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Abstract: Monitoring of railroad wagons is important for logistical processes, but above all for safety.
One of the key parameters to be monitored is the temperature of the axle box and the bearings in the
bogie. The problem with monitoring these parameters is the harsh environment and lack of power
supply. In our research, we present a power supply system for a WSN node monitoring the bogie
parameters. Knowing the operating conditions, we built a power supply system using a piezoelectric
energy harvester. The harvester consists of three piezoelectric elements placed on a double arm
pendulum beam. The circuit was modeled in the Comsol Multiphysics environment and then built
and tested in laboratory conditions. After confirming energy efficiency, the system was tested on a
freight car bogie during an 8 h trip. At typical car vibration frequencies (4–10 Hz), the system is able
to generate 73 uW. Combined with an energy buffer of 1000 mAh (3.7 V), it can power a WSN node
(based on the nRF5340 chip) for 13 years of operation.

Keywords: energy harvesting; piezoelectric; power unit; freight monitoring

1. Introduction

Modern economy, industry and methods of production of goods are highly dependent
on a properly functioning supply chain. The transport of goods and people plays a large
role in ensuring the proper functioning of logistics processes. Maintenance of the entire
transport infrastructure is of significant economic and social importance. One of the
elements ensuring its functioning is monitoring and appropriate control. It is particularly
visible in railroad transport [1,2], both passenger and freight. One of the key parameters is
the safety of rolling stock and passengers. Safety is determined by many factors such as the
quality of the railroad infrastructure and the technical condition of locomotives and wagons.
One of the problems associated with the operation of railcars is the condition of bearings
and axle box of the railcar. Due to high loads, there is a high risk of bearing damage which
leads to a rapid temperature rise of the axle box and bogie axle and eventually can lead
to wheel breakage and derailment. Therefore, monitoring the axle box temperature gives
information about the current state of the bearings and allows to predict the need to replace
them. This helps to avoid railroad disasters, as well as costly repairs by mobile services.

Our paper focuses on research on developing a power supply system for a WSN node
operating aboard a railcar. The node will measure the temperature of the bearings and
axle box in the bogie of a freight car. Electric power supply in freight cars is practically
non-existent, so the node will be equipped with a power supply system using energy
harvesting methods. Knowing the working environment of the node, we applied a kinetic
energy converter using a piezoelectric harvester. This harvester is a two-armed pendulum
with a length of 11 cm length and an asymmetric mass installed at the extremities. This
approach allows to obtain two resonance frequencies (15 Hz and 22 Hz). By approximating
the resonance frequencies of the harvester to the vibration frequency of the railroad car,
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the power generated by the system can be significantly increased. Typical car vibration
frequencies range from 4 to 10 Hz. Under these conditions, the constructed power supply
system had an operational power of 60.5 µW. This efficiency together with the 1000 mAh
(3.7 V) energy buffer allows to power the WSN for 13.3 years.

The article is further structured as follows: In Section 2, we gave a brief overview of
rail infrastructure monitoring systems. We took a close look at power systems that use
EH techniques. Since our main solution is based on a piezoelectric element, in Section 3
we presented basic piezoelectric materials with parameters relevant to energy harvesting.
Section 4 is the analysis of the mechanical parameters of the harvester and the modeling and
simulation of the target system. Section 5 contains the results of testing the real power unit
in laboratory conditions and in the target conditions, i.e., in a freight train car. Discussion
of the obtained results, their comparison, energy balance and presentation of potential use,
are presented in Section 6. A summary of the research is presented in Section 7.

2. State of the Art

Monitoring and control systems allow maintaining train traffic, give the possibility of
detection and prediction of damage, and allow to guarantee the required level of safety.
Monitoring systems in this area can be divided into two groups:

• Ground-based systems, characterized by the fact that measuring systems are located
on or near the rails. The sections of monitored routes can be different and vary from
several tens of meters to several tens of kilometers. The data are usually transmitted
using wired/fiber optic interfaces and then via long distance links to the central
controller/server of the system. Such systems monitor the condition of tracks and
turnouts, but also parameters of passing trains. The monitored train does not have the
additional elements of the measurement system. This makes it possible to monitor
all trains passing along a given route, and thus to carry out tests on a large number
of cases.

