
����������
�������

Citation: Kapsalis, P.; Kormpakis, G.;

Alexakis, K.; Askounis, D.

Leveraging Graph Analytics for

Energy Efficiency Certificates.

Energies 2022, 15, 1500.

https://doi.org/10.3390/en15041500

Academic Editor: Adrián

Mota Babiloni

Received: 27 December 2021

Accepted: 15 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Leveraging Graph Analytics for Energy Efficiency Certificates
Panagiotis Kapsalis * , Giorgos Kormpakis , Konstantinos Alexakis and Dimitrios Askounis

Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National Technical
University of Athens, 9 Heroon Polytechniou Str., 15773 Athens, Greece; gkorbakis@epu.ntua.gr (G.K.);
kalexakis@epu.ntua.gr (K.A.); askous@epu.ntua.gr (D.A.)
* Correspondence: pkapsalis@epu.ntua.gr; Tel.: +30-69-8667-2571

Abstract: As energy efficiency is becoming a subject of utter importance in today’s societies, the
European Union and a vast number of organizations have put a lot of focus on it. As a result, huge
amounts of data are generated at an unprecedented rate. After thorough analysis and exploration,
these data could provide a variety of solutions and optimizations regarding the energy efficiency
subject. However, all the potential solutions that could derive from the aforementioned procedures
still remain untapped due to the fact that these data are yet fragmented and highly sophisticated. In
this paper, we propose an architecture for a Reasoning Engine, a mechanism that provides intelligent
querying, insights and search capabilities, by leveraging technologies that will be described below.
The proposed architecture has been developed in the context of the H2020 project called MATRYCS.
In this paper, the reasons that resulted from the need of efficient ways of querying and analyzing
the large amounts of data are firstly explained. Subsequently, several use cases, where related
technologies were used to address real-world challenges, are presented. The main focus, however,
is put in the detailed presentation of our Reasoning Engine’s implementation steps. Lastly, the
outcome of our work is demonstrated, showcasing the derived results and the optimizations that
have been implemented.

Keywords: energy efficiency; semantics; reasoning engine; digital twin; big graph analytics; knowledge
bases; data processing semantic enrichment

1. Introduction

Energy efficiency is among the top priorities of the European Union, and for that reason,
a European framework [1] as well as a number of directives [2,3] have been established.
These initiatives generate a vast amount of diverse data, which are yet fragmented, and,
as a result, they cannot be utilized for data analysis, intelligent querying, and extraction of
patterns. Thus, the need of graph analytics arises, aiming for the extraction and visualization
of these data, as well as the creation of knowledge databases that will contain information
about energy performance analytics and the related buildings. Moreover, by enabling
graph solutions and the available knowledge from digital twins [4], the added value of
these data can be enhanced, since, additionally to their usage as individual data points,
the interconnections between them are also explored. Moreover, the installation of more
and more sensors and IoT-based systems [5,6] has led to an enormous volume of generated
data. The analysis and process of these data can be beneficial in the monitoring [7] and
management of energy consumption [8–11], as well as in the decision-making process
regarding energy consumption [12,13].

The efficient management of energy consumption and generation is more than neces-
sary due to the increasing CO2 emissions from the building stock and the threats of climate
change. The buildings have turned to solutions that include the adoption of more and more
sensors (IoT), as well as information and communication technologies (ICT), feeding more
and more of the generated data to artificial intelligence (AI) models [14] that need to process

Energies 2022, 15, 1500. https://doi.org/10.3390/en15041500 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15041500
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-5571-820X
https://orcid.org/0000-0003-4052-4549
https://orcid.org/0000-0001-7057-6521
https://doi.org/10.3390/en15041500
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15041500?type=check_update&version=2

Energies 2022, 15, 1500 2 of 12

them. The handling of these data can play a crucial role in the mitigation of CO2 emissions
and in the establishment of more efficient energy management.

The combination of the aforementioned technologies and the exploitation of big
data [15] can lead to a decarbonized future with significantly less CO2 emissions from
building operations. Following this approach, it is necessary to understand how the existing
technologies, methods, as well as models and solutions, could be integrated by the building
sector. This approach is vital in order to generate knowledge from the building data and
constitutes the Big Data Value Chain (BDVC), which plays a key role in the energy economy
of the future, providing more opportunities towards the vision of further digitalization and,
thus, accelerating the energy transition.

The Reasoning Engine is the component responsible for the handling of the metadata
produced by the buildings, and it does so by leveraging the graph analytic capabilities. To
be more specific, the Reasoning Engine is a mechanism that provides intelligent querying,
insights, and search capabilities by leveraging the available knowledge for the digital twin
and analytics services. It also provides functionalities for the addition of more data to the
existing knowledge base. The Reasoning Engine module is capable of consuming data
produced from various sources (e.g., REST APIs, databases, files, etc.) and of both JSON and
RDF formats. After being received, these data are persisted to the Reasoning Engine’s graph
database, which (Neo4j [16]) is a powerful inference engine that enables graph functionalities
over entities and connections for extracting new insights and patterns from datasets.

Graph databases are one of the latest strategies in big data storage for buildings
that arise in popularity thanks to their ever-increasing accessibility. Graph databases are
constructed to handle highly connected and linked data effectively. Therefore, they are
a very promising approach for inference analysis. Multiple benchmarks highlight their
strengths, comparing them to their non-graph database variant when applied to highly
connected data [17]. This is implied by expensive JOIN operations in non-graph databases,
while graph databases offer to traverse a large number of connections in a very short amount
of time.

