned, at each iteration these particles move according to their
current velocity and their best solution is obtained in their neighborhood in order to ensure
a convergence of the particles towards a global minimum. Three algorithms are com-
bined [39] to build a hierarchical approach to find the global path planning of a mobile
robot evolved in such cluttered environments, starting by a triangular decomposition,
secondly Dijkstra’s algorithm, and then a proposed particle swarm optimization called
constrained multi-objective particle swarm optimization (CMOPSO) with an accelerated
update methodology based on Pareto dominance principle. A developed, improved PSO
based on using a continuous uniform random distribution [40] to not lose the random-
ness of particles and avoid its fall in local minima, and evaluation function, cubic spline
interpolation for a smooth path planning, so that the accuracy and dynamic characteristics
of the path are improved. Another approach in this category, called colony optimization
‘ACO’, is presented in [41]. It is a swarm intelligent algorithm recently developed and
widely applied to deal with mobile robot’s navigation in different domain and is known
by its advantage as it can be combined to many other approaches seen above. The two
works [42,43] introduce an improved ant colony algorithm for mobile robot path planning
that uses a simulating probability in order to make the best selection of the next grid where
the probability depends on the number of the obstacles around the grid. Then, global
heuristic information is employed based on the principle of unlimited heuristic search and
an expanded vision field to find the shortest path. Shuffled frog leaping algorithm ‘SFLA’
is a proposed method based on the behavior of frogs, that make it unique in engineering
field and optimization fields as it is easy to implement, improves convergence speed, and
has better search capacity with the existence of uncertainty. A multi-objective based on
the shuffled frog leaping algorithm [44] is introduced in order to ensure the path safety,
path length, and the path smoothness. Memetic algorithms are also called hybrid GA.
MA has the same principle and the exploring process as GA, but is more efficient in path
smoothness with low computational complexity; the only disadvantage is the high time
complexity [45].

Cuckoo optimization algorithm it is a new suggested method for solving nonlinear
problems, such as a mobile robot path planning problem in a dynamic environment. The
advantages of this approach is that it is able to find a short, safe, smooth, and collision-free
path in different environmental conditions, including dynamic and static.
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3.4.2. Neural Network Algorithms

Neural network algorithms (NNA), in Figure 7, are widely used in autonomous mobile
robots, not only in motion planning but also in robot perception, guidance, self-driving,
obstacle avoidance, and so forth. In navigation, deep learning, convolution neural network,
artificial neural network, and decision network [46] are employed to avoid obstacles
and decision making in real time operations in either static environments or dynamic
environments. Since sensor data are learned, the architecture of the neural network can be
organized into two parts: the perception system and the decision-making system, which
contains lane change left and right, lane keep, and maintains velocity in order to build a safe
path for the mobile robot. Another method is the fuzzy method: fuzzy optimized decision
function [47] uses fuzzy decision function for choosing the optimal path planning for the
robot in two-dimensional spaces in complex environments, including indoor environments.
The fuzzy decision mechanism is built to model uncertain systems and it is used to reach the
goal of safe navigation, in the same time, to ensure path optimization and time optimization.
The noteworthy advantages are low deviation percentage and a better performance than
genetic algorithm. In this work, the authors only consider static obstacles; future works
will deal with dynamic goals and moving obstacles. Furthermore, fuzzy logic is a hybrid
method that can be combined to several other algorithms, such as NN, GA, PA, ACO, and
so forth. An adaptive neuro-fuzzy inference system (ANFIS) [48] is developed to resolve
the path tracking issue where it shows an improvement in tracking job, high precision,
and better noise resistance than the fuzzy-only system. This study [49] introduces deep
reinforcement learning technology for an effective end-to-end mobile robot path planning
application. The considered method is able to determine an optimal path toward the goal
point while avoiding obstacles using the original visual perception based on the RGB image
perception. This approach includes three stages: first, they designed a deep Q-network
(DQN) to approximate the robot state action value function. Second, they trained the DQN
to determine the Q value, which is the robot’s actions: it can be turn right, turn left, or
toward. The DQN takes only the RGB image as input. Then, an action selection strategy is
used to pick up the current optimal mobile robot action.