• On-board systems are characterized by the fact that the measuring equipment, as well
as the first system controller, is installed on board the train. These systems mainly
operate as WSNs. They are dominated by short and long range wireless interfaces.
In these systems, technical parameters of the train/car or of the freight transported
are mainly monitored, less often track parameters. The monitored train is tested over
a period of time on different routes. In this way it is possible to collect information
about the train parameters under typical operating conditions.

The element that affects the lifetime in both types of systems is the power unit. There-
fore, we will analyze the power systems in the above-mentioned systems

In the case of ground-based systems, the energy to power them is drawn from the
power grid [3] or battery [4]; in some systems, the energy is transmitted via fiber optic
link [5]. However, some ground-based systems use energy harvesting to power the nodes
that monitor railroad infrastructure [6]. There are also solutions for universal power
systems. One of them is a system that uses the vibrations of a loaded piezoelectric beam
mounted on railroad tracks. Vibrations during the passage of a train and especially the
moment of passage of a carriage bogie gave the possibility to obtain power equal to
4.9 mW [7]. While in [8], a matrix of 16 piezoelectric PZT harvesters was installed on a
railroad sleeper which allowed to achieve power from 81 to 1300 µW. Piezoelectric solution
was also used to power a node measuring track vibration in a tunnel in Germany [9]. In this
solution, 395 µJ was stored after each train passage. While a system using a piezoelectric
beam mounted on the bottom of the rails was presented in [10]. This system generated
power of about 1 mW. Similar solutions of piezoelectric harvesters mounted on rails or
railroad sleepers are presented in [11–13].

The problem of power supply for measuring nodes in railroad vehicles is important
because all devices operating on board a railroad vehicle must meet restrictive safety
standards [14]. Any disturbance of the train’s power network is registered and may be the
reason why the train is not allowed to move. Additionally, in the case of monitoring freight
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cars, the power supply is not present in them. Therefore, there is a noticeable trend in the
construction of measuring nodes to separate them from the train installation, and to extend
the operation of the node on battery power through the use of appropriate hardware and
software solutions [14–17], or the use of energy harvesting (EH) methods.

Focusing attention on measurement systems and nodes implemented in rolling stock
and using energy harvesting systems, the WSN presented in [18] can be cited. The mea-
surement nodes of the network are installed on the axles of the carriage and measure
temperature, vibration, speed and position of the carriage. The power supply node uses a
patented ELVIBR circuit that converts the kinetic energy of vibration into electrical energy
using an electromagnetic and piezoelectric system. In contrast, He et al. propose to use
a matrix of 16 electromagnetic circuits with a geophone structure for power supply [19].
Another application of the electromagnetic system is proposed in [20], where a harvester is
suspended from the underside of a freight car platform and used to support the operation
of an electronically controlled pneumatic (ECP) brake system. This system generates as
much as 4.6 W and the harvesters operate in a three-phase system. A similar design of
the harvester is presented in [21], where the efficiency of 1.3 W was obtained. Another
onboard power supply system using an electromagnetic system is presented in [22]. The
system is able to generate 100 mW of power under the vibration of a train car moving
at 80 km/h. Gao et al., on the other hand, present a specialized system using an electro-
magnetic harvester “with an inertial pendulum” which has an output of 263 mW [23].
Cho et al. presented a piezoelectric circuit for powering black boxes in a train that has a
power density of 40 µW/cm3 [24]. On the other hand, the SUSTRIAL project studied the
spring-mass-oscillator in the piezoelectric generator. It generates 2 µW of power but at a
relatively high frequency of 80 Hz [25]. In [26], an Eh circuit using a thin piezoelectric film
in a multibeam configuration allowing 13 mW generation at a train vibration frequency of
14 Hz is presented. A structurally similar solution was used in the work [27] and installed
on a railcar platform. This made it possible to generate up to 15 mW.

