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Abstract: Accurate estimation of the state of charge (SOC) of zinc–nickel single-flow batteries (ZNBs)
is an important problem in battery management systems (BMSs). A nonideal electromagnetic
environment will usually cause the measured signal to contain nonnegligible noise and bias. At
the same time, due to the influence of battery ageing, environmental temperature changes, and a
complex reaction mechanism, it is difficult to establish a very accurate system model that can be
applied to various complex working conditions. The unscented Kalman filter (UKF) is a widely used
SOC estimation algorithm, but the UKF will reduce the estimation accuracy and divergence under
the influence of inaccurate model and sensor errors. To improve the performance of the UKF, a robust
desensitized unscented Kalman filter (RDUKF) is proposed to realize an accurate SOC estimation
of batteries in the context of different disturbances. Then, the proposed method is applied to cases
of error interference, such as Gaussian noise, voltage sensor drift, an unknown initial state, and
inaccurate model parameters. The simulation and experimental results show that compared with the
standard UKF algorithm, the proposed estimation algorithm can effectively suppress the influence of
various errors and disturbances and achieve higher accuracy and robustness.

Keywords: real-time estimation; robust desensitized unscented Kalman filter; state of charge;
zinc–nickel single-flow batteries

1. Introduction

Renewable energy has been considered an alternative to coal-fired energy because its
use can result in reduced pollution and greenhouse gas emissions. However, the fluctuation
caused by the wide application of intermittent renewable energy, such as wind energy
and solar energy, will increase the burden of the power grid. Integrating rechargeable
batteries into the power grid as an energy storage system can effectively improve power
quality and system reliability [1]. Redox flow batteries (RFBs) have become one of the
most promising grid-connected energy storage technologies on the market because of
their long life cycle, good scalability, high efficiency, and low spatial requirements [2,3].
The main difference between a typical RFB and other types of batteries is that the active
materials of its positive and negative electrodes are stored in an external electrolyte storage
tank in the form of electrolytes and circulated into the battery stack chamber by two
independent auxiliary pumps. The RFB separates the two electrolytes through the ion
exchange membrane to prevent the mixing of redox substances and to maintain the electrical
neutrality of the energy storage system [4,5]. Since the concept of RFBs was put forward,
different kinds of RFBs have rapidly been developed, but the high cost of ion exchange
membranes and the interference of electrolyte cross pollution are still the main bottlenecks
hindering the development of RFBs. A novel RFB structure was proposed in [6]. This
battery dissolves zincate in high-concentration potassium hydroxide as the electrolyte. As
only one electrolyte is used, there is no need for an expensive ion exchange membrane in
the system design, and cross pollution of the electrolyte is avoided. At the same time, this
RFB has a high open-loop voltage and energy density, is nontoxic, has a simple structure,
and is low-cost [7–9]. This makes its commercialization easier.
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Zinc–nickel single-flow batteries (ZNBs) have been developed rapidly since they
were first proposed. However, there are still some important problems to be solved
in their practical engineering. State of charge (SOC), an important state monitored in
battery management systems (BMSs), is very important to consider in attempting to avoid
overcharging and/or overdischarging. At present, SOC estimation has three main research
directions: the Coulomb counting method, the machine learning method, and the state
observer method [10]. The Coulomb counting method is an open-loop method that is simple
to implement and has a low calculation cost. However, its accuracy is greatly affected by
the sensor accuracy and initial errors; thus, it is necessary to periodically use the charge–
discharge cut-off voltage or open-circuit voltage to correct the estimated value [11–13].
Machine learning methods do not need to understand the internal electrochemical or
external circuit characteristics of a battery. They estimate the SOC by fitting the nonlinear
relationship between relevant factors such as the current, voltage, temperature, and SOC.
The support vector machine (SVM) [14], neural network (NN) [15], fuzzy logic (FL) [16], and
long short-term memory (LSTM) network [17] have been implemented for SOC estimation.
If the appropriate training dataset is given, the machine learning method can estimate
the SOC of a battery more accurately. When the training data and test data correspond
to different working conditions, the robustness of the state estimation algorithm will
worsen, and machine learning will require a longer training time and higher computing
cost, which restricts the wide application of machine learning in actual SOC estimation.
The observer method usually assumes that the battery is a dynamic system. The battery
model is established to describe the change in battery state, and various filter algorithms
are introduced to estimate the state variables. Among the different types of observers,
the Kalman filter is the most widely used. The extended Kalman filter (EKF) was first
used to solve the problem of battery state estimation. However, as the battery state space
model is usually a nonlinear model and the EKF uses first-order Taylor series expansion
to linearize a nonlinear model, there are large errors in estimating battery SOC using the
EKF; in contrast, using the unscented Kalman filter (UKF) to estimate battery SOC results
in higher robustness and accuracy [18,19].

