
����������
�������

Citation: Lahlou Nabil, M.A.;

Fenineche, N.; Popa, I.; Sunyol, J.J.

Morphological, Structural and

Hydrogen Storage Properties of

LaCrO3 Perovskite-Type Oxides.

Energies 2022, 15, 1463. https://

doi.org/10.3390/10.3390/en15041463

Academic Editor: Luca Gonsalvi

Received: 30 December 2021

Accepted: 14 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Morphological, Structural and Hydrogen Storage Properties of
LaCrO3 Perovskite-Type Oxides
Mohamed Amine Lahlou Nabil 1,2, Nouredine Fenineche 1,2,*, Ioana Popa 3 and Joan Josep Sunyol 4

1 ICB-PMDM, UBFC University, UTBM, Rue du Leupe, CEDEX, 90040 Sevenans, France;
mohamed.lahlou-nabil@utbm.fr

2 FR FCLAB, UTBM bât. F, Rue Thierry Mieg, CEDEX, 90010 Belfort, France
3 ICB, UMR CNRS 6303, UBFC University, 9 Av. Alain Savary, CEDEX, 21078 Dijon, France;

ioana.popa@u-bourgogne.fr
4 Department de Fisica, Campus Montilivi, Universitat de Girona, 17071 Girona, Spain;

joanjosep.sunyol@udg.edu
* Correspondence: nour-eddine.fenineche@utbm.fr

Abstract: Recently, perovskite-type oxides have attracted researchers as new materials for solid
hydrogen storage. This paper presents the performances of perovskite-type oxide LaCrO3 dedicated
for hydrogen solid storage using both numerical and experimental methods. Ab initio calculations
have been used here with the aim to investigate the electronic, mechanical and elastic properties
of LaCrO3Hx (x = 0, 6) for hydrogen storage applications. Cell parameters, crystal structures and
mechanical properties are determined. Additionally, the cohesive energy indicates the stability of
the hydride. Furthermore, the mechanical properties showed that both compounds (before and
after hydrogenation) are stable. The microstructure and storage capacity at different temperatures
of these compounds have been studied. We have shown that storage capacities are around 4 wt%.
The properties obtained from this type of hydride showed that it can be used for future applications.
XRD analysis was conducted in order to study the structural properties of the compound. Besides
morphological, thermogravimetric analysis was also conducted on the perovskite-type oxide. Finally,
a comparison of these materials with other hydrides used for hydrogen storage was carried out.

Keywords: perovskite-type oxide; hydrogen storage; XRD analysis; rietveld refinement; ab initio calculations

1. Introduction

Hydrogen represents a clean source and very important energy vector. Hydrogen
has always been the focus of related research because of the high value of its energetic
density. Hydrogen is primarily produced using two principal methods: steam reforming
and electrolysis. Steam reforming is a high-temperature process in which steam reacts with
hydrocarbon fuel to produce hydrogen. In order to produce hydrogen, there is a high-
temperature process where steam reacts with hydrocarbon fuels called steam reforming.
Moreover, hydrogen can also be produced by reforming hydrocarbon fuels, such as natural
gas, diesel, renewable liquid fuels and gasified cool or gasified biomass. Currently, 95%
of hydrogen is produced by steam reforming of natural gas. Electrolysis is a process that
splits water into hydrogen and oxygen using an electric current. Hydrogen is an efficient
way to store and transport energy. Hydrogen is also used for electricity production through
a fuel cell which produces electricity by converting chemical energy into electrical energy.
Using hydrogen does not emit greenhouse gases, offering a potential solution for pollution
issues. Storing hydrogen is necessary to palliate the renewable energy intermittency and
has multiple uses. It acts as energy source for land, sea and rail transport, enabling greater
fuel endurance, quick refueling and zero harmful emissions. The most-used techniques to
store hydrogen are gaseous, liquid hydrogen or solid-state hydrogen in materials. Gaseous
hydrogen storage mode has become a widely used hydrogen storage method due to its
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technical simplicity and rapid filling and release kinetics. However, when the hydrogen
storage pressure is lower than 20 MPa, the volumetric hydrogen density of this significantly
increases the energy consumption for compression and the tank cost. Solid hydrogen stor-
age represents an important economic issue and is nowadays a promising technology for
fuel cells vehicles since the volumetric hydrogen density of materials is usually higher than
100 Kg/m3. Therefore, smaller tanks can be used to store large amounts of hydrogen [1–18].