Summarizing the above review, one can say that the systems monitoring the railroad
infrastructure are its indispensable element. Depending on the needs, these may be systems
with measuring nodes working on the ground or onboard. Regardless of the type of system,
an important part of the system or measuring node is a power supply block. The power
block is responsible for measuring node working time. This parameter is responsible for
the economy of the monitoring system implementation. The short operating time of a
system makes its costs high and only important scientific or organizational reasons will
allow to implement and run such a system. On the other hand, equipping the system
with self-sufficient and self-powering measuring nodes increases the economy and reduces
organizational efforts related to the replacement of power units. Additionally, the self-
powering node does not interfere with the energy structure of the car or train, which is
important from the safety point of view. Because of these benefits, there is a noticeable
trend towards the use of power supplies using energy harvesting techniques. In the case
of on-board systems, techniques for the conversion of kinetic energy into electrical energy
are particularly used, with electromagnetic and piezoelectric harvesters leading the way.
The power generated, depending on the size and point of installation of the harvester,
ranges from hundreds of µW to tens of mW. This power output allows the construction of
a measurement node using low energy controllers and radio links.

3. Piezoelectric Effect and Materials

In our research, we focus on piezoelectric energy converters. Using the piezoelectric
phenomenon, the vibration energy of the carriage will be converted into eclectic energy.

The simple piezoelectric effect is based on the induction of electric charges on the
surface of the crystal and polarization under the action of external forces. The simple
piezoelectric effect is presented in Figure 1, showing particles of lead zirconate titanate
PZT (PbZrO3 and PbTiO3) ceramic material. The properties of the piezoelectric effect are
described by a system of two linear equations describing relations between electrical and
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mechanical quantities. The mechanical description of the piezoelectric effect is defined by
Hooke’s law, which defines the deformation of a body under the influence of an applied
force, where the deformation is proportional to the applied pressure, which is represented
by the following Equation (1):

S = sT (1)

S—dimensionless relative strain.
s—susceptibility coefficient.
T—stress [Pa].
The electrical description uses the property of the law of electric induction, which

defines the value of the electric field depending on the pressure exerted on the material,
which is represented by Equation (2):

D = εE (2)

D—electric induction [C/m2].
ε—permeability coefficient.
E—electric field strength [V/m].
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Using the piezoelectric properties of the material, where the deformation and electric
induction interact simultaneously, the equations of state are formulated to describe the
relationships between the electrical and elastic variables of the medium that occur at certain
boundary conditions. The following set of Equation (3) are called the basic equations of
electromechanics, where superscript E and T denote the assumed boundary conditions:{

S = SET + dE
D = dT + εTE

(3)

εT—electrical permeability at constant stress T [F/m].
SE—mechanical susceptibility at constant electric field strength E [Pa−1].
d—piezoelectric effect coefficient.
The amount of energy received can be determined by the efficiency of the designed

energy converter. The following equation was used:

η% =
POUT

PIN
× 100% (4)

POUT—electrical output power [W].
PIN—mechanical input power [W].
The inherent phenomenon that characterizes piezoelectric energy converters is the

change of electric charge polarization under the influence of mechanical stress direction
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change. The rate of polarization change is influenced by three factors: molecular symmetry
of the crystal, electrical capacitance of the piezoelectric element, frequency of the stress
direction change [28].

There are about 200 piezoelectric materials, but the most popular ones used for energy
harvesting can be divided into four main groups presented in Table 1.

Table 1. Classification of piezoelectric materials.

Group Sample of the Material

Crystals Seignette’s salt, quartz crystals, zinc oxide (ZnO)

Ceramics Barium titanate (BaTiO3), lead titanate zirconate PZT
(PbZrO3 and PbTiO3), potassium niobate (KNbO3)

Polymers Biopolymers polylactic acid (PLA), polyvinylidene
fluoride (biopolymers PVDF)

Polymer composites and nanocomposites Polyvinylidene fluoride-zinc oxide (PVDF-ZnO),
PZT polyimides

The selection of a suitable piezoelectric material for an energy converter depends not
only on its piezoelectric properties and application possibilities but also on parameters
such as environmental impact, availability and price. Quartz crystals characterized by high
efficiency of converting kinetic energy into electrical energy are characterized by high unit
price, which often makes it impossible to use them. Quartz and its piezoelectric capabilities
are used in the construction of shape change sensors and transducers.