To ensure local navigation tasks in un-known environments while avoiding static
obstacles, reinforcement learning (RL) is presented in [50]. They used a true online sarsa
informed biased softmax regression learning process (TOSL_iBSR) that includes a cost
function to ensure fast convergence. In their experiments, they also implemented two
other learning processes called Q-learning softmax regression (Q-SR) and true online state
action reward state action Q biased softmax regression (TOSL–QBIASSR), to compare
the computational cost, to show that TOSL-iBASSR takes the first most effective learning
process with less number steps to accomplish the task, then Q-SR, and at last it comes
TOSL-QBIASSR which demands more learning steps to complete the given task. The future
work will deal with dynamic obstacles. An improved path planning algorithm based
on Q-Learning is proposed in [51]. Deep reinforcement learning (DRL) for autonomous
self-learning robot navigation in unknown and indoor environments without using a map
or planner is designed [52]. The data used in this work is a fusion of recovered 2D laser
scanner data, RGB-D camera data, and the orientation of the robot to the goal. The NNA are
usually combined with other path planning categories to build hybrid control architecture
and to recover both advantages. Concerning the training on a neural network, authors
in [53] presented a great work on DRL, where they provided a very different paradigm for
deep reinforcement learning. They introduced asynchronous variants of four standard RL
algorithms, then showed that parallel actor-learners have a great impact on stabilizing the
training, which allows the four methods to successfully train neural controllers.
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3.5. Multi-Fusion-Based Algorithms

Since fusion-based become the solution to improve 3D path planning performance,
multi-fusion-based algorithms, Figure 8, are introduced. In this kind of study, a single
approach is not enough to provide an optimal path. In addition, in the presence of unknown
environments and the existence of either static or dynamic obstacles, the robot should deal
with such a situation and make a decision. Thus, trying to combine different approaches
was a feasible solution to come out with a fast searching and optimal algorithm. Multi-
fusion algorithms can be divided in two categories: embedded multi-fusion algorithms
and ranked multi-fusion algorithms. The first one combines two algorithms or more and
gathers the advantages of each, the algorithms work simultaneously to improve a high
performance, whilst the second one forms a hierarchical structure, where each algorithm
works separately [18,37].

The combined method of Dijkstra algorithm and dynamic window algorithm ‘DWA*’
method was used for the purpose of gathering the global path planning algorithm and
local path planning algorithm. The validity and feasibility of the combined algorithm are
approved by simulation results. Authors used depth information via SLAM algorithm to
create a map of an unknown environment. This approach ensures a fast planning, safe and
reliable, and good real-time performance [54]. DWA* combines the sampled multiple sets of
speed with the motion constraints of speed and acceleration, then evaluates the simulated
multiple sets of trajectories through an evaluation function, and selects the optimal speed
corresponding to the trajectory as the drive of the car.

The combined method based on improved artificial potential filed and ant colony
optimization is a great example to show that it is possible to avoid shortcomings. In this
work [55], the authors proposed an algorithm that can provide an initial path obtained by
an improved IAPF to be the inspired factors of ACO for avoiding its premature convergence
and local optimum. Another novel approach based on a combination is presented in [56].
Called fuzzy ant colony optimization (FACO), it is built to find the shortest path planning
while avoiding obstacles in complex environments. The obstacles are detected using an
ultrasonic transducer. Then, fuzzy control is used to overcome the fact that ACO can
easily fall into local minima and it ensures a safe trajectory for the mobile robot toward
the final goal. This combination of ant colony algorithm and improved potential field is



Energies 2022, 15, 1358 13 of 19

also introduced in [57] in order to avoid obstacles and make autonomous vehicles drive
more safely.

The aim of [58] is to propose a study for decision making for autonomous driving,
ensuring in the main time that there is safe navigation under uncertainties, especially in
emergency situations. Its purpose is to develop the necessary systems for autonomous
driving to be able to assess the risk in the surrounding environment, take appropriate
decisions in nominal driving situations, and execution followed by verification of the
coherence of the executed maneuvers in case of an unexpected behavior or an undetected
obstacle. Their study is based on a proposed probabilistic multi-controller architecture
P-MCA, which contains navigation strategy assumptions, including a hierarchical action
selection for target reaching obstacles avoidance using elliptic limit cycle; then, they used
P-MCA for navigation, which has perception and localization module, route planning,
probabilistic decision making module, and its safety assessment and verification criteria,
motion planning, prediction, and evasive strategy module used in case of a detected
anomaly, control law module, and the lane keeping assist, adaptive cruise control, and
the automatic lane changing. Additionally, they proposed a safety management strategy
connected to the decision-making strategy, which has two levels: the first one is for the
risk assessment strategy, which takes in charge the extended time-to-collision ETTC. The
second one is the safety verification mechanism on inter-vehicular distance prediction that
identify static/dynamic predicted inter-distance profile.
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4. Comparison

Recently, the field of mobile robots was widely developed in several applications, such
as care systems, military systems, mining, agriculture, industry, and many more, where
the main reason is to prevent people from facing dangerous situations and improve the
operation’s success rate and safety.