The Kalman filter algorithm is based on a basic premise: that the established model is
accurate enough to accurately track the change in battery terminal voltage under dynamic
current conditions. This assumption is usually difficult to fully satisfy because the actual
parameters of the model will change in accordance with the change in ambient temperature
and battery life, and it is very difficult to establish a model considering all influencing
factors. In [20], the error sources of SOC estimation are systematically analyzed from
the perspectives of the measurement signal, model error, and state estimation algorithm.
In [21], the model-based SOC estimation algorithm was shown to be more affected by
voltage measurement errors and model errors than by current measurement errors and
initial errors. To improve the accuracy of SOC estimation under different error sources,
many different improved algorithms have been proposed.

In [22], the bias term of the model error was taken as a new state vector, which was
jointly estimated with the SOC through an estimation algorithm to solve the problems of
open-circuit voltage drift and voltage sensor drift [23]; a proportional integral (PI) state
observer and a current integrator were used to estimate the SOC of the battery; and a drift
current corrector was used to suppress the influence of the drift current. For the situation
in which the battery model parameters are uncertain due to battery ageing and there is
instrument measurement noise, [24] proposed a smooth variable structure filter (SVSF)
to estimate the SOC and health state of lithium batteries. Compared with the EKF, the
SVSF can produce more accurate SOC estimation results. In [25], the extended Kalman
smoothing variable structure filter was proposed, which is a new algorithm combining the
EKF and SVSF technologies. The experimental results showed that it has strong robustness
with respect to inaccurate models and can improve the accuracy of SOC estimation. In [26],
an observer with multiple feedback gains was designed to estimate the SOC. In the case
of inaccurate modeling and current sensor drift, the SOC of the battery can be estimated
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robustly, and the amount of calculation is low. In [27], an algorithm combining the strong
tracking UKF and adaptive UKF was proposed, and the uncertainty of the model was iden-
tified through statistical information, which can effectively suppress the state estimation
error caused by sensor drift. In [28], the observability of the second-order RC nonlinear
model was analyzed, and it was proposed that accurate voltage measurement is more
important for SOC estimation than current measurement accuracy, which is consistent with
the conclusion of [21]. At the same time, Zhao et al. [28] proposed using the extended
model to address the reduction in the accuracy of SOC estimation when errors occur in
sensors and pointed out that when errors occur in voltage and current sensors, the method
used may not accurately estimate the SOC and bias at the same time. In [29,30], the state
estimation problem was studied when noise and bias occur in voltage sensors or current
sensors. The DEKF was used to estimate the battery SOC, and the results showed that the
proposed estimation method has good convergence and robustness. The two-layer state
estimator proposed in [31] estimated the SOC of a battery, limiting the state estimation
error to ±4% when the model is inaccurate and current deviation exists.

In summary, although voltage offset and model error are the main factors affecting
the reduction in SOC estimation accuracy, few studies have considered the SOC estimation
problem when voltage offset or model error exists. Moreover, the BMS is affected by external
electromagnetic interference in harsh operating environments. The signals received from
voltage and current sensors are usually polluted by random noise, which reduces the SOC
estimation accuracy. To solve the above problems, a robust UKF algorithm is proposed to
improve the robustness of the SOC estimation of ZNBs under Gaussian noise, inaccurate
modeling, or voltage sensor drift. The proposed method has the following advantages:
(1) it can suppress the influence of Gaussian measurement noise in a sensor, (2) it has good
robustness to model parameter uncertainty, and (3) it improves the accuracy of battery SOC
estimation in the presence of voltage sensor drift.