Among the different families of intermetallic compounds, we can cite: AB, AB2, A2B,
A2B7 and AB5. Where A and B are two elements with high storage capacity and low affinity
with H2, respectively. AB5-type intermetallic compounds, in particular LaNi5-based alloys,
are the most studied compounds for Ni/MH batteries. However, the high production
cost of Lanthanum slow their application in commercial devices [19–21]. Over the past
decade, rare earth perovskite AB3 type oxides have attracted the attention of researchers as
new materials for hydrogen storage. These have been considered one of the most valuable
alternatives for hydrogen solid storage. Traditionally, perovskite materials have an ABX3
structure, where A and B are cations and X is an anion. Magnesium-based perovskite-type
hydrides have received special attention from researchers due to their high hydrogen
storage capacity. Indeed, Lefevre et al. [22] investigated the hydrogen storage capacity of
MgNi3H2 and MgCuH3 using ab initio calculations. It was shown that these alloys are
stable and may be used for transportation applications. Moreover, Reshak et al. [23] carried
out a study on the structural, elastic and electronic properties of the perovskite KMgH3.
In addition, CaNiH3 perovskite hydrides are also considered for hydrogen storage and
Ikeda et al. [24] reported similar desorption characteristics, and the hydrogen desorption
of CaNiH3 is higher than that of CaCoH3. This interest is due to their abundance, thermal
resistance and lower cost compared to conventional intermetallic alloys. Magnesium-based
perovskites, such as NaMgH3, were of particular interest due to their large hydrogen
storage capacity [25–27]. In addition, perovskite hydrides of the CaNiH3 type have been
studied for the storage of hydrogen.

In order to study the performance of perovskite oxides for hydrogen storage, several
studies were carried out at room temperature. Sakaguchi et al. [28] were the first to
study perovskites (SrCe0.95Yb0.05O3) for Ni/MH batteries. They have shown that these
perovskites are able to store hydrogen at room temperature. Subsequently, Esaka et al. [29]
proposed another perovskite as a battery electrode having the composition ACe1−xMxO3−d
(A = Sr or Ba, M = rare earth element). It was found that the latter successfully stored
hydrogen and could undergo electrochemical charging and discharging of hydrogen at
room temperature. Despite these successful results, the maximum capacity was estimated
at 119 mAh/g which is significantly lower than that of AB5 type alloys at room temperature.

Furthermore, Deng et al. [30] investigated the electrochemical hydrogen storage prop-
erties of perovskite-type oxide LaCrO3 as negative electrode for Ni/MH batteries and
showed excellent electrochemical reversibility and considerably high charge–discharge
capacity at various temperatures up to 285 mA h g−1.

In their study, Gencer et al. [31] were interested in the study of the compounds
MgTiO3Hx and CaTiO3Hx (x = 0, 3, 6, and 8). Among all these compounds, the only good
candidate for storage is CaTiO3H6 due to its stability and its good storage capacity, which
is 4.27 wt%.

The aim of the present work is to study the hydrogen storage properties of the
perovskite-type oxide LaCrO3, as there is no experimental study in the literature on
perovskite-type oxide materials for hydrogen solid storage, with the exception of the
perovskite hydrides mentioned above and the numerical study of Gencer et al. [31]. In this
study, a double approach is carried out. A numerical approach consisting of studying the
system LaCrO3 before and after restitution of hydrogen atoms by using ab initio calcula-
tions. An experimental approach focusing on the elaboration of the perovskite type oxide;
then, a structural and morphological characterization is carried out before measuring the
storage capacities. Therefore, the present paper presents the perovskite-type oxide LaCrO3
as a novel material dedicated for hydrogen storage.
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2. Numerical Methods and Experimental Details
2.1. Computational Detail

In the present work, the full potential (FP-LAPW) method is used within the density
functional theory (DFT) [32,33]. Electron exchange correlation energy is described in the
generalized gradient approximation (GGA) using the Perdew–Burke–Enzerhof functional
parameterization [34]. The expansion of basic functions, potentials and electron densities
inside the muffin-tin spheres in combination with spherical harmonic functions with a
cut off Lmax = 10, and in Fourier series in the interstitial region. The parameter RMT
Kmax = 4.0 serves to determine the matrix size, where RMT denotes the smallest atomic
sphere radius and Kmax determines the magnitude of the largest K vector in the plane-
wave expansion. All the calculations were carried out at the theoretical equilibrium lattice
constants. Values of 2.17, 2.13, 1.92 and 0.71 a.u. are the values of the muffin-tin radii [35] of
La, Cr, O and H, respectively. The K Integration over the Brillouin zone is performed using
the Monkhorst–Pack scheme with 2000 K-points in the Brillouin zone. The self-consistent
calculations are considered to be converged only when the calculated total energy of the
crystal is converged to less than 0.1 mRyd.

