
����������
�������

Citation: Buettner, M.A.; Monzen, N.;

Hackl, C.M. Artificial Neural

Network Based Optimal

Feedforward Torque Control of

Interior Permanent Magnet

Synchronous Machines: A Feasibility

Study and Comparison with the

State-of-the-Art. Energies 2022, 15,

1838. https://doi.org/10.3390/

en15051838

Academic Editors: Nicola Bianchi,

Ludovico Ortombina and K.T. Chau

Received: 10 January 2022

Accepted: 25 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Artificial Neural Network Based Optimal Feedforward Torque
Control of Interior Permanent Magnet Synchronous Machines:
A Feasibility Study and Comparison with the State-of-the-Art
Max A. Buettner †, Niklas Monzen † and Christoph M. Hackl *

Department of Electrical Engineering and Information Technology, Hochschule München (HM) University of
Applied Sciences, Lothstr. 64, 80335 München, Germany; max.buettner@hm.edu (M.A.B.);
niklas.monzen@hm.edu (N.M.)
* Correspondence: christoph.hackl@hm.edu
† These authors contributed equally to this work.

Abstract: A novel Artificial Neural Network (ANN) Based Optimal Feedforward Torque Control
(OFTC) strategy is proposed which, after proper ANN design, training and validation, allows
to analytically compute the optimal reference currents (minimizing copper and iron losses) for
Interior Permanent Magnet Synchronous Machines (IPMSMs) with highly operating point dependent
nonlinear electric and magnetic characteristics. In contrast to conventional OFTC, which either utilizes
large look-up tables (LUTs; with more than three input parameters) or computes the optimal reference
currents numerically or analytically but iteratively (due to the necessary online linearization), the
proposed ANN-based OFTC strategy does not require iterations nor a decision tree to find the
optimal operation strategy such as e.g., Maximum Torque per Losses (MTPL), Maximum Current
(MC) or Field Weakening (FW). Therefore, it is (much) faster and easier to implement while (i) still
machine nonlinearities and nonidealities such as e.g., magnetic cross-coupling and saturation and
speed-dependent iron losses can be considered and (ii) very accurate optimal reference currents
are obtained. Comprehensive simulation results for a real and highly nonlinear IPMSM clearly
show these benefits of the proposed ANN-based OFTC approach compared to conventional OFTC
strategies using LUT-based, numerical or analytical computation of the reference currents.

Keywords: electrical drive control system; operation management; optimal feedforward torque
control; optimal reference current computation; transformer-like nonlinear machine model;
artificial neural network; synchronous motor; interior permanent magnet synchronous machine;
machine learning

Notation

N,R: natural, real numbers; x :=(x1, . . . , xn)
> ∈ Rn: column vector, n ∈ N where “>”

and “:=” mean “transposed” and “is defined as”, resp.; a>b := a1b1 + · · ·+ anbn: scalar

product of vectors a & b; ‖x‖ :=
√

x>x =
√

x2
1 + · · ·+ x2

n: Euclidean norm of x; X ∈
Rn×n: matrix (n rows & columns); X−1, X−>: inverse, inverse transpose of X (if exist),
resp.; In := diag(1, . . . , 1) ∈ Rn×n: identity matrix; 0n := (0,. . ., 0)> ∈ Rn: zero vector;
J :=

[
0 −1
1 0

]
: rotation matrix (by π

2 ).

Remark: All physical quantities are introduced and explained in the text to ease reading.

1. Introduction
1.1. Motivation

Electric machines are widely used in plenty of applications for manufacturing, grind-
ing, pumping or in robots, electric vehicles, wind turbines or conventional power plants.
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For all applications, reliability and efficiency play key roles. Though electric motors still
consume over 50% of the world’s generated electric energy [1] from which 84.3% is gener-
ated from fossil fuels [2]. In particular for the mobility sector, for the consumer, besides
the lacking charging opportunities, the range of electric vehicles is considered the major
obstacle for quick penetration of the future mobility market [3]. Nevertheless, hybrid
electric vehicles (HEV) and battery electric vehicles (BEV) will become standard vehicles in
the mobility sector. Therefore, engineers worldwide are striving to optimize the electrical
drive system in order to reduce energy consumption and increase efficiency.