In the context of the H2020 project MATRYCS (https://matrycs.eu accessed date
28 December 2021), a reasoning engine was implemented using the data from EREN pilot.
The aforementioned data are energy performance certificates from buildings in Castilla
y León and contain information about the buildings’ location (coordinates, municipality,
province), primary energy consumption, energy ratings, CO2 emissions, heating and cooling
demands, registration date, and number. In this paper, we contribute to the Reasoning
Engine functionality by enabling graph functionalities and properties over linked data
instead of web ontologies and RDF schemas, aiming to extract added value from linked and
connected data. Neo4j is a well-known graph database with an attached query language,
CYPHER (https://neo4j.com/developer/cypher/ accessed date 28 December 2021). While
a graph is not an ontology, an ontology can be represented in a graph. The challenge of
this work is to use CYPHER to query not just a graph but also a knowledge graph. We will
describe the work carried out in order to enable Neo4j to use JSON and RDF data as input and
translate queries from SPARQL (https://www.w3.org/TR/rdf-sparql-query/ accessed date
28 December 2021), which is the query language of ontologies, to CYPHER. Additionally,
we aim to use Neo4j to store ontologies and JSON data in both streaming and batch format.
The aim of generating semantic information through graph database functionalities is to
optimise the AI models’ data-driven energy predictions in urban infrastructure.

A reasoning engine for the building sector, and more specifically for energy efficiency
certificates, is of significant importance for the improvement actions and pattern recognition
by leveraging axioms and rules over the input data. In the present use case, the input
data are the EREN energy certificates. The pattern recognition pipeline is based on logical
inferences that evaluate the input data using graph properties and entities. The result
of this procedure is the enhancement of the input for prediction models applied in the
building sector, which process a large volume and variety of both real-time and historical
data, in order to extract meaningful information and make data driven decisions.

https://matrycs.eu
https://neo4j.com/developer/cypher/
https://www.w3.org/TR/rdf-sparql-query/

Energies 2022, 15, 1500 3 of 12

The rest of the paper is organized as follows. Section 2 analyzes the state of the art of
the treated domain. In Section 3, the architecture and the implementation of the Reasoning
Engine, and the way the different sub-components are organized around a graph database,
are described. Section 4 presents the results from queries to Reasoning Engine REST APIs,
and Section 5 summarizes the key issues that have arisen in this paper.

2. State of the Art Analysis

NoSQL databases are non-tabular databases. They store data differently than relational
tables, and they are categorized depending on the way they store the data [18]. Over
time, four major types of NoSQL databases have emerged: document databases, key-value
databases, wide-column stores, and graph databases [19]. The majority of reasoning engines
utilize NoSQL databases and more specifically graph databases. This kind of database has
built-in inference engines to manage the stored data. For this development, and considering
the graph database utilization, Neo4j (https://neo4j.com/ accessed date 29 December
2021) [20] is broadly used in reasoning engine use cases. Graph databases have features
including reliability, high availability, fast response, and a high level of replication [21].
These characteristics make this kind of database widely used in various sectors such as
banking, networking, and aviation. The main advantage of using a graph database is the
relationship established between the element and the power of inference that this structure
provides. Therefore, they are mainly used in fraud detection, graph-based search, intelligent
querying, and real time traffic managements and recommendations.

One of the use-cases where the Neo4j graph database was used is the case of the
“Panama Papers”, where the International Consortium of Investigative Journalists utilized
Neo4j to store and process information provided by the whole journalist network [22].

Another real-world use case where a graph database was used is the one related to
the multinational retail corporation, Walmart, which used it for the improvement of the
customer experience in its stores. More specifically, Neo4j data science algorithms were
leveraged to measure centrality, betweenness, and similarity. This resulted in the replace-
ment of the old, low-latency legacy systems by Neo4j that provided recommendations and
inference by combining historical and user session data [23].

Moreover, NBC News once made usage of Neo4j for the analysis of a vast number
of tweets made by Russian agents during the 2016 U.S. Presidential election. What NBC
was aiming to showcase was how Twitter was used as a communication channel to spread
disinformation and stimulate division [24].

The presented use cases showcase how graph databases’ features, such as performance,
flexibility, network management, and social interconnect, are used in real life applications
to enhance their efficiency and to extract insights from data.

Cloud-computing applications that leverage graph databases currently produce large-
scale big graphs and reasoning applications in order to extract interesting, meaningful,
and exploitable insights and patterns from these data. As a result, analytics over graphs
is now a top-tier challenge in database and reasoning research, and this has resulted in a
fast-growing interest of this field from both the academical and the industrial community.

The big graph analytics problem arises in several application scenarios that belong to
a wide range of fields. Following, an example of end-to-end processing and an example of
graph time times are demonstrated.

The work of [25] focused on a framework that supports end-to-end graph processing,
achieved by proceeding to complex neighborhood-centric analysis over big graphs in Cloud
environments. This method is called NSCALE. NCALE introduces an abstraction that not
only allows reasoning on graph analytics via sub-graphs, but also supports two metrics of
utter importance: performance and memory optimization.

The work of [26] provides architecture and main functionalities of a tool known as
VERTEXICA. VERTEXICA supports big graph analytics, and the main benefit it provides
is that it works on top of relational DBMS. Using VERTEXICA, the end-users can avoid
the restrictions that arise from the usage of plain SQL statements. Instead, they are able to

https://neo4j.com/

Energies 2022, 15, 1500 4 of 12

exploit natural vertex-centric interfaces for defining analytics over big graphs, where all the
data management activities, including query processing, can be expressed via an intuitive
graphical interface.

3. Methodology, Architecture, and Implementation
3.1. Methodology

The methodology, depicted in Figure 1, for the proposed Reasoning Engine architecture
is based on the results of the state-of-the-art analysis and research and the need that arises
for extracting information by leveraging rules and axioms from energy efficiency certificates.
The next step was the identification of the datasets that could be potentially used for
graphical representation. Then, the technical phase initiated with the consumption of the
dataset using Confluent Kafka and the persistence and indexing of Neo4j graph storage.
NeoSemantincs and graph data science plugins of Neo4j enabled the querying of stored
data and finally the creation of REST APIs to expose the querying results.