The more often used ceramic materials with high efficiencies, such as PZT [29], are
characterized by the presence of lead particles in their structure, which does not have a
neutral effect on the environment and is gradually withdrawn from the electronics market.
Elements containing a concentration of this element in their structure exceeding 0.1% cannot
fulfill the RoHS directive [30]. Barium titanate BaTiO3 is a representative of ceramic materi-
als that do not contain toxic elements, but it is characterized by lower generation efficiency
and has all disadvantages characteristic for ceramic elements such as brittleness, high
stiffness, lack of flexibility of structure, physical limitations in microcircuits manufacturing.

Piezoelectric polymers are better candidates for piezoelectric energy harvesting ap-
plications because they are mechanically flexible, so they can withstand high loads. They
also generate sufficient voltage from which sufficient output power can be obtained, they
can withstand high electric field strength because they have higher dielectric strength,
they have low production cost, and the processing of polymer family materials is easier
compared to ceramic materials [31–35].

Polymer composites are formed by combining polymeric and ceramic materials. The
main advantage of piezocomposites is the improved electro-mechanical coupling as a result
of optimal geometry and elongation of piezoelectric elements in the composites. The high
coupling ratio contributes to a broader bandwidth and increased energy transfer. The low
acoustic impedance of piezo-composites allows for low-loss energy transfer between the
transducers and a propagation medium such as water or tissue. In addition, piezocomposite
materials such as MFC (Macro Fiber Composite) can be shaped mechanically, allowing
transducers to be made with concave or convex surfaces due to their flexibility [36–38].
PMN-PT material is a solid solution of lead, magnesium and niobium doped with lead
titanate oxide Pb(Mg1/3Nb2/3)O3-PbTiO3. PMN-PT-based materials are characterized by
high dielectric permeability, high piezoelectric properties, and are suitable for applications
in multilayer capacitors, actuators, sensors, and electro-optical devices such as piezoelectric
motors made with MEMS technology [39].

PZT ceramic materials show the most promising properties for ambient energy har-
vesting, mainly due to their low resonant frequency. Low operating frequency is desirable
because of the brittle structure of ceramic materials [40–42]. Moreover, the PZT material is
widely used in industry, for these reasons we used the PZT-5A piezoelectric material.
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4. Methodology and Modeling
4.1. Testing Methodology

We begin our research by presenting the operating environment and performance
requirements of the target measurement node. Familiarity with the environment and
a review of solutions led us to select a harvester geometry. Next, we will present the
model and the results of simulation experiments that will initially confirm the feasibility
of obtaining a satisfactory power output. After the simulations, we will present the
piezoelectric energy harvester realized and tested in laboratory conditions. Then, we
will present real-life tests on the target object of the research, i.e., freight wagon bogie. We
will discuss the obtained results and present the possibility of using the resulting power
source to supply the WSN node monitoring the temperature of the bearings in the axle box.

The adopted methodology has allowed to verify the developed construction of the har-
vester and the power system already at the stage of simulation and laboratory experiments.
Thanks to this, the real tests were carried out as expected.

4.2. Target Working Conditions

The harvester system is designed to operate in the environment of a freight wagon.
Regular vibration will come from the rotation of the wheels, and irregular vibration will
come from the deformation of the track. Knowing the diameter of the wheel included in the
wheelset of the 25TN bogie, which is 920 mm [43], it is possible to calculate the frequency
of the train wheel rotation at a speed of 50 km/h and 100 km/h.

f =
1
T
=

V
πd

=
13.88

(3.14 × 0.92)
= ∼ 4.8 Hz (5)

f =
1
T
=

V
πd

=
27.77

(3.14 × 0.92)
= ∼ 9.6 Hz (6)

f —frequency [Hz].
T—period [s].
V —velocity [m/s].
d—wheel diameter [m].
The harvester should work as close as possible to its resonant frequency to generate

the right amount of energy. Operation in resonance is not recommended due to large
deflections and possible damage to the device.