In this regard, the optimal feedforward torque control (OFTC) problem must be solved
to compute optimal reference currents which minimize iron and copper losses by invoking
optimal operation strategies for all operating conditions [4,5]. The different operation
strategies are usually Maximum Torque per Ampere/Current (MTPA/MTPC), Maximum Torque
per Losses (MTPL; considering also iron losses), Field Weakening (FW), Maximum Current (MC)
and Maximum Torque per Voltage (MTPV). As alternative, Maximum Torque per Flux (MTPF)
has been proposed as it is easier to compute, but it should be avoided as it represents
an oversimplification with suboptimal operation and MTPV should be used instead [6].
All of those optimal operation strategies exploit the non-uniqueness of the current pairs
which produce the same torque [4]. In order to minimize conduction and switching losses
additionally, optimal pulse patterns (OPPs) must be implemented [7] which have to be
computed separately for nonlinear machines with significant anisotropy [8,9].

In this paper, a novel ANN-based OFTC is proposed. The OFTC problem has been
discussed in numerous publications (see e.g., [10–19] for MTPC/MTPA, [12,14,18,20–24]
for FW, [4,5,12,25] for MC, [4,5,13,26–29] for MTPL, and [6,14,20–23] for MTPV). The goal
of OFTC is to compute or look up optimal reference currents for each of the aforementioned
operation strategies. This is mostly done numerically or in few cases analytically imposing
simplifying assumptions such as the neglection of the nonidealities: (a) varying stator
resistance, (b) nonlinear magnetic cross-coupling and saturation, (c) physical current and
voltage constraints, (d) iron losses and (e) temperature dependencies.

Analytical approaches are in particular of interest due to their rather simple, equation-
based implementation, high accuracy and fast computation. However, if all nonidealities
(see (a)–(e) above) shall be considered, the analytical solution must be computed itera-
tively due to the online linearization of the highly nonlinear OFTC problem. Numerical
approaches usually rely on look-up tables (LUTs). To account for all nonidealities (see
(a)–(e) above), the LUTs become rather huge and often depend on more than three inputs.
In conclusion, both approaches come with drawbacks either due to limited computational
power or limited memory storage.

In this paper, these drawbacks shall be overcome by using a rather simple ANN to
solve the OFTC problem still analytically but not iteratively. To not hit computational and
memory constraints, the ANN must be tailored to the capability of the utilized real-time
platforms (e.g., digital signal processor (DSP) or field-programmable gate array (FPGA)).

As artificial neural networks are a promising technology, machine learning-based
approaches in electrical drives have already been reported in numerous publications (see
the recent overview preprint [30] with 259 references). Exemplary applications of ANNs in
the field of electrical drive systems are: ANN-based speed, current or speed and current
controllers [31–38], ANN-based parameter/system identification [39–41], ANN-based tem-
perature or resistance estimation [42,43], ANN-based direct/predictive torque or model
predictive control [44–46], ANN-based torque observers [47], ANN-based current wave-
form prediction [48], ANN-based encoderless control [49–52], ANN-based torque ripple
reduction [53,54], ANN-based condition monitoring or fault detection [55–58], ANN-based
optimal pulse patterns [59], and ANN-based multi-objective optimization for machine
design [60].

However, to the best knowledge of the authors, ANNs have not been used this far to
solve the OFTC problem as proposed in this paper. Therefore, this paper is the very first
considering ANN-based OFTC.
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The remainder of the paper is structured as follows: In the following three subsec-
tions, a detailed literature review is presented, the problem is formally stated and the
proposed solution is briefly introduced (see Sections 1.2–1.4, respectively.). In Section 2,
the novel idea of ANN-based OFTC is discussed in detail; starting with the ANN design
in Section 2.1, followed by the ANN training (including a thorough explanation of the
required data set creation) in Section 2.2, completed by the ANN validation in Section 2.3.
In Section 3, the ANN-based OFTC strategy is implemented in the closed-loop control
system of an electrical drive with highly nonlinear magnetic characteristics and iron losses
and its performance is compared to conventional state-of-the-art OFTC with analytical
optimal reference current computation (ORCC). Finally, Section 4 concludes the paper by
(a) summarizing the proposed idea and obtained results and (b) by giving a short outlook
on future research directions.

1.2. Detailed Literature Review

In this subsection, the references listed above concerning OFTC and ANN in electrical
drives are discussed in more detail.