Energies 2021, 14, x FOR PEER REVIEW 4 of 14

VERTEXICA. VERTEXICA supports big graph analytics, and the main benefit it provides

is that it works on top of relational DBMS. Using VERTEXICA, the end-users can avoid

the restrictions that arise from the usage of plain SQL statements. Instead, they are able to

exploit natural vertex-centric interfaces for defining analytics over big graphs, where all

the data management activities, including query processing, can be expressed via an in-

tuitive graphical interface.

3. Methodology, Architecture, and Implementation

3.1. Methodology

The methodology, depicted in Figure 1, for the proposed Reasoning Engine architec-

ture is based on the results of the state-of-the-art analysis and research and the need that

arises for extracting information by leveraging rules and axioms from energy efficiency

certificates. The next step was the identification of the datasets that could be potentially

used for graphical representation. Then, the technical phase initiated with the consump-

tion of the dataset using Confluent Kafka and the persistence and indexing of Neo4j graph

storage. NeoSemantincs and graph data science plugins of Neo4j enabled the querying of

stored data and finally the creation of REST APIs to expose the querying results.

Figure 1. Methodology of the proposed Reasoning Engine architecture.

3.2. Architecture

Figure 2 depicts the proposed architecture of the Reasoning Engine. As shown, the

data are produced from the data pre-processing and semantic enrichment layer, where

they are homogenized and pre-processed before being sent to the reasoning engine

through Kafka topics.

Figure 1. Methodology of the proposed Reasoning Engine architecture.

3.2. Architecture

Figure 2 depicts the proposed architecture of the Reasoning Engine. As shown, the
data are produced from the data pre-processing and semantic enrichment layer, where they
are homogenized and pre-processed before being sent to the reasoning engine through
Kafka topics.

The proposed architecture, Figure 2, consists of five components, namely the Reason-
ing Engine Kafka consumer, the Neo4j data importers, the Neo4j graph database, the query
pre-processing, and the retrieval REST API.

The Reasoning Engine Kafka consumer is a Kafka consumer written in Python 3. It
receives data from the data pre-processing and semantic enrichment layer. These are JSON
or RDF data that contain EREN energy performance certificates. The consumer receives
these data and sends them to the Neo4j data importers (https://neo4j.com/developer/data-
import/ accessed date 29 December 2021). This component is a series of CYPHER scripts
that are connected with the Kafka (https://kafka.apache.org/ accessed date 29 December
2021) consumer through Neo4j Python Driver. The consumed JSON data are channelled to
the CYPHER scripts, where they are transformed from JSON data to NEO4J entities (nodes
and connections). The Neo4j data importers, as previously mentioned, enable several scripts
in order to insert the data into Neo4j structures. After that, these data can be queried, and
useful knowledge can derive from them. The Reasoning Engine also provides REST APIs for
interacting with the stored metadata in Neo4j. This is the stage where the data are exposed
to the upper layer though REST protocols, and it has two sub-components responsible for

https://neo4j.com/developer/data-import/
https://neo4j.com/developer/data-import/
https://kafka.apache.org/

Energies 2022, 15, 1500 5 of 12

the overall functionality. The retrieval REST engine is where external users can submit
queries to the Reasoning Engine using POST REST function and JSON payloads. The query
pre-processing module receives the JSON data from retrieval REST engine and transforms
the JSON data to CYPHER in order to query the Neo4j graph database. The result is the
REST API’s response, and it is sent back in JSON format. The request presented in Table 1,
is an example usage of Reasoning Engine’s REST API collection.

Energies 2021, 14, x FOR PEER REVIEW 5 of 14

Figure 2. Reasoning Engine proposed architecture.

The proposed architecture, Figure 2, consists of five components, namely the Reason-

ing Engine Kafka consumer, the Neo4j data importers, the Neo4j graph database, the

query pre-processing, and the retrieval REST API.

The Reasoning Engine Kafka consumer is a Kafka consumer written in Python 3. It

receives data from the data pre-processing and semantic enrichment layer. These are

JSON or RDF data that contain EREN energy performance certificates. The consumer re-

ceives these data and sends them to the Neo4j data importers (https://neo4j.com/devel-

oper/data-import/ accessed date 29 December 2021). This component is a series of CY-

PHER scripts that are connected with the Kafka (https://kafka.apache.org/ accessed date

29 December 2021) consumer through Neo4j Python Driver. The consumed JSON data are

channelled to the CYPHER scripts, where they are transformed from JSON data to NEO4J

entities (nodes and connections). The Neo4j data importers, as previously mentioned, en-

able several scripts in order to insert the data into Neo4j structures. After that, these data

can be queried, and useful knowledge can derive from them. The Reasoning Engine also

provides REST APIs for interacting with the stored metadata in Neo4j. This is the stage

where the data are exposed to the upper layer though REST protocols, and it has two sub-

components responsible for the overall functionality. The retrieval REST engine is where

external users can submit queries to the Reasoning Engine using POST REST function and

JSON payloads. The query pre-processing module receives the JSON data from retrieval

REST engine and transforms the JSON data to CYPHER in order to query the Neo4j graph

database. The result is the REST API’s response, and it is sent back in JSON format. The

request presented in Table 1, is an example usage of Reasoning Engine’s REST API collec-

tion.

Furthermore, the Reasoning Engine component has integrated the neosemantics

(https://neo4j.com/labs/neosemantics/ accessed date 29 December 2021) toolkit, which is

used to upload ontologies, RDF data, and other semantic information, and transform them

into Neo4j entities. CYPHER language is more flexible than SPARQL, and by leveraging

Figure 2. Reasoning Engine proposed architecture.

Table 1. Reasoning Engine’s REST API collection example.

curl –location –request POST ‘http://reasoning_engine:5000/leif/service’ \
–header ‘Content-Type: application/json’ \
–data-raw ‘{

“heating_total_consumption”: ${heating_total_consumption},
“heating_co2_emission”: ${heating_co2_emission},
“hot_water_total_consumption”: ${hot_water_total_consumption},
“hot_water_co2_emission”: ${hot_water_co2_emission},
“electricity_total_consumption”:${electricity_total_consumption},
“electricity_co2_emission”:${electricity_co2_emission}

}

Furthermore, the Reasoning Engine component has integrated the neosemantics (https:
//neo4j.com/labs/neosemantics/ accessed date 29 December 2021) toolkit, which is used
to upload ontologies, RDF data, and other semantic information, and transform them into
Neo4j entities. CYPHER language is more flexible than SPARQL, and by leveraging Neo4j
plugins such as graph data science, apoc, and neosemantics, the connections between
metadata are more transparent.