Figure 2 shows the assembly diagram of the placement of the system collecting
energy from the environment (1) and the communication and measurement sensors (2). A
measurement node based on a low-energy controller will collect data from the sensors and,
using a wireless interface, will transmit the data with a multi-jump to a controller which
will be onboard the locomotive.
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4.3. Modelling and Simulation Experiments

Based on the literature analysis and previous research, a pendulum-shaped harvester
consisting of a moving beam with piezoelectric elements attached to it was designed
(Figure 3). In order to obtain significant output power, the excitation frequency should
be fixed at the resonance region of the energy harvesting system. In practice, this means
adjusting the energy converting device to the frequency of the ambient vibration. Knowing
the environment from which the energy will be extracted, which is the bogie of a freight
car, the problem may be the absence of vibrations of resonant frequencies. Not meeting this
condition does not exclude the use of a piezoelectric energy converter, but the power that
can be obtained will be significantly lower.
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Knowing that the sesmic mass is significantly greater than the mass of the beam, the
frequency formula takes the form:

ω =

√
k
m

=

√√√√ 3EI(
33

140 m1 +m2)L
3

(7)

k—stiffness coefficient of the cantilever beam.
m—beam mass.
E—Young’s modulus [Pa].
I—geometric moment of inertia of the beam [kg × m2].
L—length of the beam [m].
m1—mass of the beam [kg].
m2—mass of the weight [kg].
The moment of inertia for a thin rectangular pendulum can be expressed by the formula:

I =
Wl3

12
(8)

W—width of beam [m].
l—distance of the mass from the beam attachment point.
By substituting the formula for frequency, the final formula describing the natural

frequency of a beam loaded with a seismic mass is obtained [44]:

f =
ω

2π
=

1
2π

√
3WEl3

12L3( 33
140 m1+m2

) (9)

Calculated according to the above formula, the natural frequency of such a pendulum
is 22.9 Hz for the side loaded with 10 g mass and 15.38 Hz for the side loaded with 15 g
mass. The connected three thin plates with a very small mass relative to the sum of the
weights’ masses of 25 g are susceptible to low-frequency vibration, which is an advantage
when the converter is used in a railcar environment. In order to study the force distribution
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on the surface of the piezoelectric transducer and the electrical properties of the system, a
3D model of the converter was designed and simulated in COMSOL Multiphysics. PZT-5A
parameters analyzed in COMSOL Multiphysics.

Density 7750 [kg/m3] and permittivity of free space ε0 = 9.191 × 10−12 F/m.
Elasticity matrix SE [GPa]:

[
SE] =



110.867 75.1791 75.1791 0 0 0
75.1791 120.346 75.0901 0 0 0
75.1791 75.0901 120.346 0 0 0

0 0 0 21.0526 0 0
0 0 0 0 21.0526 0
0 0 0 0 0 22.5734

 (10)

Piezoelectric strain matrix d [10−12 C/N]:

[d] =



0 0 −5.35116
0 0 −5.35116
0 0 15.7835
0 0 0
0 12.2947 0

12.2947 0 0

 (11)

Permittivity at constant strain matrix εT :

[
εT ] =

 1730ε0 0 0
0 1730ε0 0
0 0 1700ε0

 (12)

The simulations carried out using COMSOL software were aimed at obtaining in-
formation on the stresses occurring on the surface of the transducers that could lead to
their failure and on the voltage response of the designed model to the vibration frequency
excitation from 1 Hz to 30 Hz.

The impact of vibrations with variable frequency up to 30 Hz on the piezoelectric
transducer may cause local stresses at the level from 18.5 to over 220 N/m2. This design of
the vibration system allows the appearance of large amplitudes of pendulum deflections.
The software generates solutions in a graphical form showing the most exposed areas, as
shown in Figures 4 and 5.
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The model was subjected to analysis of the response to a force forcing directed parallel
to the Z axis in order to model the voltage appearing on the surface of the piezoelectric
elements. For the converter simulated, the application of force at 30 Hz to the piezoelectric
transducers generates a potential of 20.1 V at the terminals of the attached 25,000 Ω resistor,
which is equivalent to a current flow of 804 µA, and the power dissipated at the resistor is
16.16 mW.