1.2.1. Optimal Feedforward Torque Control (OFTC)

The most common OFTC strategy is MTPC (often also called MTPA) which minimizes
copper (Joule) losses only. A comprehensive literature review on MTPC was recently
published in [19]. The early contribution [10] computes optimal stator current angles
considering current and voltage limits in PMSM electrical drives to minimize copper
losses. Iron losses, magnetic cross-coupling and saturation effects are neglected. The MTPC
algorithm in [11] is based on [10] but in addition, considers cross-coupling effects. The
optimal current angles are obtained by online perturbation of the current magnitude. In [14],
an analytical computation of the optimal MTPC currents is presented based on Lagrangian
multipliers and Ferrari’s method. However, iron losses and magnetic cross-coupling and
saturation effects are not considered.

Iron losses complicate efficiency enhancement but have also been considered in several
publications. Loss Minimization Control (LMC) was proposed in [26] by formulating and
solving a convex optimization problem numerically and iteratively to minimize copper
and iron losses. In [27], a novel calculation method for the iron loss resistance is introduced
which is based on a slope evaluation of the linear approximation of the relation between
semi-input power and squared speed-dependent electromotive force. The loss minimization
algorithm (LMA) proposed in [28] conducts an iterative search to minimize copper and iron
losses online. Magnetic cross-coupling and saturation effects are not considered. In [13],
it proposes an optimal current feed-forward angle to minimze copper and iron losses in
nonlinear traction drives. In [29], Maximum Efficiency per Ampere (MEPA; i.e., MTPL)
control is proposed and performs an online search to find optimal stator current angles
minimizing copper and iron losses for PMSMs with significant magnetic cross-coupling
and saturation effects.

In [20], an MTPV strategy for reluctance synchronous machines is proposed which
allows to analytically compute the optimal MTPV reference currents. Stator resistance and
magnetic saturation are considered while iron losses and magnetic cross-coupling effects
are not considered. In [21], the effect of neglecting the stator resistance on the MTPV opera-
tion is discussed and an analytical computation of the optimal MTPV currents is proposed.
Iron losses, magnetic saturation and cross-coupling effects are neglected. [6] computes the
MTPV hyperbola analytically while considering the stator resistance. Magnetic saturation
and iron losses are neglected. Magnetic cross-coupling effects were not explicitly addressed
but the presented approach allows to incorporate those as well. [23] combines FW and
MTPV with sensorless control. Iron losses are considered and the position estimation error
due to iron losses is compensated for by a modified disturbance observer.
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Only a few publications deal with the overall operation management for OFTC includ-
ing MTPC, MC, FW and MTPV. LUT-based OFTC strategies for MC, MTPC and MTPV are
proposed in [12] while magnetic cross-coupling effects and iron losses are neglected. OFTC
for PMSMs including MTPC, MC, FW and MTPV is proposed in [15]. The optimal stator
currents are obtained by an analytical computation but iron losses, magnetic cross-coupling
and saturation effects are not considered. In [16], a complete operation management for
nonlinear PMSMs including MTPC, MC, FW and MTPV is presented. An iterative algo-
rithm finds the optimal stator currents by evaluating machine maps (e.g., flux linkages)
online. Iron losses are neglected. The algorithm presented in [17] achieves MTPC, MC and
FW by “incremental current setpoint shaping” (online linearization of torque, voltage and
current limit). However, current-dependent inductances, magnetic cross-coupling effects or
iron losses are not considered. In [18], an MTPC and FW based speed controller is derived
using Lyapunov’s direct method. The controller is combined with online parameter esti-
mation of inductance, torque and viscous friction but iron losses, magnetic cross-coupling
and saturation effects are not covered. In [24], optimal saliency ratio and power factor are
considered during machine design to minimize copper and iron losses for high efficiency
operation of nonlinear IPMSMs. Magnetic cross-coupling is not considered. In [22], MTPC,
MC, FW and MTPV are discussed in combination with model predictive direct torque
control. Iron losses, magnetic cross-coupling and saturation effects are neglected. In [25],
a unified theory for OFTC is presented which allows to analytically compute the optimal
reference currents for MTPC, MC, FW, MTPV and Maximum Torque per Flux (MPTF) while
magnetic cross-coupling and saturation effects are considered. Iron losses are neglected.
The approach has been extended in [4] by MTPL to account for iron losses as well. In [5],
MTPL, FW, MC and MTPV are introduced for current and speed-dependent iron losses and
the optimal reference currents are obtained analytically but iteratively due to the necessary
online linearization of the nonlinear optimization problem.