3.3. Implementation

The implementation of the Reasoning Engine was initiated with the development of a
Python Confluent Kafka (https://docs.confluent.io/platform/current/clients/consumer.

http://reasoning_engine:5000/leif/service
https://neo4j.com/labs/neosemantics/
https://neo4j.com/labs/neosemantics/
https://docs.confluent.io/platform/current/clients/consumer.html
https://docs.confluent.io/platform/current/clients/consumer.html

Energies 2022, 15, 1500 6 of 12

html accessed date 29 December 2021) consumer, which was used for receiving JSON
and RDF data from the data pre-processing and semantic enrichment layer. The Faust
(https://faust.readthedocs.io/en/latest/ accessed date 29 December 2021) library, which is
the Kafka Streams implementation in Python, was used to consume and process events
from different time windows and to construct a real time and highly intensive data pipeline.

Before proceeding with more implementation details, it is significant to present the
EREN Energy Efficiency Certificates dataset. It consists of of ~300 K rows and 15 columns
and contains primary building information, such as registration number, emissions, heating,
and cooling demand. Table 2 demonstrates the dataset columns, with a short description
for each column and sample values.

Table 2. EREN energy efficiency certificates dataset.

Column Short Description Example Value

registration_number Building’s registration number 050190003VI1870TI
registration_date Building’s registration date 1 August 2017
building_usage Building’s primary usage FAMILY HOUSE

coordinates Building’s location (long, lat) −4.6788, 40.66
address Building’s address CALLE DAVID HERRERO 24 05005

municipality Municipality that the building belongs to ARENAS DE SAN PEDRO
province Province that the building belongs to ABRADA

primary_consumption_ratio Building’s primary consumption ratio
(total consumption) 543.0

primary_consumption_rating Building’s primary consumption label A
co2_emissions_ratio Building’s CO2 emissions ratio 61.0

co2_emissions_rating Building CO2 emissions label/rating E
heating_demand_rating Building’s heating demand rating E
heating_demand_ratio Building’s heating demand ratio 111.87
cooling_demand_ratio Building’s cooling demand ratio 12.14

cooling_demand_rating Building’s cooling demand rating C

Figure 3 depicts the data flow in the Reasoning Engine Kafka consumer. More specif-
ically, the EREN data are produced in four different Kafka topics (each topic is related
to building data and attributes such as energy certificates, electricity, gas, and diesel con-
sumption). The Faust/Kafka consumer is subscribed to all these topics, and it receives the
incoming events. Following, it performs ETL (extract, transform, and load) procedures
using the Pandas framework (https://pandas.pydata.org/ accessed date 20 December
2021), Neo4j Python Driver, and CYPHER GraphQL in order to persist them in the Neo4j
graph database.

The CYPHER scripts that persist the consumed events to Neo4j are the reasoning data
importers. These scripts receive JSON or RDF data and construct the entities in Neo4j
in order to extract hidden patterns and value from buildings metadata. The metadata
construction in the graph database aids the intelligent querying and inference over stored
data and enhances the machine and deep learning model training. The data from the
Reasoning Engine Kafka consumer are channelled to the Reasoning Engine data importers
through Neo4j Python Driver. Figure 4 depicts the data flow from the Reasoning Engine
consumer through data importers and subsequently to Neo4j.

https://docs.confluent.io/platform/current/clients/consumer.html
https://docs.confluent.io/platform/current/clients/consumer.html
https://faust.readthedocs.io/en/latest/
https://pandas.pydata.org/

Energies 2022, 15, 1500 7 of 12

Energies 2021, 14, x FOR PEER REVIEW 7 of 14

primary_consumption_ratio
Building’s primary consump-

tion ratio (total consumption)
543.0

primary_consumption_rating
Building’s primary consump-

tion label
A

co2_emissions_ratio Building’s CO2 emissions ratio 61.0

co2_emissions_rating
Building CO2 emissions la-

bel/rating
E

heating_demand_rating
Building’s heating demand rat-

ing
E

heating_demand_ratio
Building’s heating demand ra-

tio
111.87

cooling_demand_ratio
Building’s cooling demand ra-

tio
12.14

cooling_demand_rating
Building’s cooling demand rat-

ing
C

Figure 3 depicts the data flow in the Reasoning Engine Kafka consumer. More spe-

cifically, the EREN data are produced in four different Kafka topics (each topic is related

to building data and attributes such as energy certificates, electricity, gas, and diesel con-

sumption). The Faust/Kafka consumer is subscribed to all these topics, and it receives the

incoming events. Following, it performs ETL (extract, transform, and load) procedures

using the Pandas framework (https://pandas.pydata.org/ accessed date 20 December

2021), Neo4j Python Driver, and CYPHER GraphQL in order to persist them in the Neo4j

graph database.

Figure 3. Data flow in the Reasoning Engine Kafka consumer.

The CYPHER scripts that persist the consumed events to Neo4j are the reasoning data

importers. These scripts receive JSON or RDF data and construct the entities in Neo4j in

order to extract hidden patterns and value from buildings metadata. The metadata con-

struction in the graph database aids the intelligent querying and inference over stored

Figure 3. Data flow in the Reasoning Engine Kafka consumer.

Energies 2021, 14, x FOR PEER REVIEW 8 of 14

data and enhances the machine and deep learning model training. The data from the Rea-

soning Engine Kafka consumer are channelled to the Reasoning Engine data importers

through Neo4j Python Driver. Figure 4 depicts the data flow from the Reasoning Engine

consumer through data importers and subsequently to Neo4j.