The structure of the paper is as follows: In Section 2, the equivalent circuit model of a
ZNB is introduced. In Section 3, the application of the proposed robust UKF algorithm in
battery SOC estimation is introduced. In Section 4, the estimation results of a robust UKF
in the presence of model parameter disturbance or voltage bias are verified and compared
with those of a UKF. Section 5 offers the main conclusions of the paper.

2. Equivalent Circuit Model

The SOC of ZNBs can be defined as the ratio of residual capacity to maximum capacity,
which can be expressed by (1). SOCt and SOC0 are the initial SOC at time t and at the
beginning of estimation, respectively, Qn is the maximum capacity of the battery, and i(τ)
is the load current. It is assumed that the current is positive when the battery is discharged.

SOCt = SOC0 −
1

Qn

∫ t

0
i(τ)dτ (1)

At present, the commonly used battery models mainly include neural network models,
electrochemical models, and equivalent circuit models (ECMs). Among the electrochem-
ical models, the one-dimensional (1D) model [32] and pseudo-two-dimensional (P2D)
model [33,34] are widely used. As the electrochemical model is the first-principles model
and has clear physical significance, it can not only describe the relationship between current
and voltage at the macroscale but also analyze the concentration, current and potential
distribution of reaction products in the electrode and electrolyte at the microscale. However,
the complex coupled nonlinear partial differential equations and the model parameters
that are difficult to measure directly cause the electrochemical model to have high require-
ments regarding the amount of calculation. The neural network model is the opposite
of the electrochemical model. This model does not consider the mechanism of a battery
and uses only the data-driven method to approximate the dynamic characteristics of the
battery. Compared with other models, it requires more data to train the network model.
ECM uses circuit elements such as resistance, capacitance, and voltage source to build
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a circuit network to simulate the dynamic response of voltage under different working
conditions. The commonly used equivalent circuit models include the Thevenin model and
second-order RC equivalent circuit model, which adds a group of RC networks. Therefore,
the polarization and diffusion characteristics inside the battery can be better simulated.

A typical second-order-equivalent circuit model is shown in Figure 1. R1 and R2
represent the polarization resistance, and C1 and C2 represent the polarization capacitance.
The equivalent circuit model uses parallel RC branches to characterize the electrochemical
polarization and concentration polarization of ZNBs during charge and discharge. VOCV
represents the open-circuit voltage of the battery, which is the difference in the equilibrium
electrode potential between the positive and negative electrodes when the battery is in
a reversible equilibrium state during the open-circuit period. R0 is the ohmic resistance,
which is used to characterize the energy loss caused by the resistance between the battery
electrode and electrolyte. The terminal voltage and current of the battery are expressed as
Vt and I, respectively, and the current during discharge is defined as a positive number.
According to Kirchhoff’s law and (1), the discrete state space equation of a dynamic battery
can be easily deduced, as shown in (2) and (3). It is worth noting that for a ZNB, because
the open-circuit voltage, polarization capacitance, and polarization resistance are functions
related to the SOC, the state equation and output equation of this state space equation are
nonlinear equations. SOC(k)

U1(k)
U2(k)

 =

 1 0 0
0 exp(−∆t/R1/C1) 0
0 0 exp(−∆t/R2/C2)

 SOC(k− 1)
U1(k− 1)
U2(k− 1)



+

 −η ∆t
Qn

[1− exp(−∆t/τ1)]R1
[1− exp(−∆t/τ2)]R2

I(k− 1)

(2)

Vt(k) = VOCV(SOC(k))−U1(k)−U2(k)− R0 I(k) (3)
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Figure 1. Schematic diagram of the two-order RC ECM.

To simplify the model, the parameters are assumed to be related only to the SOC, but
in fact, the model parameters are also affected by the ambient temperature, current, and
battery ageing state. Ignoring these factors in modeling reduces the accuracy of the model
in a complex working state and affects the accuracy of the algorithm when used to estimate
the SOC.

3. Robust Unscented Kalman Filter

For nonlinear systems such as ZNBs, the corresponding discrete state space represen-
tation is as follows:

xk = f (xk−1, uk−1) + wk−1 (4)

yk = h(xk, uk) + vk (5)
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where xk = [SOC U1 U2]
T is the state at time k, and uk and yk are the input current and

output voltage at time k, respectively. f (xk−1, uk−1) is the state transfer function, h(xk, uk)
is the measurement function, and wk−1 and vk are the process noise and the measurement
noise, which are usually assumed to be zero-mean white noise with covariance matrices Q
and R, respectively.