1.2.2. Artificial Neural Networks in Electrical Drives

As already mentioned in the motivation, there exists a huge variety of ANN-based
approaches in electrical drive systems (recall the overview preprint [30] with more than
250 references). Although [30] is very comprehensive, in the following, several additional
and exemplary applications of ANNs in electrical drives are (re-)discussed in more detail
to highlight that ANN-based OFTC has neither been considered nor published this far.

ANN-based speed and/or current controllers are the most common applications
of ANNs in electrical drives. [31] proposes an ANN-based speed control method for
PMSMs. The ANN has two inputs (actual and previous machine speed) and one output
(the predicted machine speed) and is trained to identify the nonlinear machine dynamics
to improve control performance. [32] presents an ANN-based model reference adaptive
controller (MRAC) whose controller parameters are adjusted with the help of an ANN-
based state observer performing online model identification. The closed-loop system
performance shows negligible overshooting and fast rise times under various loading
conditions and speed reversals. In [33], an ANN-based speed controller for a PMSM has
been implemented, where the ANN is used to predict the actual machine torque which is
then fed to a classical field-oriented current control system with flux observer. In [34], the PI
speed controller for a PMSM is also replaced by an ANN-based speed controller, whereas
an ANN-based PID speed controller is proposed in [35]. In [36], both, PI speed controller
and PI current controllers, are replaced by ANN-based controllers. In general, overshoot as
well as settling time were improved by the proposed ANN-based controllers. [37] proposes
a real-time capable ANN-based controller for a linear tubular permanent magnet direct
current motor (LTPMDCM) prototype. The used multilayer perceptron (MLP) recurrent
neural network (RNN) is trained with conventional backpropagation. [38] presents an
ANN-based speed controller for induction motor drives using an ANN with adaptive
linear neurons (ADALINE) trained with the Widrow-Hoff learning rule. The closed-loop



Energies 2022, 15, 1838 5 of 38

system shows a significantly improved tracking performance compared to the standard PI
speed controller.

In [44], it proposes an ANN-based direct torque control method for synchronous
motors. The proposed ANN controller outputs optimal voltages to increase the motor’s
efficiency. However, losses or OFTC with ORCC are neither considered nor discussed.
In [45], an ANN is utilized to enable long-horizon finite control set model predictive control
(FCS-MPC) for IPMSM drive systems. The ANN can identify the optimal switching states
with high accuracy (85–90%) which allows for a real-time capable implementation of the
long-horizon FCS-MPC algorithm. In [46], the weighting factors of the cost functions of a
predictive torque controller (PTC) were calculated by ANNs which not only improved the
control function but also the calculation time and the computational effort.

Besides ANN-based controllers, ANN-based parameter and/or system identification
is very popular. In [39], a feedforward ANN with sigmoid activation functions is used
to identify the electro-magnetic dynamics for stator current and rotor speed control of
induction machines. The ANN is trained by arbitrarily injected noise signals during closed-
loop operation. In [40], an ANN with two hidden layers and sigmoid activation functions
is used to identify the nonlinear DC motor drive dynamics to implement a nonlinear speed
controller for the electrical drive system. The ANN is trained online by backpropagation
with adjustable learning rate. [41] proposes an ANN with radial basis functions (RBF) for
the identification of the rotor resistance and the estimation of the rotor speed of induction
machines. The ANN is trained online during closed-loop operation.

In [42], recurrent and convolutional neural networks (RNNs & CNNs) are utilized
and compared for temperature estimation in the stator (resistance) and rotor (permanent
magnet) of PMSMs. The ANN’s optimal architecture (number of layers and neurons)
is found by Bayesian optimization. Nevertheless, only local minima are reached. The
ANNs are implemented on a Raspberry Pi allowing for real-time execution. In [43], an
ANN is trained to predict the wire insulation resistance with resprect to its aging time and
temperature. Compared to conventional thermal qualification methods used in electrical
machines, the ANN-based approach saves about 57% of the time needed for a conventional
accelerated aging test campaign.

An ANN-based torque observer has been implemented in [47] achieving very high
accuracies (up to 98%) in the observed torque using a relatively small ANN with only one
hidden layer. The observed torque is fed to a PI controller which outputs the q-current
reference for the underlying current PI controllers. The d-current reference is computed
based on the q-current reference with a conventional MTPC method (ANN is not involved).

In [48], an artificial recurrent neural network (RNN) with long short-term memory
(LSTM) is proposed to predict three-phase current waveforms to account for parameter
uncertainties in PMSM modeling. The prediction error reduces with the number of learning
epochs and is minimized to deviations below 3.0% after 7000 iterations.