Figure 4. Data flow in the Reasoning Engine Kafka consumer.

The Retrieval REST API, which flow is depicted in Figure 5, is the collection of REST

services that expose the stored Neo4j entities on the upper layers of ANALYTICS layer. It

was implemented using Flask REST Framework (https://flask-rest-

ful.readthedocs.io/en/latest/ accessed date 23 December 2021), Pandas DataFrames

(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html ac-

cessed date 23 December 2021) and Neo4j Python Driver (https://neo4j.com/docs/api/py-

thon-driver/current/ accessed date 23 December 2021). The services are triggered by HTTP

requests that have been submitted. The provided JSON payloads are parsed from the

query pre-processing module, which translates the JSON attributes to CYPHER queries.

Figure 4. Data flow in the Reasoning Engine Kafka consumer.

The Retrieval REST API, which flow is depicted in Figure 5, is the collection of REST
services that expose the stored Neo4j entities on the upper layers of ANALYTICS layer. It was
implemented using Flask REST Framework (https://flask-restful.readthedocs.io/en/latest/
accessed date 23 December 2021), Pandas DataFrames (https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.html accessed date 23 December 2021) and
Neo4j Python Driver (https://neo4j.com/docs/api/python-driver/current/ accessed date

https://flask-restful.readthedocs.io/en/latest/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://neo4j.com/docs/api/python-driver/current/

Energies 2022, 15, 1500 8 of 12

23 December 2021). The services are triggered by HTTP requests that have been submitted.
The provided JSON payloads are parsed from the query pre-processing module, which
translates the JSON attributes to CYPHER queries.

Energies 2021, 14, x FOR PEER REVIEW 9 of 14

Figure 5. Data flow in the Reasoning Engine retrieval REST API.

4. Results

In this section, the data flow through the Reasoning Engine’s sub-components are

demonstrated. More specifically, the results from the Reasoning Engine Kafka consumer,

the data represented in the graph database, and queries using the Reasoning Engine Re-

trieval REST API will be presented.

4.1. Data Flow in Reasoning Engine Kafka Consumer

The data from the data pre-processing and semantic enrichment module are pro-

duced to Apache Kafka in JSON format. The EREN energy certificates, electricity con-

sumption, diesel consumption, and gas consumption data are produced, respectively, to

the topics “energy_certificates”, “electricity_consumption”, “diesel_consumption”, and

“gas_consumption”. The Reasoning Engine Kafka consumer is subscribed to these four

different topics and receives the data using the window functionality of Python Faust li-

brary in order to operate batch insert functionalities in the following steps. Figure 6

demonstrates the queued data in the Reasoning Engine consumer.

The goal of this task is to consume events originated from the “energy_certificates”

Kafka topic, and these messages are in the format presented in Table 2. Following the

events’ consumption, the incoming data are persisted into the Neo4j graph database. The

pipeline that stores these data builds the graph entities using CYPHER and semantics

plugins of Neo4j, enables the axioms and rules of graph properties, and leverages the

metadata connection for the formation of logical inferences.

The Reasoning Engine exposes stored data via the REST services that it exposes. The

end user is given the capability of submitting general CYPHER queries to Neo4j. In addi-

tional to this general-purpose functionality, prepared queries are also implemented. In

this case, the input of the REST APIs is JSON formatted objects which, specifically, include

building attributes (e.g., registration number, registration date, primary consumption, ad-

dress, etc.). Below, some REST APIs are demonstrated. The queries conducted with the

Reasoning Engine functionalities can vary; they can either be very simple (e.g., selection

of top building certificates) or much more sophisticated queries (e.g., similarity queries or

queries that enable graph data science plugin and calculate clusters over the stored graph

entities).

Figure 5. Data flow in the Reasoning Engine retrieval REST API.

4. Results

In this section, the data flow through the Reasoning Engine’s sub-components are
demonstrated. More specifically, the results from the Reasoning Engine Kafka consumer, the
data represented in the graph database, and queries using the Reasoning Engine Retrieval
REST API will be presented.

4.1. Data Flow in Reasoning Engine Kafka Consumer

The data from the data pre-processing and semantic enrichment module are pro-
duced to Apache Kafka in JSON format. The EREN energy certificates, electricity con-
sumption, diesel consumption, and gas consumption data are produced, respectively, to
the topics “energy_certificates”, “electricity_consumption”, “diesel_consumption”, and
“gas_consumption”. The Reasoning Engine Kafka consumer is subscribed to these four
different topics and receives the data using the window functionality of Python Faust library
in order to operate batch insert functionalities in the following steps. Figure 6 demonstrates
the queued data in the Reasoning Engine consumer.

Energies 2021, 14, x FOR PEER REVIEW 10 of 14

Figure 6. Data received from Reasoning Engine Kafka consumer.

4.2. Graph Creation in Neo4j

The Reasoning Engine Kafka consumer enables batch insertion by leveraging the

Neo4j Data Importers. Figure 6 depicts the consumption of the incoming events from Rea-

soning Engine Kafka Consumer and the construction of Neo4j entities for each specific

event from Neo4j Data Importers. These importers are a series of CYPHER scripts that

receive the batch window data from the Kafka consumer and persist the JSON data to the

Neo4j graph database. The embedded JSON objects are now transformed to graph entities.

As a result, the data querying will be more effective and significantly faster using graph

functionalities. Figure 7 depicts the resulting graph in Neo4j.

Figure 7. EREN data stored in Neo4j.

4.3. Retrieve Data from Reasoning Engine

The data retrieval process from Reasoning Engine is conducted through its REST API.

The Reasoning Engine retrieval REST API leverages the Python Neo4j Driver and CY-

PHER to query the stored EREN data that are structured in graph format. The following

REST API call calculates the average primary consumption of buildings classified with

primary consumption A.

The response received from the Retrieval REST API, which includes the requested

average primary consumption of buildings, is presented in Table 3. The REST API receives

CYPHER queries and, on its backend, transforms the aforementioned query result from

Neo4j entities to JSON.