Figure 6 shows the distribution of forces on the harvester arms depending on the
frequency of excitations. In turn, the voltage across the load is shown in Figure 7.
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5. Results

Simulations carried out with COMSOL software were aimed at obtaining informa-
tion about the correctness of the operation of the designed piezoelectric converter. The
locations of the highest stresses, indicated by the program, were supposed to help with
the appropriate localization of the piezoelectric element. The maximum voltage values
obtained from the simulation were recorded on the 25 kΩ resistor terminals. Next, an
actual converter model was fabricated, consisting of three brass plates containing 27 mm
wide piezoelectric elements connected together. This resulted in a pendulum with a total
length of 116 mm. Two 5 g weights were attached to one end of the beam and three weights
of 5 g each were attached to the other end. The outputs of piezoelectric elements were
connected to full-wave rectifiers, to which an energy store in the form of 220 µF electrolytic
capacitor and 25 kΩ resistor was connected. The electrical scheme of the tested power
unit is presented in Figure 8. This converter was tested in the laboratory to determine the
voltage response as a function of vibration frequency (Figure 9).
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Figure 9. Laboratory stand for power unit parameters determination. (a) Measurement system;
(b) piezoelectric harvester during the tests.

The vibration generating system made the harvester oscillate with an amplitude of
1 mm and frequencies shown in Table 2. The table also shows the voltage value measured
on the load after 10 s of vibration.

Table 2. Measured values of voltage and frequency.

Frequency [Hz] Output Voltage [V]

7.02 0.45
7.95 0.56
9.30 0.66
10.30 1.07
11.20 1.98
12.20 5.22
13.2 6.19
14.2 18.41
14.65 8.9
15.00 7.42

Figure 10 shows the value of voltage to which the circuit charges the capacitor, at
different vibration frequencies. When we compare the values obtained from laboratory
tests and simulations (Figure 7), we see a great convergence. In both cases, the voltage
rises sharply above 18 V, near the resonance frequency. For a vibration frequency of
14.2 Hz, the harvester charged a 220 uF capacitor to 18 V in only 10 s, an additional load of
25,000 Ω, this is shown in Figure 11b. The voltage value on the unloaded harvester at
14.2 Hz vibration is shown in Figure 11a.

The tests carried out in the laboratory confirmed the correct operation of the actual
harvester model. The purpose of the designed converter is to obtain energy from vibrations
generated by a moving freight train. The energy recovered in this way should be stored in
an appropriate size energy storage, and then used by the communication and measurement
module. The task of such a module would be to measure the bearing temperature of the
wheelset axle and send it to the central unit by means of low-energy radio transmission.
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The converter was tested in the target environment. For this purpose, an electrical test
system was made to measure the generated voltage, which was then attached to a 25TN
bogie of a freight train car. Each of the piezoelectric transducers was connected to a rectifier
bridge consisting of Schottke diodes. Laboratory tests showed that the harvester, set in
vibration, charged the 220 µF capacitor to a sufficiently high voltage during 10 s, so the
energy storage capacity was increased to 470 µF in the tested system. The electrical load
for the system remained a 25,000 Ω resistor, so as to reflect the load value adopted for the
simulation in COMSOL and in the laboratory. The real piezoelectric harvester is presented
on Figure 12.
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3—piezoelectric PZT elements).

The voltage measurement was carried out using an 8-bit ADC converter of the ESP32-
SOLO module, which additionally had 4 MB of non-volatile flash memory, in which the
measured values were saved. The 8bit resolution is sufficient for the measurement of
direct voltage ensuring the ability to save 512 samples in the 4 MB memory. An additional
1000 mAh lithium-polymer battery LP663245 with a rated voltage of 3.7 V was used to
power the measuring system. The used battery provided power to the system for 12 h of
train travel. However, the ESP module memory allowed to save samples of the measured
voltage for only 8 h and 30 min. The voltage measurement was performed every 60 s.
The measuring system with the transducer was placed in a round, plastic housing, and
then the whole was firmly attached to the frame of an intermodal freight train wagon
(Figure 13). The intermodal wagon was loaded with a 20 t container. During the test,
samples were recorded for 8.5 h during which the train traveled 408 km from Warsaw to
Katowice. During this time, the train had two stops, from minutes 165 to 220 and from
305 to 340. The average speed of the train during the journey was 58 km per h, the maximum
was 90 km/h.
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After removing the system from the bogie frame, the ESP module memory was read.
There were 512 samples of the voltage value in the memory. From the values of the
voltage samples, the intensity of the flowing current and its power was calculated, which is
presented in the diagram below. The highest recorded voltage value is for sample 356 and
is 2.12 V, which corresponds to the flowing current of 0.084 mA and the power of 0.179 mW
generated on the resistor. The power outpu generated by the converter during the test is
presented on Figure 14.
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6. Discussion