Unlike the EKF, which uses only Taylor series expansion to approximate the nonlinear
state space model [35], the UKF uses a traceless transformation (UT) to determine the
sampling points near the estimation points and uses these sample points to approximately
represent the random distribution of the nonlinear function [36]; thus, the UKF algorithm
does not need to calculate the Jacobian matrix of the system model (compared with the
EKF). At the same time, there is no need for random sampling (compared with the particle
filter (PF) algorithm); therefore, the UKF can be regarded as a compromise between the
EKF and PF. The SOC estimation process of a ZNB based on the UKF can be summarized
as follows:

(1) Initialize the value of the state variable and the covariance:{
x0 = E(x0)

P0 = E[(x0 − x0)(x0 − x0)
T ]

(6)

where E (·) is the expected mean value.

(2) Generate 2n + 1 sigma vectors and corresponding weights at the k − 1 step, where n
is the dimension of the state variable:


χ̂0,k−1 = x̂k−1

χ̂i,k−1 = x̂k−1 +
(√

(n + λ)Pk−1

)
i
i = 1, 2, . . . , n

χ̂i,k−1 = x̂k−1 −
(√

(n + λ)Pk−1

)
i
i = n + 1, . . . , 2n

(7)


ωm

0 = λ
(n+λ)

ωc
0 = λ

(n+λ)
+
(
1 + β− α2)

ωm
j = ωc

j =
1

2(n+λ)
, j = 1, 2, . . . , 2n

(8)

Here, λ is a scaling parameter, which can be expressed as λ = α2(n + h)− n, and α
determines the spread of the sigma points around x̂k−1 and is usually set to a small positive
value. ωm and ωc are covariance weights, and β is a parameter that is used to incorporate
prior knowledge of the distribution of the state variable. For Gaussian distributions, one
can assume β = 2.

(3) State prediction

Update the sample point and calculate the propagated mean:

χj,k = f
(

χ̂j,k−1, uk−1

)
, j = 0, 1, . . . , 2n (9)

xk = ∑2n
j=0 ω

(m)
j χj,k (10)

Update the priori error covariance of state:

Pk = ∑2n
j=0 ω

(c)
j [χx

j,k − xk][χ
x
j,k − xk]

T + Qk (11)

where Qk is the covariance of system process noise.

(4) Measurement update
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Predict the measurement from the propagated sigma points and estimate the mean of
the predicted measurement.

Yj,k = h
(

χj,k, uk

)
, j = 0, . . . , 2L (12)

yk = ∑2n
j=0 ω

(m)
j Yj,k (13)

Calculate the covariance of the measured variables and associated covariance matrices,
where Rk is the covariance of measurement noise.

Pyy,k = ∑2n
j=0 ω

(c)
j

[
Yj,k − yk

][
Yj,k − yk

]T
+ Rk (14)

Pxy,k = ∑2n
j=0 ω

(c)
j

[
χj,k − xk

][
Yj,k − yk

]T
(15)

Calculate the posterior estimate and the covariance:

x̂k = xk + Kk(yk − yk) (16)

P̂k = Pk − Pxy,kKT
k − KkPT

xy,k + KkPyy,kKT
k (17)

where Kk is the Kalman gain, which can be expressed as Kk = Pxy,kP−1
yy,k.

The standard UKF has been successfully applied to battery SOC estimation [37,38].
It is easy to prove that the UKF is an unbiased state estimator when all system model
parameters and noise statistics are accurately known. However, when the parameters of
the system model are uncertain, the theoretical behavior and actual behavior of the filter
will be inconsistent. Compared with the actual state value, the state estimation value will
have a large deviation and even a serious divergence problem. Therefore, the RDUKF
is then applied to the SOC estimation of ZNBs [39] to obtain a more robust SOC state
estimation scheme.