Figure 6. Data received from Reasoning Engine Kafka consumer.

Energies 2022, 15, 1500 9 of 12

The goal of this task is to consume events originated from the “energy_certificates”
Kafka topic, and these messages are in the format presented in Table 2. Following the events’
consumption, the incoming data are persisted into the Neo4j graph database. The pipeline
that stores these data builds the graph entities using CYPHER and semantics plugins
of Neo4j, enables the axioms and rules of graph properties, and leverages the metadata
connection for the formation of logical inferences.

The Reasoning Engine exposes stored data via the REST services that it exposes. The
end user is given the capability of submitting general CYPHER queries to Neo4j. In addi-
tional to this general-purpose functionality, prepared queries are also implemented. In this
case, the input of the REST APIs is JSON formatted objects which, specifically, include build-
ing attributes (e.g., registration number, registration date, primary consumption, address,
etc.). Below, some REST APIs are demonstrated. The queries conducted with the Reasoning
Engine functionalities can vary; they can either be very simple (e.g., selection of top building
certificates) or much more sophisticated queries (e.g., similarity queries or queries that
enable graph data science plugin and calculate clusters over the stored graph entities).

4.2. Graph Creation in Neo4j

The Reasoning Engine Kafka consumer enables batch insertion by leveraging the
Neo4j Data Importers. Figure 6 depicts the consumption of the incoming events from
Reasoning Engine Kafka Consumer and the construction of Neo4j entities for each specific
event from Neo4j Data Importers. These importers are a series of CYPHER scripts that
receive the batch window data from the Kafka consumer and persist the JSON data to the
Neo4j graph database. The embedded JSON objects are now transformed to graph entities.
As a result, the data querying will be more effective and significantly faster using graph
functionalities. Figure 7 depicts the resulting graph in Neo4j.

Energies 2021, 14, x FOR PEER REVIEW 10 of 14

Figure 6. Data received from Reasoning Engine Kafka consumer.

4.2. Graph Creation in Neo4j

The Reasoning Engine Kafka consumer enables batch insertion by leveraging the

Neo4j Data Importers. Figure 6 depicts the consumption of the incoming events from Rea-

soning Engine Kafka Consumer and the construction of Neo4j entities for each specific

event from Neo4j Data Importers. These importers are a series of CYPHER scripts that

receive the batch window data from the Kafka consumer and persist the JSON data to the

Neo4j graph database. The embedded JSON objects are now transformed to graph entities.

As a result, the data querying will be more effective and significantly faster using graph

functionalities. Figure 7 depicts the resulting graph in Neo4j.

Figure 7. EREN data stored in Neo4j.

4.3. Retrieve Data from Reasoning Engine

The data retrieval process from Reasoning Engine is conducted through its REST API.

The Reasoning Engine retrieval REST API leverages the Python Neo4j Driver and CY-

PHER to query the stored EREN data that are structured in graph format. The following

REST API call calculates the average primary consumption of buildings classified with

primary consumption A.

The response received from the Retrieval REST API, which includes the requested

average primary consumption of buildings, is presented in Table 3. The REST API receives

CYPHER queries and, on its backend, transforms the aforementioned query result from

Neo4j entities to JSON.

Figure 7. EREN data stored in Neo4j.

4.3. Retrieve Data from Reasoning Engine

The data retrieval process from Reasoning Engine is conducted through its REST API.
The Reasoning Engine retrieval REST API leverages the Python Neo4j Driver and CYPHER
to query the stored EREN data that are structured in graph format. The following REST
API call calculates the average primary consumption of buildings classified with primary
consumption A.

The response received from the Retrieval REST API, which includes the requested
average primary consumption of buildings, is presented in Table 3. The REST API receives

Energies 2022, 15, 1500 10 of 12

CYPHER queries and, on its backend, transforms the aforementioned query result from
Neo4j entities to JSON.

Table 3. Retrieve average primary consumption.

curl –location –request POST ‘http://reasoning_engine:5000/query’ \
–header ‘Content-Type: text/plain’ \
–data-raw ‘MATCH
(b:Building)-[:has_primary_cons]->(prim_cons:PrimaryCons)-[:has_primary_label]->(l:Label {rating:
‘\”A’\”})
RETURN avg(prim_cons.ratio) as average_primary_cons’

The query could be extended in order to find the average primary consumption of
buildings located in ABRADA municipality. The new query sent to the Reasoning Engine
is demonstrated in Table 4. The following tables (Tables 4 and 5) demonstrate some queries
from Reasoning Engine Retrieval REST API.

Table 4. Average consumption for buildings with a primary consumption.

[
{

“average_primary_cons”: 35.88089204257478
}

]

Table 5. Retrieve average primary consumption for buildings located in ABRADA municipality.

curl –location –request POST ‘http://reasoning_engine:5000/query’ \
–header ‘Content-Type: text/plain’ \
–data-raw ‘MATCH (b:Building)-[:has_municipality]-(m:Municipality {name: ‘\”ADRADA (LA)’\”})
MATCH (b)-[:has_primary_cons]->(prim_cons:PrimaryCons)-[:has_primary_label]->(r:Label)
RETURN avg(prim_cons.ratio) as abrada_avg_cons’

The response, Table 6, received from the Retrieval REST API is the average consump-
tion requested.

Table 6. Average consumption of building located in ABRADA.

[
{

“abrada_avg_cons”: 349.7089201877938
}

]

5. Conclusions

This paper presented a metadata-driven component that aims to combine existing
modern technological breakthroughs in the areas of the machine learning/deep learning
and big data in order to develop a new data analytics solution for energy management
and energy-efficient buildings. The proposed approach realizes a holistic, state-of-the-art
semantics empowered module for the buildings sector.