2.2. Material Preparation and Characterization

Lanthanum chromite LaCrO3 was synthesized using the Pechini sol-gel method. The
precursors La(NO3)3· 6H2O, (98.5% purity, Alfa Aesar) and Cr(NO3)3· 9H2O, (99.9% purity,
Alfa Aesar) were firstly weighted at the stoichiometric ratio La:Cr of 1:1 and dissolved
in a solution of citric acid, followed by the addition of ethylene glycol in a molar ratio of
citric acid: ethylene glycol 1:4 to form a polymeric resin. The solution was then heated on a
thermal plate under constant stirring at 130 ◦C to promote polymerization and to allow
solvent removal. A viscous gel was thus obtained. The temperature was subsequently
raised at 10 ◦C/min rate up to 300 ◦C to assure the propagation of combustion which
transforms the gel into a fine powder. Finally, the obtained powder was grounded in a
mortar then calcined at 800 ◦C in air.

Crystallographic analysis of the bulk sample was carried out by X-ray diffraction (XRD)
at room temperature using a BRUKER D8 Advance diffractometer in a θ–2θ Bragg Brentano
geometry using Cu Kα radiation (λαCu = 0.154056 nm). The crystalline phase present in the
sample was performed using EVA program (Bruker-AXS). The corresponding structural
parameters were determined by Rietveld refinement carried out using the MAUD [36].
Scanning electron microscopy measurements were performed on DSM960A Zeiss field
emission scanning electron microscope (FE-SEM). In order to determine the calcination
temperature, thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of
LaCrO3 solid precursor were performed using Mettler Toledo TGA/SDTA851e, by heating
from room temperature up to 1000 ◦C in air with an increment of 10 ◦C/min.

The homogeneity of the compound was investigated by Energy Dispersive X-ray
Spectroscopy (EDS) analysis at different morphological positions of the compound. The
size distribution of the particles was obtained from the SEM images using Image J software.

The perovskite-type oxide powder was firstly activated before conducting any hydro-
gen storage measurements. This step was carried out by repeating three sorption/desorption
cycles at 3 bars and at 333 K. The pressure composition temperature (PCT) measurements
were conducted using Sieverts type volumetric apparatus supplied by SETARAM (model
PCT-Pro). The compound at known pressure and volume is connected to a reservoir of
known volume and pressure of hydrogen through an isolation valve. Opening the isolation
valve allows new equilibrium to be established. Hydrogen sorption is determined by the
difference between the actual measured pressure (Pf) and the calculated pressure (Pc). The
hydrogen absorption and desorption measurements were carried out at three different
temperatures up to 333 K.
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3. Results and Discussion
3.1. Numerical Study

Crystal Structure of LaCrO3HX (x = 0, 6)
LaCrO3H6 also crystallizes in a cubic structure of Fd-3m space group. In this unit

cell, La atoms occupy 1b (0.5, 0.5, 0.5) sites, Cr atoms occupy 1a (0, 0, 0) sites, O atoms
occupy 3c (0, 0.5, 0.5) and H atoms occupy 6f (0.088, 0.5, 0.5) sites, where 1a, 1b, 3c and
6f are Wyckoff positions given in Table 1. A summary of the crystallographic parameters
and atomic positions used in our calculations is presented in Table 1. It must be noted
that our calculations are performed with a primitive cell, which contains one formula unit
(11 atoms).

Table 1. Crystallographic parameters and atomic positions used in our calculations.

Compound and Space Group Wyckoff Notation and Positions Lattice Parameters

LaCrO3H6 (Fd3m)

1b La (0.5,0.5,0.5) a = b = c 4.43 (
.

A)
1a Cr (0,0,0)
3c O (0.0, 0.5, 0.5) α = β = γ = 90◦

6f H (0.088, 0.05, 0.5)

LaCrO3 (Fd3m)
1a La (0.5,0.5,0.5) a = b = c 3.92 (

.
A)

1a Cr (0,0,0) α = β = γ = 90◦

3c O (0.0, 0.5, 0.5)

3.2. Electronic Properties of LaCrO3 and LaCrO3H6

Figure 1a,b represents the total and the partial electronic densities of states (DOS) for
LaCrO3 and LaCrO3H6 as a function of energy (eV). The Fermi level is set to zero energy
(dotted line). The electronic band structure along the high symmetry directions obtained
from the calculated equilibrium lattice constants of LaCrO3 and LaCrO3H6 is shown in
Figure 1.
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Figure 1. (a) Representation of the total and partial density of states of LaCrO3. (b). Total and partial
density of states of LaCrO3H6.