Another important application of ANNs is in the field of encoderless (or sensorless)
control of electrical drives. In [49], it proposes a feedforward neural network (FNN) with
one hidden layer capable of achieving sensorless speed control of an induction machine.
The rotor angle estimation errors during speed transients are lower than 3%. In [50],
structured ANNs are used for saliency-tracking-based sensorless control of AC drives. The
ANN designs are based on physical system knowledge leading to a fixed number of layers
and neurons with physically motivated interconnections. Due to their structured nature, the
trained ANNs provide physical insights as activation functions and weights have physical
meaning. In [51], the rotor position of a switched reluctance machine is obtained with the
help of an ANN used to estimate the unsaturated stator inductances. The proposed ANN
has a very simple structure and reduces the computational effort significantly compared to
conventional encoderless methods. In [52], it describes advantages and limitations of ANN-
based encoderless control. In particular, at zero speed, the ANN-based encoderless control
approach must be extended by conventional high-frequency signal injection methods. The
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additional consideration of the DC-link voltage improves control performance during field
weakening. The used ANN has one hidden layer and is trained by supervised learning.

In many electrical drive systems, torque ripples induced by cogging torques or non-
sinusoidal back-electromotive forces (back-EMFs) must be suppressed to their minimum
to improve system performance. In [53], it proposes the utilization of ANNs for torque
ripple reduction in PMSM based electrical drive systems with significant cogging torque
and non-sinusoidal back-EMF. The structured ANN takes geometry (presence of harmonics
in back-EMF and cogging torque) into account and are implemented as ADALINE-ANN-
based speed or torque controllers. Alternatively, in [54], an unstructured ANN with one
hidden layer in combination with a voltage matching circuit (VMC) is used to compute
optimal state-feedback controller parameters online in order to minimize the torque ripple
factor of a PMSM. To realize the VMC, an additional buck converter with state-feedback dc-
link controller must be installed in the electrical drive system. The approach is simulatively
tested for a two-level and three-level voltage source inverter.

To increase live time and reduce maintenance costs, condition monitoring and fault
detection in electrical drive systems became very popular in the research community
recently. In [55], an MLP-based ANN is used for fault detection. The approach is capable
of proper fault/non-fault identification by different fault index evaluations. Detectable
faults are e.g., significant changes in the stator windings or open-phase faults. For ANN
training, data from simulations, machine design and closed-loop experiments was used.
In [56], it shows that probabilistic neural networks (PNNs) or radial basis function networks
(RBFNs), both with more than 100 hidden layers, are capable of detecting rotor failures
such as broken rotor bars, bearing damage or air gap eccentricity. In contrast to the
commonly used motor current signature analysis (MCSA), axial flux monitoring and
vibration monitoring, the two proposed ANN-based methods allow to detect broken
rotor bar faults online with very high accuracy even under different voltage supplies.
In [57], a convolutional neural network (CNN) based condition monitoring system for
permanent magnet synchronous motors with interturn and demagnetization faults is
proposed. The CNN-based condition monitoring system is able to detect those motor
faults in the deteriorated current response with extremely high accuracy (errors less than
0.15%). In [58], it presents a deep neural network (DNN) based condition monitoring
and data evaluation system for highly automated laboratory test benches. The proposed
approach aims at a fully automated implementation of predictive maintenance, test process
automation, fault detection and downtime reduction of motor test stands. In the paper, a
first study shows that fault detection and failure type classification can be achieved by the
proposed DNN-based condition monitoring system.

Another important aspect in drive control are loss minimization in the power elec-
tronic devices. In [59], an ANN is trained by supervised learning and used to reduce
voltage harmonics induced by low switching frequency modulation. The obtained ANN-
based optimal pulse patterns (OPPs) are then implemented and compared to conventional
patterns obtained by pulse width modulation. The ANN-based OPPs reduces harmonic
losses in the induction machine-based electrical drive system in V/f operation and its
efficiency can be improved by roughly 1%.

Finally, ANN-based multi-objective optimization during machine design has been
proposed in [60]. The ANN is used to reduce the need for excessive finite element (FE)
simulations in order to minimize computational effort and, hence, to find pareto optimal
machine designs in a simpler and faster manner. To do so, the ANN is trained by extensive
FE simulation data.