The prediction of a building’s energy consumption is of utter importance since the main
goal of today’s society is to maintain and protect the natural environment and modernize the
urban infrastructure. The architecture that we propose provides the necessary capabilities
for boosting scalable big data management and semantics processing, with a vision to
reduce some of the major hindrance of previous RDFs (resource description frameworks)
and ontologies solutions. This can be achieved by introducing innovative graph databases
capable of handling semantic data in a more efficient and meaningful way.

http://reasoning_engine:5000/query
http://reasoning_engine:5000/query

Energies 2022, 15, 1500 11 of 12

The ideal AI models should be able to predict the energy consumption of the related
buildings, and, for that reason, the Reasoning Engine component leverages these building’s
metadata in order to produce information that can be utilized for the optimization of these
AI models. The Reasoning Engine that was introduced will be used to aim at solving
problems that may constitute building blocks for more complex problems, such as energy
performance prediction, multi-criteria assessment of building interventions, etc.

As future work, the Reasoning Engine graph database will be enriched with further
datasets from large-scale pilots in order to combine metadata from different sources and
generate more specific and detailed information for different kinds of buildings.

Furthermore, the results of inferences from the Reasoning Engine will be used for
data enrichment on a data warehouse system. This system will be based on query engine
technologies such as Presto (https://prestodb.io/ accessed date 26 December 2021), Apache
Druid (https://druid.apache.org/ accessed date 26 December 2021) and Hive (https://
hive.com/ accessed date 26 December 2021) and will aggregate information and queries
from multiple sources of data. These data will be enhanced with inference results, and
then they could be visualized from a data warehouse system visualization engine that
could be implemented in future work with a vision to expand the current architecture. This
type of connection could be established by using the microservices-oriented nature of the
Reasoning Engine and the fact that it exposes a number of REST APIs. These REST APIs
can be integrated with other systems that support the HTTP protocol.

Author Contributions: Conceptualization, P.K. and K.A.; methodology, G.K.; software, P.K.; valida-
tion, P.K., G.K. and K.A.; formal analysis, P.K.; investigation, K.A.; resources, G.K.; data curation, P.K.;
writing—original draft preparation, P.K., G.K. and K.A.; writing—review and editing, P.K., G.K. and
K.A.; visualization, P.K.; supervision, D.A.; project administration, D.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This work has been co-funded from the European Union’s Horizon 2020 research and
innovation program under the MATRYCS project ‘Modular Big Data Applications for Holistic Energy
Services in Buildings’, grant agreement No 101000158.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used for Reasoning Engine’s implementation can be
found in the following url: https://analisis.datosabiertos.jcyl.es/explore/dataset/certificados-de-
eficiencia-energetica/export/?location=10,41.15005,-2.43043&basemap=jawg.streets, accessed date
26 December 2021.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

Definition
AI Artificial Intelligence
APACHE APACHE SOFTWARE FOUNDATION
API Application Programming Interface
BDVC Big Data Value Chain
CYPHER Neo4j Graph Database Query Language
DL Deep Learning
EREN Regional Energy Agency in Spain
EPC Energy Performance Certificates
GraphQL Graphical Query Language
HTTP Hypertext Transfer Protocol Secure
IoT Internet of Things

https://prestodb.io/
https://druid.apache.org/
https://hive.com/
https://hive.com/
https://analisis.datosabiertos.jcyl.es/explore/dataset/certificados-de-eficiencia-energetica/export/?location=10,41.15005,-2.43043&basemap=jawg.streets
https://analisis.datosabiertos.jcyl.es/explore/dataset/certificados-de-eficiencia-energetica/export/?location=10,41.15005,-2.43043&basemap=jawg.streets

Energies 2022, 15, 1500 12 of 12

JSON JavaScript Object Notation
ML Machine Learning
ML/DL Machine Learning/Deep Learning
REST Representational State Transfer
RDF Resource Description Framework
SPARQL Semantic Query Language

References
1. Helm, D. The European Framework for Energy and Climate Policies. Energy Policy 2014, 64, 29–35. [CrossRef]
2. Energy Performance of Buildings Directive—European Commission. Available online: https://ec.europa.eu/energy/en/topics/

energy-efficiency/energy-performance-of-buildings/energy-performance-buildings-directive (accessed on 16 December 2021).
3. Energy Efficiency Directive—European Commission. Available online: https://ec.europa.eu/energy/topics/energy-efficiency/

targets-directive-and-rules/energy-efficiency-directive_en (accessed on 16 December 2021).
4. Lu, Q.; Parlikad, A.; Woodall, P.; Don Ranasinghe, G.; Xie, X.; Liang, Z.; Konstantinou, E.; Heaton, J.; Schooling, J. Developing A

Digital Twin at Building and City Levels: Case Study of West Cambridge Campus. J. Manag. Eng. 2020, 36, 05020004. [CrossRef]
5. Marinakis, V.; Doukas, H. An Advanced Iot-Based System for Intelligent Energy Management in Buildings. Sensors 2018, 18, 610.

[CrossRef] [PubMed]
6. Marinakis, V.; Doukas, H.; Karakosta, C.; Psarras, J. An Integrated System for Buildings’ Energy-Efficient Automation: Application

in the Tertiary Sector. Appl. Energy 2013, 101, 6–14. [CrossRef]
7. Marinakis, V.; Karakosta, C.; Doukas, H.; Androulaki, S.; Psarras, J. A Building Automation and Control Tool for Remote and

Real Time Monitoring of Energy Consumption. Sustain. Cities Soc. 2013, 6, 11–15. [CrossRef]
8. Marinakis, V. Big Data for Energy Management and Energy-Efficient Buildings. Energies 2020, 13, 1555. [CrossRef]
9. Marinakis, V.; Doukas, H.; Koasidis, K.; Albuflasa, H. From Intelligent Energy Management to Value Economy through a Digital

Energy Currency: Bahrain City Case Study. Sensors 2020, 20, 1456. [CrossRef] [PubMed]
10. Marinakis, V.; Doukas, H.; Tsapelas, J.; Mouzakitis, S.; Sicilia, Á.; Madrazo, L.; Sgouridis, S. From Big Data to Smart Energy