The calculated vibration frequency of a freight car bogie for 50 km/h is 4.8 Hz, and
for 100 km/h it is 9.6 Hz (Equations (5) and (6)). Both of these frequencies are below the
resonant frequency of the harvester. As a result, the obtained values of the voltage generated
by the tested converter in the real system are lower than those from the simulation and
laboratory tests. The maximum value of the recorded voltage from the train vibrations is
2.12 V, which corresponds to the instantaneous power of 179 µW, on the resistor. These
values correspond to the power of the harvester simulation for vibrations with a frequency
ranging from 4 to 6 Hz. The single higher voltage values observed for the real system
result from the momentary higher speed of the train or from the unevenness of the railway
tracks, which contribute to non-periodic vibrations of the bogie. By storing energy from the
environment in energy storage with a low self-discharge current, it is possible to accumulate
a sufficient amount of charge to provide power when the communication system wakes
up, to measure a physical quantity, e.g., temperature, and then send the measured data
using a low-energy communication protocol. After the energy stored in the storage is
used up, the system should go into standby mode and be powered by other sources, for
example, a battery. The sleep–wake cycle of the device may depend on the rate at which the
energy reservoir is charged by the piezoelectric converter, or be defined as a constant time
value. The Table 3 summarizes the data of four modules enabling wireless communication
using Bluetooth Low Energy (BLE). These modules can be used as a communication and
measurement system, additionally powered by a piezoelectric converter.
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Table 3. Data table of four modules enabling wireless communication using Bluetooth Low Energy
(BLE) technology.

Communication
Module

Supply Voltage [V]
Current Consumption

Type of Wireless
CommunicationSleep Mode

[µA]
Broadcasting Mode

[mA]

ESP32-SOLO-1 3–3.6 V 0.05 1100 BLE, Wi-Fi
nRF52833 1.7–3.6 V 2.6 6.0 BLE
nRF52840 1.7–5.5 V 2.0 4.8 BLE
nRF5340 3–3.6 V 1.8 3.2 BLE

The energy balance calculations were made for the communication system powered
from the battery, treating the piezoelectric converter as an additional system extending
the working time of the sensor mounted on the railway car. The calculations do not take
into account the energy taken from the environment, because its amount depends on too
many factors. It should be assumed that the use of a harvester will extend the working
time of the system. The analysis of the energy balance for the nRF52840 communication
module is presented below. The interval of sending data every minute and the duration
of transmission per second were assumed. The calculations do not take into account the
power consumption for servicing other sensor peripherals, only the energy consumption
for BLE transmission. The average current consumption can be determined from the
following formula:

iAV =
iTTT +iSLPTSLP

TT+TSLP
(13)

iT—current consumption in broadcasting mode [A].
iSLP—current consumption in sleep mode [A].
TT—time in broadcasting mode [s].
TSLP—time in sleep mode [s].
iAV—average current [A].
Since the system will be in sleep mode most of the time, it can be assumed that

TSLP >> TT, so the above formula can be simplified to the following form:

iAV =
iTTT

TSLP
+iSLP =

0.0048 A × 1 s
599 s

+0.000002 A = 0.00001 A = 10 µA (14)

The working time of the module when powered by a 1000 mAh battery can be
expressed as:

TB =
CBAT

iAV
=

1 Ah
0.00001 A

= 100, 000 h = ∼ 11 years (15)