However, we cannot deny that each category is characterized by its advantages,
and each single method was used several times by researchers in order to achieve their
objectives, which have already proved to be successful. This review first classifies all
the work carried out into five categories which are: sampling algorithms, node optimal
algorithms, mathematic model-based algorithm, bio-inspired algorithms including neural
network algorithms, and then multi-fusion based algorithms. Then, the elements of each
category were listed and discussed; we summarize all the advantages and weaknesses
of all elements in each category and analyze each subcategory in detail, as illustrated in
Table 1. As a result, we get the following properties: sampling algorithms are on-line and
can handle static and not all dynamic environment with a high time efficiency; additionally,
sampling-based can be further classified as active algorithms which can find the optimal
path by their own, and passive algorithms cannot. Node-based optimal algorithms are
grid-based exploring algorithms which operate in real time in a static environment and
remain weak in a dynamic environment, as the results of this algorithm rely much on
the preconstructed graph, and it needs to be combined with other methods to achieve
global optimality. Mathematical model algorithms can only operate off-line in both of
static and dynamic environment with a time complexity which depends on the polynomial
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equation, this kind of method aims to describe the whole workspace in a mathematical
form which allows to easily represent dynamic and kinematic constraints, as well as giving
an overall consideration to safety, reliability, and efficiency. Bio-inspired algorithms are
also off-line operations in static and only a part of dynamic environment with a high time
complexity, this category is characterized by importing heuristic idea and can deal with
NP-hard problems. Then, multi-fusion algorithms are designed to work real-time and
depend on the combined algorithms to deal with static or dynamic environments, or both;
these kinds of algorithms have the ability to achieve several objectives simultaneously,
especially to achieve global optimal and cost minimum.

Table 1. Analysis of path planning algorithms.

Category Method Advantages Drawbacks

Sampling-based

RRT, RRT*, RRT* Smart
Handle multi-DOF problems,

low time complexity,
fast searching ability

Static threat, single path,
non-optimal.

BIT Conventional & MPC
Accelerate the convergence rate,

short operation time,
Dynamic threat

Need parameters adjacency.

PRM Deals with complex environments,
re-planning situations

Static threat, expensive collision
check, non-optimal. high

execution time.

3D Voronoi Easy to implement, decreases the
dimension of the problem to one

Cannot generate an optimal path
itself, Incomplete representation,

Non-convergence

APF Fast convergence, fast execution time,
ensure a collision-free path. Falls into local minima.

Node based
optimal

Dijkstra Easy to implement,
various environments

Heavy time burden, large
calculation cost, static threats.

A* Faster than Dijkstra,
high efficiency

Heavy time burden, large
calculation cost, static threats

D*
D*-Lite

Dynamic threat,
fast searching ability Unrealistic distance.

Theta*;
Lazy theta*

Shorter & realistic path,
low search time

Consumes much time to check
unexpected neighbors

Clothoid tentacles

Geometrical shape which fits well the
shape of obstacles;

realistic method with respect to vehicle
dynamics and real road structure

Large number of tentacles
calculated and high

calculation time

Bio-inspired

GA solve NP- hard &
multi-objectives problems.

High time complexity,
early convergence.

ACO
Deals with multi-objectives & continuous

planning problems,
strong robustness

High time complexity, premature
convergence and ant colony lost

PSO, CMOPSO
Acts faster than GA,

deal with a low number of
individuals problems

Premature convergence &
parameter sensitive, high

time complexity

SFLA

Easy to implement,
improves convergence speed,

better search capacity with the existence
of uncertainty

High time complexity

MA Efficient in path smoothness with low
computational complexity High time complexity
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Table 1. Cont.

Category Method Advantages Drawbacks

Neural Network

DRL
Effective end-to end path planning,

optimal strategy,
local navigation

Expensive to train, complex
data models.