Services: An Application for Intelligent Energy Management. Future Gener. Comput. Syst. 2020, 110, 572–586. [CrossRef]
11. Wei, Y.; Zhang, X.; Shi, Y.; Xia, L.; Pan, S.; Wu, J.; Han, M.; Zhao, X. A Review of Data-Driven Approaches for Prediction and

Classification of Building Energy Consumption. Renew. Sustain. Energy Rev. 2018, 82, 1027–1047. [CrossRef]
12. Marinakis, V.; Doukas, H.; Spiliotis, E.; Papastamatiou, I. Decision Support for Intelligent Energy Management in Buildings Using

the Thermal Comfort Model. Int. J. Comput. Intell. Syst. 2017, 10, 882. [CrossRef]
13. Papadakos, G.; Marinakis, V.; Konstas, C.; Doukas, H.; Papadopoulos, A. Managing the Uncertainty of the U-Value Measurement

Using an Auxiliary Set along with a Thermal Camera. Energy Build. 2021, 242, 110984. [CrossRef]
14. Ahmad, T.; Chen, H.; Huang, R.; Yabin, G.; Wang, J.; Shair, J.; Azeem Akram, H.; Hassnain Mohsan, S.; Kazim, M. Supervised

Based Machine Learning Models for Short, Medium and Long-Term Energy Prediction in Distinct Building Environment. Energy
2018, 158, 17–32. [CrossRef]

15. Sheng, G.; Hou, H.; Jiang, X.; Chen, Y. A Novel Association Rule Mining Method of Big Data for Power Transformers State
Parameters based on Probabilistic Graph Model. IEEE Trans. Smart Grid 2018, 9, 695–702. [CrossRef]

16. Miller, J.J. Graph database applications and concepts with Neo4j. In Proceedings of the Southern Association for Information
Systems Conference, Atlanta, GA, USA, 23–24 March 2013; Volume 2324.

17. Vukotic, A.; Watt, N. Neo4j in Action; Manning: Shelter Island, NY, USA, 2015.
18. Kunda, D.; Phiri, H. A Comparative Study of NoSQL and Relational Database. Zamb. ICT J. 2017, 1, 1–4. [CrossRef]
19. Angles, R. A Comparison of Current Graph Database Models. In Proceedings of the 2012 IEEE 28th International Conference on

Data Engineering Workshops, Arlington, VA, USA, 1–5 April 2012.
20. Guia, J.; Gonçalves Soares, V.; Bernardino, J. Graph Databases: Neo4j Analysis. In Proceedings of the 19th International Conference

on Enterprise Information Systems, Porto, Portugal, 26–29 April 2017.
21. Mary Femy, P.F.; Reshma, K.R.; Varghese, S.M. Outcome Analysis Using Neo4j Graph Database. Int. J. Cybern. Inform. 2016, 5,

229–236.
22. Cabra, M. How the ICIJ Used Neo4j to Unravel the Panama Papers. Available online: https://neo4j.com/blog/icij-neo4j-unravel-

panama-papers/ (accessed on 29 October 2021).
23. Packer, D. How Walmart Uses Neo4j for Retail Competitive Advantage. Available online: https://neo4j.com/blog/walmart-

neo4j-competitive-advantage/ (accessed on 29 October 2021).
24. Allen, D.; Hodler, A.; Hunger, M.; Knobloch, M.; Lyon, W.; Needham, M.; Voigt, H. Understanding trolls with efficient analytics

of large graphs in neo4j. BTW 2019. [CrossRef]
25. Quamar, A.; Deshpande, A.; Lin, J. NScale: Neighborhood-Centric Analytics on Large Graphs. Proc. VLDB Endow. 2014, 7,

1673–1676. [CrossRef]
26. Jindal, A.; Rawlani, P.; Wu, E.; Madden, S.; Deshpande, A.; Stonebraker, M. Vertexica. Proc. VLDB Endow. 2014, 7, 1669–1672.

[CrossRef]

http://doi.org/10.1016/j.enpol.2013.05.063
https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-performance-of-buildings/energy-performance-buildings-directive
https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-performance-of-buildings/energy-performance-buildings-directive
https://ec.europa.eu/energy/topics/energy-efficiency/targets-directive-and-rules/energy-efficiency-directive_en
https://ec.europa.eu/energy/topics/energy-efficiency/targets-directive-and-rules/energy-efficiency-directive_en
http://doi.org/10.1061/(ASCE)ME.1943-5479.0000763
http://doi.org/10.3390/s18020610
http://www.ncbi.nlm.nih.gov/pubmed/29462957
http://doi.org/10.1016/j.apenergy.2012.05.032
http://doi.org/10.1016/j.scs.2012.06.003
http://doi.org/10.3390/en13071555
http://doi.org/10.3390/s20051456
http://www.ncbi.nlm.nih.gov/pubmed/32155853
http://doi.org/10.1016/j.future.2018.04.062
http://doi.org/10.1016/j.rser.2017.09.108
http://doi.org/10.2991/ijcis.2017.10.1.59
http://doi.org/10.1016/j.enbuild.2021.110984
http://doi.org/10.1016/j.energy.2018.05.169
http://doi.org/10.1109/TSG.2016.2562123
http://doi.org/10.33260/zictjournal.v1i1.8
https://neo4j.com/blog/icij-neo4j-unravel-panama-papers/
https://neo4j.com/blog/icij-neo4j-unravel-panama-papers/
https://neo4j.com/blog/walmart-neo4j-competitive-advantage/
https://neo4j.com/blog/walmart-neo4j-competitive-advantage/
http://doi.org/10.18420/btw2019-23
http://doi.org/10.14778/2733004.2733058
http://doi.org/10.14778/2733004.2733057

	Introduction
	State of the Art Analysis
	Methodology, Architecture, and Implementation
	Methodology
	Architecture
	Implementation

	Results
	Data Flow in Reasoning Engine Kafka Consumer
	Graph Creation in Neo4j
	Retrieve Data from Reasoning Engine

	Conclusions
	References