TB—total operating time of the battery powered system [h].
CBAT—battery capacity [Ah].
iAV—average current [A].
By analyzing the samples from 350 to 410 in Figure 14, corresponding to one hour of

train travel, we can determine the generator’s current efficiency at that time. The average
value of the current flowing through the resistor is 0.0492 mA, which corresponds to the
harvester’s current efficiency of 0.0492 mAh and power output of 60 µW. Calculating how
much time it will extend the operation of the system, energy obtained from the environment
for 11 years:

TH =

(
TB

24 h

)
×CH

iAV
=

(
100,000 h

24 h

)
× 0.0000492 Ah

0.00001 A
= 20, 500 h = ∼ 2.3 years (16)

TB—total operating time of battery powered system [h].
TH—time of additional operation of the system powered by the harvester [h].
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CH—harvester current efficiency [Ah].
iAV—average current consumed [A].

TC = TB + TH = 100, 000 h + 20, 500 h = 120, 500 h = ∼ 13.3 years (17)

TC—total system operation time [h].
Table 4 presents a comparison of performance parameters of piezoelectric harvesters.

We see that the described harvester is characterized by a relatively low frequency of work
vibrations only the harvester presented in 31 works at similar frequencies. It should be
noted that the first resonance frequency of constructed harvester is equal to 14 Hz. The
frequencies of (bogie) vibrations that may occur at standard train speeds are 4–10 Hz.
However, due to higher train speeds (which is possible for passenger trains) or due to
uneven track conditions the vibration frequencies may increase. It is known that the
operation of the mechanical system in vibrations close to the resonant frequency causes
high stress on the structure and may lead to its destruction. Therefore, our harvester
operates below the resonance frequency. Thanks to this, we guarantee long-term and
failure-free work in real conditions. On the other hand, thanks to the relatively low quality
factor of the harvester circuit of fit it is possible to work efficiently even at frequencies lower
than the resonance one. Comparing the power output of the presented harvesters, it can be
seen that the presented system is characterized by a relatively high power. The solution
presented in 34 has a much higher power, but this is a simulation study. Confirmed in real
research, the pendulum harvester presented in 31 obtains a power density of 40 uW/cm3,
which is close to the power achieved by our power system.

Table 4. Parameter comparison of the piezoelectric harvesters.

Shape of Harvester References Application Frequency Vibration
[Hz] Power Output [µW]

spring-mass oscilator 32 train 80 2
cantilever 60 universal 229 0.27

spring-mass oscilator 34 train 16 6000 simulation
pendulum 31 train 3–6 40 µW/cm3

pendulum presented train 4–10 60

Knowing that the energy stored in the battery is enough for about 11 years of system
operation, we can assume that if the harvester generates energy for only one hour every
day, it will extend the operation time of the entire device by 20%. Obviously, this is
the result in terms of ideal conditions, in which the following factors are not taken into
account: the influence of temperature changes on the current consumed by the system,
the slowing down of chemical processes in the battery, the leakage of current occurring
in peripheral systems, and the current required for the supply of peripherals. In real
conditions, the working time of the device powered by the battery will be shorter due to the
use of a piezoelectric harvester, this effect can be reduced and the device’s operation can be
significantly extended. For this reason, systems that obtain energy from the environment
that can extend the operating time of such devices are of great interest to designers of
Internet of Things devices.

7. Conclusions

In our research, we presented a power supply system dedicated to WSN nodes moni-
toring the temperature of the axle box of a freight car. The average output power of the
system is 60.5 uW. In the case of storing energy and transmitting data to the system hub
once per minute, it allows to power an energy-efficient node for 13 years. When calculating
the balance, we assumed only one hour of operation of the system (train travel) and the
vibration frequency from 4 to 10 Hz. These are minimalistic assumptions, in real conditions
the wagon is used several hours a day, and due to the unevenness of the track, the vibration



Energies 2022, 15, 1641 17 of 18

amplitudes and frequencies will be higher than assumed. In our research, we prove that
by using a piezoelectric harvester it is possible to extend the life of the measuring node
by 20% in comparison with power systems based only on batteries. Using an inexpensive
and available piezoelectric material such as PZT, we were able to build a compact pendu-
lum harvester that even at low vibration frequencies is able to significantly increase the
operating time of the measurement node.
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