Before using the RDUKF to estimate the battery SOC, the state equation and observa-
tion equation need to be changed to the following form:

xk = f (xk−1, uk−1, α) + wk−1 (18)

yk = h(xk, uk, α) + vk (19)

where α is the uncertainty parameter in the established model.
The influence of model disturbance parameters on the accuracy of state estimation is

measured by the sensitivity matrix of the state estimation error relative to the disturbance
parameters. Therefore, (20) is used to evaluate the influence of uncertain parameters
on a priori estimation and a posteriori estimation in the UKF algorithm, and αi is the I
component of uncertain parameters.

σik =
∂xk
∂αi

, σ̂ik =
∂x̂k
∂αi

(20)

The sensitivity matrix can be generated by calculating the partial derivatives of the
parameters in (10) and (16), where l is the number of uncertain parameters.

σik = ∑2L
j=0 ω

(m)
j

∂χj,k

∂αi
, i = 1, . . . , ` (21)

σik = σik − Kk
∂yk
∂αi

, i = 1, . . . , ` (22)

Corresponding to the UKF algorithm, the calculation of the sensitivity of the RDUKF
can be divided into four steps:
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(1) Calculate the sensitivities of the sigma points for each uncertain parameter.

∂χ̂0,k−1
∂αi

= σ̂T
ik−1

∂χ̂j,k−1
∂αi

= σ̂T
ik−1

+
√
(n + λ)

(
∂
√

P̂k−1
∂αi

)
j
, j = 1, 2, . . . , n

∂χ̂j,k−1
∂αi

= σ̂T
ik−1

+
√
(n + λ)

(
∂
√

P̂k−1
∂αi

)
j
, j = 1, 2, . . . , n

(23)

(2) State prediction

Calculate the sensitivities of the sigma points with the state equation and evaluate the
sensitivity of the a priori state estimation and a priori covariance matrix.

∂χj,k

∂αi
=

∂ f
(

χ̂j,k−1, uk−1, α
)

∂αi
+

∂ f
(

χ̂j,k−1, uk−1, α
)

∂χ̂j,k−1

∂χ̂j,k−1

∂αi
, j = 0, . . . , 2L (24)

σik =
∂xk
∂αi

= ∑2L
j=0 ω

(m)
j

∂χj,k

∂αi
(25)

∂Pk
∂αi

= ∑2L
j=0 ω

(c)
j

{[
∂χj,k
∂αi
− σik

][
χj,k − xk

]T
+
[
χj,k − xk

][
∂χj,k
∂αi
− σik

]T}
, i = 1, . . . , ` (26)

(3) Measurement update

Calculate the sensitivity of the sigma points with the observation equation and the
sensitivity of the predicted measurement.

∂Yj,k
∂αi

=
∂h(χj,k ,uk ,α)

∂αi
+

∂h(χj,k ,uk ,α,)
∂χj,k

∂χj,k
∂αi

, j = 0, . . . , 2L (27)

∂yk
∂αi

= ∑2L
j=0 ω

(m)
j

∂Yj,k

∂αi
(28)

Calculate the sensitivity of the innovation covariance matrix and the cross-covariance
matrix.

∂Pyy,k
∂αi

= ∑2L
j=0 ω

(c)
j

{[
∂Yj,k
∂αi
− ∂yk

∂αi

][
Yj,k − yk

]T

+
[
Yj,k − yk

][∂Yj,k

∂αi
−

∂yk
∂αi

]T}
,= 1, . . . , ` (29)

∂Pxy,k
∂αi

= ∑2L
j=0 ω

(c)
j

{[
∂χj,k
∂αi
− σik

][
Yj,k − yk

]T
+
[
χj,k − xk

][
∂Yj,k
∂αi
− ∂yk

∂αi

]T
}

, i = 1, . . . , ` (30)

Calculate the Kalman gain and sensitivity of posterior covariance of the posterior
state estimation.