Downstream of the Fermi level, it can be seen that the main contributions are those
of O oxygen atoms. Upstream of the Fermi level, the greatest contribution is that of Cr-d
and La-d, which determine the total DOS shape. Furthermore, the presence of hydrogen
creates additional states, hence the extension of the curve. It can also be noticed that the
values of the density of state at the Fermi levels are very low for LaCrO3 and LaCrO3H6,
respectively. This character gives the information about the stabilizing effect of electron
states on a physical basis. In general, the lower the DOS at the Fermi level, the more stable
the compound [37].

3.3. Mechanical Properties

In order to obtain the ground state properties, the calculation of the total energies at dif-
ferent volumes is performed around the equilibrium. Then, it is fitted to Murnaghan’s state
equation (Figure 2) [38]. The evaluated ground state properties, such as cell parameters,
bulk modulus B0 and its pressure derivative B′0 are illustrated in Table 2. This evaluation
is done by performing an analytical interpolation of the computed points from Birch–
Murnaghan fit expressing the variation of total energy versus volume. It can be noticed that
LaCrO3 is the most stable when the lowest value of energy is reached (−1955.14192 Ry).
The deviation of the optimized parameters compared to experimental ones is about 1.81%
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for LaCrO3. This deviation is acceptable. Bulk modulus represents the material volume
variation under hydrostatic pressure. As can be concluded from Table 2, LaCrO3 has the
highest values of bulk modulus, through the studied compounds. Moreover, the obtained
results are in good agreement with the available literature results [38,39]. Furthermore,
when the hydrogen binds to LaCrO3, the bulk modulus decreases, which means it is easier
to compress the material [40].

E(V) = E0 +
9V0B0

16


[[(

V0

V

) 2
3
]
− 1

]3
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V
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Table 2. Cell parameters, mechanical properties of LaCrO3 and LaCrO3H6.

Compounds Reference Approximation Calculated Cell Parameters (A) B (GPa) B′ (GPa)

a b c

LaCrO3

Present GGA 3.85 3.85 3.85 128.07 3.2
[39] Experimental 3.92 3.92 3.92 / /
[41] GGA - - - 231 /

LaCrO3H6 Present GGA 4.43 4.43 4.43 62.26 23.48

3.4. Cohesive Energy

The cohesive energy for LaCrO3H6 is calculated in order to study the relative phase
stabilities. This latter represents the strength of the forces that bind atoms together in the
solid state. The cohesive energy ELaCrO3H6

coh per atom of LaCrO3H6 is defined as the total
energy of the constituent atoms minus the total energy of the compound [42]:

ELaCrO3H6
coh =

[
A ∗ ELa

atom + B ∗ ECr
atom + C ∗ EH

atom + D ∗ EO
atom

]
− ELaCrO3H6

total

A + B + C + D

where:
ELaCrO3H6

coh is the cohesive energy per atom of LaCrO3H6;
ELaCrO3H6

total is the total energy of the hydrid LaCrO3H6 in the equilibrium configuration;
ELa

atom, ECr
atom, EO

atom and EH
atom are the isolated atomic energies for pure constituents,

while A, B and C are the numbers of La, Cr, O and H atoms in unit cell, respectively.
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Then:

ELaCrO3H6
coh =

[
ELa

atom + ECr
atom + 3EO

atom + 6EH
atom

]
− ELaCrO3H6

total

11

The calculation of the cohesive energy shows a positive value ELaCrO3H6
coh = 0.642 Ry/atom,

which means that the hydride is energetically stable.

3.5. Experimental Investigations

In order to determine the calcination temperature allowing for a well-crystalized oxide,
the air-dried precursor of LaCrO3 was analyzed by thermogravimetry and differential
temperature analysis, TGA and DTA, respectively. Thermal analysis was conducted in
order to detect evaporation, oxidation solid-gas reaction and other transformations that
involve a mass change that take place when the temperature is changed. Figure 3 shows
TGA–DTA curves of the LaCrO3 precursor. The TGA curve might be divided to three
parts. For Part A, in the range of 20 ◦C to 350 ◦C, we can observe a mass loss of about 16%
with an inflection at the temperature of 110 ◦C, which corresponds to a wide endothermic
band. The latter may be due to the remaining water evaporation in the precursor. Part B
represents a mass loss of 10% between 360 ◦C and 700 ◦C, which corresponds to a large
exothermic band at 360 ◦C. This mass loss can also be explained by citrate decomposition as
well as decarboxylation. Part C, between 700 ◦C and 1000 ◦C, represents a final mass loss in
correlation with an endothermic band located at 800 ◦C. This process likely corresponds to
a loss of oxygen from the reduction of an intermediate lanthanum chromate phase resulting
in final generation of the lanthanum chromite perovskite. Beyond 800 ◦C, no significant
weight loss was observed. Therefore, the most adequate calcination temperature is chosen
at 800 ◦C. These results agree with previous results [43].
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The crystalline structure analysis using XRD pattern is shown in Figure 4. A single
orthorhombic structure of Pnma space group was identified (JCPD #000330701). The
Rietveld refinement of X-ray diffraction pattern shows that LaCrO3 compound has the
following lattice parameters: a = 5.56

.
A, b = 7.85

.
A and c = 5.55

.
A, corresponding to a cell

volume of 342.62
.