BNN
Handle uncertainty,
optimal & safe path,
real time operations

Computationally tractable;
expensive calculation.

ANN Performs well in complex environments High time complexity.

FDF
Optimal path planning,

complex and indoor environment,
deals with uncertainty

Needs broad testing
with equipment.

Mathematic
Model-Based

MIL, BIP
Gives closely representation of the

environment so as the system,
optimal solution

High time complexity, no
analytic solutions.

Flatness

Ensure control flatness,
optimal solution,

deals with control disturbance
and uncertainty

High time complexity, no
analytic solutions.

Discrete optimization Identify a safe and comfortable path Deals only with one
dynamic obstacle

Limit-Cycle, ELC, EPLC

Avoid deadlocks,
local minima & oscillations,
safety distance respected,

does not need any complex computation

———–

Multi-Fusion
Based Embedded multi-fusion

Gather advantages of each algorithm,
high performance,

static & dynamic threats,
fast searching

Have to control uncertainty

Ranked multi-fusion Static & dynamic threats,
fast searching Each algorithm works separately.

Compared to all categories where each has its exploring process to build an optimal
path in different environments with such a situation that the vehicle can be able to drive
safely. The one implementation of one approach is still limited in terms of advantages, so
that use of only one technique is not enough to deal with vehicle self-navigation and path
planning problems, or find the only ‘optimal path’ when every vehicle in such an environ-
ment has its own characteristics and challenges. The best solution can be achieved with a
fusion method that combines two or more approaches to come out with an efficient strat-
egy that gathers self-navigation, obstacle avoidance, and especially to solve mobile robot
navigation problems and overcome the inconvenience of each category discussed above.

5. Conclusions

In this paper, we presented all the most used methods throughout the literature in
path planning for autonomous vehicles in navigation tasks. The trajectory planning is
not only a path generation from an initial point towards the final point, but also it should
ensure optimality and smoothness of the chosen path in different environments, either local
or global. Moving the vehicle from point A to B requires techniques of perception, state
estimation, trajectory planning, and motion control. Although many autonomous navi-
gation systems have been proposed, they generally follow a classic hierarchical planning
paradigm, as has been shown above.

A comparative study with critical regard of the existing methods in terms of their
operating principles pros and cons were highlighted.

In addition, even though many methods have been exposed, some avenues remain
open and several perspectives are considered in order to improve the proposed approaches.
In the future, we will focus on the coupling of multi-fusion path planning and environment
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modeling methods, as this can become the best key direction for 3D path planning in
different complex situations, and it is also recommended to include control uncertainty for
added security.

The key technologies of obstacle avoidance for self-driving include decision making,
path planning, and path tracking. In future work, we will focus on decision-making and
path tracking or motion control.
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Acronyms

ADAS Advanced Driver-Assistance Systems.
ACC Adaptive Cruise Control
ABS Anti-lock Braking System
ESP Electronic Stability Program
LKA Lane Keeping Assist
OEDR Object and Event Detection and Appropriate Response
DOF Degree Of Freedom
RRT Rapidly Exploring Random Tree
BIT Batch Informed Trees
MPC Model Predictive Control
APF Artificial Potential Field
PRM Probabilistic Road Maps
FMT Fast Marching Trees
DWA Dynamic Window Approach.
LPA* Lifelong Planning
MILP Mixed Integer Linear Programming
BLP Binary Linear Programming
PELC Parallel Elliptic Limit-Cycle
ELC Elliptic Limit-Cycle
DBN Dynamic Bayesian Network
GA Genetic Algorithm
PSO Particle Swarm Optimization
ACO Ant Colony Optimization
SFLA Shuffled Frog Leaping Algorithm
CMOPSO Constrained Multi-Objective Particle Swarm Optimization
MA Memetic Algorithms
ANN Artificial Neural Network.
NNA Neural Network Algorithms
RL Reinforcement Learning
DL Deep Learning.
DRL Deep Reinforcement Learning
DQN Deep Q-Network
CNN Convolutional Neural Network
BNN Bayesian Neural Network

https://www.bourgognefranchecomte.fr
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ANFIS Adaptive Neuro-Fuzzy Interface System
SLAM Simultaneous Localization And Mapping
FACO Fuzzy Ant Colony Optimization
ETTC Extended Time-To-Collision
FDF Fuzzy Decision Function
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