Kk P̀yy,k + ∑`

i=1 Wik Kkγik γT
ik = P̀xy,k + ∑`

i=1 Wik σik γT
ik (31)

Here, γik = ∂yk/∂αi:

∂P̂k
∂αi

=
∂Pk
∂αi
−

∂Pxy,k

∂αi
KT

k − Kk
∂PT

xy,k

∂αi
+ Kk

∂Pyy,k

∂αi
KT

k , i = 1, . . . , ` (32)

σ̂ik = σik − Kk
∂yk
∂αi

, i = 1, . . . , ` (33)

Similar to the standard UKF, the trace minimizing the error covariance is used to
define the cost function, and the RDUKF uses the trace of the sensitivity matrix product
of all disturbance parameters to measure the impact of disturbance parameters on the
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accuracy of state estimation. Therefore, a new cost function (34) is constructed. The Kalman
gain can be set as ∂Jk/∂Kk = 0 with (17) and (33) and is obtained by algebraically solving
linear equations.

Jk = min
Kk

tr
(

P̂k
)
+ ∑`

i=1 σ̂T
ik Wik σ̂ik (34)

The sensitivity of the root square matrix
√

P̂k needs to be calculated when the sensi-
tivities of the sigma points are calculated. ∂P̂k/∂αi can be obtained by taking the partial

derivative of P̂k =
√

P̂k

√
P̂k.

∂P̂k
∂αi

=
∂
√

P̂k

∂αi

√
P̂k +

√
P̂k

∂
√

P̂k

∂αi
(35)

Thus, ∂
√

P̂k/∂αi can be calculated using (36):

vec
(

∂
√

P̂k
∂αi

)
=

(√
P̂k

T
⊗ I + I ⊗

√
P̂k

)−1

× vec
(

∂P̂k
∂αi

)
, i = 1, . . . , l (36)

where vec (·) and ⊗ are the column straightening operator and Kronecker product operator,
respectively, and I is the identity matrix. The RDUKF approach is summarized in Table 1.

Table 1. Summary of the RDUKF approach for SOC estimation.

Initialization

Initial state x0; covariance matrix P0; sensitivity parameters σ̂0; and ∂P0/∂αi, i = 1, . . . , l

For k = 1, 2, . . .
Time update

1. Generate sigma points via (7) and their sensitivities via (23).

2. Propagate the sigma points and their sensitivities via (9) and (24).

3. Compute the mean and covariance of the predicted state via (10) and (11).

4. Compute the sensitivities of the prior estimate using (26) and the prior sensitivity
using (25).

5. Measurement update

6. Propagate the sigma points of the measurement and their sensitivities via (12) and (27).

7. Calculate the predicted measurements and their sensitivities using (13) and (28).

8. Estimate the covariance of the measurement and the sensitivities using (14) and (29).

9. Estimate the cross-covariance and the sensitivities using (15) and (30).

10. Compute the Kalman gain via (31).

11. Update the posterior mean of the state and the sensitivities by (16) and (33).

12. Calculate the posterior covariance matrix and the sensitivities using (17) and (32). k = k + 1.

4. Experimental Results and Discussion

In this section, the experimental verification method is used to further evaluate the
robustness of the proposed state estimation algorithm when the model parameters are
inaccurate and there is voltage sensor bias.

In this study, a prototype of ZNBs was fabricated and tested. The nominal capacity
was 56 Ah, and the charging cut-off voltage and discharging cut-off voltage were 2.1 V
and 1.2 V, respectively. The test platform was a BTS-3000 programmable battery test
system produced by Neware (Shenzhen, China). All experimental data (including current,
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voltage, and charge–discharge capacity) were collected at a sampling frequency of 1 Hz.
As the experiment was completed in a laboratory environment with precise and accurate
equipment, noise sequences with a random normal distribution and zero mean whose
variance equals 0.36 A2 and 0.004 V2 were added to the collected voltage and current data
to simulate the influence of a harsh electromagnetic environment. The voltage and current
with noise under the dynamic stress test (DST) cycle are shown in Figure 2.
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As the laboratory current sensor has high accuracy, after the initial SOC was deter-
mined by the open-circuit voltage, the SOC calculated by using the Coulomb count was
taken as the accurate value to verify the state estimation performance of the different
algorithms. The MAE and RMSE were used to evaluate the error of deviation between the
estimated value and true value and are defined by (37) and (38), where K is the data length.