A
3

(Figure 4). The profile reliability factors Rp = 5.68 and Rwp = 7.38
show a good fit between the calculated diagram and the observed data. The results are in
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adequation with those of the orthorhombic (pnma space group) perovskite-type oxides of
the lanthanum chromite [44].
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SEM micrographs of the powder are presented in Figure 5 before and after hydro-
genation of the compound LaCrO3. The powder from the sol-gel process is irregularly
shaped, non-spherical and its particles are less than 18 µm. The appearance of cracks due to
hydrogen embrittlement during the hydrogenation phase was observed. In addition, grain
distribution was similar after hydrogenation. EDX analysis, Figure 6 shows that the peaks
corresponding to constituent elements (La, Cr and O) exist in amounts corresponding to
LaCrO3 composition. The powder resulting from the Pechini sol-gel process was irregular
in shape, not spherical, and its particles have a size of less than 18 µm.
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Figure 6. EDX spectra of LaCrO3.

The pressure-composition temperature (PCT) curves for hydrogen absorption and
desorption for LaCrO3 were generated at three temperatures: 298 K, 313 K and 333 K. PCT
curves in Figure 7a show that this hydride exhibits a single plateau at all experimental
temperatures.
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Comparing PCT results, the three samples of the LaCrO3 compound show almost the
same hydrogen sorption and desorption capacities and they all show a hydrogen storage
capacity up to 4 wt% under 333 K. Thus, each sample has trays, one for absorption and
the second for desorption. At 303 K, the samples tested have the lowest storage capacity.
The maximum storage capacity increases from 1.2 wt% to almost 4 wt% at 333 K. This
variation can be explained by the fact that the compound is not stressed at its absorption
and desorption temperature. In addition, Figure 7b represents the trend of the evolution of
hydrogen storage properties with temperature increasing.

Besides, hydrogen storage capacity varies from 1.4 wt% at room temperature to almost
4 wt% at 333 K (60 ◦C), which shows the ability of this oxide to store hydrogen at a very
moderate temperature. The storage capacity is comparable to that of perovskite hydrides,
such as CaCoH3 (2.97 wt%), CaFeH3 (3.06 wt%), CaMnH3 (3.09 wt%), MgCuH3 (3.32 wt%)
and MgNiH3 (3.51 wt%) [45,46]. Additionally, compared to some other hydrides of the AB
and AB5 families used for solid hydrogen storage, LaCrO3 perovskite oxides present better
storage capacities, which allowed to promote their use for future transportation applications.
Indeed, TiFe, which is the typical compound of the AB family, has a maximum mass capacity
of hydrogen storage of 1.8 wt% [47]. In addition, LaNi5, the typical compound of AB5,
presents a maximum storage capacity of 1.49 wt% [48]. Thus, LaCrO3 shows good hydrogen
storage properties and might be considered for transportation application in the future.

4. Conclusions

In this study, ab-initio calculations were performed in order to study the perovskite-
type oxide LaCrO3 for hydrogen storage applications. The mechanical stability reveals that
LaCrO3H6 is thermodynamically stable. Cell parameters, crystal structures and mechanical
properties were in the range of literature data when possible. The numerical part of this pa-
per showed the utility of ab-initio calculations in order to study a compound for hydrogen
storage. In addition, LaCrO3 perovskite prepared by sol-gel Pechini method has shown
the presence of a single-phase perovskite oxide with an orthorhombic structure. Before
calcination of the compound, thermogravimetric analysis was conducted to determine the
calcination temperature. XRD analysis was conducted with the aim of understanding the
structural properties of the compound. Furthermore, morphology and thermal analysis of
the structure have also been discussed. Hydrogen absorption/desorption PCT measure-
ments on LaCrO3 compound exhibits a single plateau at all experimental temperatures.
Finally, LaCrO3 compound shows a good hydrogen storage capacity of about 4 wt%, which
is higher than traditional alloys used for hydrogen storage. Additionally, this study gives a
good insight for further investigations on this type of compound.
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