MAE =
1
K ∑K

k=1

∣∣x̂k − xture,k
∣∣ (37)

RMSE =

√
1
K ∑K

k=1(x̂k − xture,k)
2 (38)
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In practical engineering applications, the BMS may not be able to obtain an accurate
initial SOC. To verify the sensitivity and accuracy of different algorithms relative to the
initial error, we set the initial SOC to 50% and the actual value to 90%. The estimation
results and errors are shown in Figure 3. Both the UKF and RDUKF can still converge to
the real SOC without knowing the real initial SOC. The RMSE and MAE obtained from
the experiment are shown in Table 2. The RDUKF can more accurately track the real
SOC changes.

Voltage drift may occur when the sensor is affected by drastic changes in ambient
temperature or electromagnetic interference. As the Kalman filter algorithm relies on the
feedback of the measured data to correct the state estimation value, the sensor drift will
reduce the estimation accuracy. To evaluate the influence of voltage sensor drift on the UKF
and RDUKF algorithms, in addition to setting the initial SOC error to 40%, the maximum
drift voltage was set to ±10 mV. The SOC estimation results and errors of the two methods
are shown in Figure 4. To clarify the differences between the different algorithms, the
figures display only the SOC changes that occur after 100 s. Due to the influence of sensor
drift, the SOC value estimated by the UKF algorithm gradually deviates from the real value
with the increase in the number of measured values. Although the estimation error of the
RDUKF algorithm is larger than that without sensor drift, it still converges to a fixed value.
The MAE and RMSE values obtained by the two methods under different drift voltages are
shown in Figure 5. With increasing drift voltage, the MAE and RMSE of the two algorithms
tend to increase. Under the same bias voltage, except when the voltage drift is +2 mV, the
MAE and RMSE values of the method based on the RDUKF are smaller; thus, this method
is more robust.

It is difficult to establish a battery model that covers the entire life cycle. Affected by
ageing and ambient temperature, the established model has difficulty tracking the real
voltage change, and the mismatched model usually causes divergence of the Kalman filter.
To test the accuracy of the UKF and RDUKF algorithms under incorrect model parameters,
it is also necessary to set the initial SOC to an incorrect value, i.e., a ± 50% deviation is
added to the real model parameters. Compared with R2, C2, and C1, when R1 and R0
change, the terminal voltage of the model undergoes greater changes under the same
working conditions. Therefore, only the two models in which only R1 is changed and only
R0 is changed are considered. It is worth noting that these two assumptions are used only
to analyze the robustness of the state estimation algorithm and may not reflect practical
applications. Figure 6 shows the SOC estimation results and errors of the two methods,
when R1 has a deviation of ±50%. Similarly, only the change in SOC after 100 s is shown.
Compared with the RDUKF, the UKF algorithm exhibits obvious divergence. The MAE
and RMSE values obtained by the two methods under different model errors are shown in
Figure 7. The RDUKF algorithm is obviously more robust.

Table 2. Estimated error under the DST.

MAE RMSE

RDUKF 0.0009 0.0029
UKF 0.0044 0.0056
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Figure 8 shows the SOC estimation results and errors of the two methods, when R0
undergoes a deviation of ±50% after 100 s. The UKF algorithm also diverges. The MAE
and RMSE values obtained by the two methods under different model errors are shown
in Figure 9. The RDUKF algorithm has a higher estimation accuracy, but under the same
deviation ratio, it can be seen that the RDUKF is affected to a greater extent by the R0
model parameters.
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5. Conclusions

As a commonly used SOC estimation algorithm, the UKF has high accuracy in an ideal
working environment, but over a complete life cycle, it is difficult to fully grasp the impacts
of battery ambient temperature, ageing degree, and working conditions on the battery
model and sensor drift, which makes it difficult for the UKF to accurately estimate the
battery SOC. To improve the estimation accuracy of the SOC in complex environments, this
paper discusses the application of the RDUKF to battery state estimation. By comparing the
accuracy of the UKF and RDUKF state estimation under different assumptions, it is verified
that the proposed method has high robustness in the presence of model uncertainty and
sensor voltage drift. For changing parameters or ±10% voltage deviation, the estimation
accuracy can be maintained in the error range of ±1.5%. Although the RDUKF has good
robustness, it still requires accurate information on the statistical characteristics of system
noise. Therefore, the future research goal is to study an estimation algorithm that can
accurately estimate the SOC when both a priori noise is statistically unknown and model
uncertainty exists.
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