1.2.3. Summary of Detailed Literature Review

In conclusion, the detailed literature review above underpins the absolute novelty of
the proposed ANN-based OFTC approach. This far, ANNs have not yet been proposed,
implemented or tested for OFTC or ORCC in particular. Hence, to the best knowledge
of the authors, this publication is the very first in this regard and of its kind. Therfore,
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the goal of this publication is an initial but comprehensive description of the idea and a
feasibility study and performance comparison of ANN-based OFTC with state-of-the-art
OFTC approaches.

1.3. Problem Statement

The main goal of OFTC is to analytically (or numerically) compute (or to look up) the
optimal and feasible reference currents

idq
s,ref(mm,ref, ûs,max, ı̂s,max, ωp, . . . ) =

(
id
s,ref(mm,ref, ûs,max, ı̂s,max, ωp, . . . )

iq
s,ref(mm,ref, ûs,max, ı̂s,max, ωp, . . . )

)
(1)

which are functions of the reference torque mm,ref, the voltage limit ûs,max, the current
limit ı̂s,max, the electrical angular velocity ωp and possibly also of the electrical angle φp,
the stator temperature ϑs and the rotor temperature ϑr to account for e.g., slotting effects
and temperature dependency of stator (winding) resistance(s) and permanent magnet,
respectively.

OFTC consists of two steps: Optimal reference current computation (ORCC) and
optimal operation strategy selection (OOSS) which, depending on the actual operating
conditions, allows to select the optimal operation strategy such as MTPC, MTPL, FW, MC
or MTPV as illustrated in Figure 1.

OFTC with ORCC and OOSS
mm,ref

ûs,max ı̂s,max ωp φp ϑs ϑr
id
s,ref

iq
s,ref

Figure 1. Optimal feedforward torque control (OFTC) with optimal reference current computation
(ORCC) and optimal operation strategy selection (OOSS): The reference currents depend on desired
(reference) torque, machine constraints, actual operating conditions and selected operation strategy
(such as MTPL, FW, MC or MTPV).

The overall block diagram of a typical control system with OFTC and current con-
trollers of an electrical drive consisting of IPMSM and inverter is shown in Figure 2.

-

ωm,ref

PIωm

ωm mm,ref

OFTC

ı̂s,max

ûs,max

ωp

...

-

ids

ids,ref

-

iqs

iqs,ref

PIids,ref

PIiqs,ref

uds,comp

uds,pi

uqs,comp

uqs,pi

dq

αβ

Inv. Park
uds,ref

uqs,ref

αβ

abc

Inv. Clarke
uαs,ref

uβs,ref

dq

αβ

Park

iαs

iβs

ϕp

αβ

abc

Clarke

ias

ibs

ics

=

∼

Inverter
uas,ref

ubs,ref

ucs,ref

IPMSM

mm

uas

ubs

ucs

mm

Figure 2. Block diagram of the control system with OFTC and underlying current controllers of a
typical electrical drive system consisting of IPMSM and inverter.
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The reference currents (id
s,ref, iq

s,ref), obtained from OFTC, are then fed to the underly-

ing current control system with feedforward disturbance compensation (ud
s,comp, uq

s,comp)
eliminating cross-coupling terms in the current dynamics (see e.g., [61,62]). The reference
voltages (ud

s,ref, uq
s,ref) are the sum of the outputs (ud

s,pi, uq
s,pi) of the PI controllers and the

compensation voltages (ud
s,comp, uq

s,comp). The references are then transformed back to the

three-phase reference voltages (ua
s,ref, ub

s,ref, uc
s,ref) which are fed to the modulator of the

inverter to obtain duty cycles or switching (gate) signals for the power semiconductors.
Speed and angle are assumed to be measured and are available for feedback.

To solve the OFTC problem and to compute the optimal reference currents as in (1), a
precise machine model must be available. A generic, dynamic transformer-like model for
synchronous machines (SMs; considering magnetic cross-coupling and saturation and iron
losses) can be used [4,5]. The electrical equivalent circuit of the stator windings and the iron
core is shown in Figure 3: Similar to a transformer, the stator windings are magnetically
coupled with the stator iron core by the stator flux linkages ψdq

s = (ψd
s , ψq

s )
>.

idq
s

Rdq
s

ωp Jψdq
s

d
dt ψdq

s

udq
s

idq
s,Fe Rdq

s,Fe

ωp Jψdq
s

d
dt ψdq

s

Figure 3. Electrical equivalent circuit of the stator windings and the magnetically coupled iron core
in the (d, q)-reference frame.

The governing stator and stator iron voltage equations are, respectively, given by

udq
s = Rdq

s idq
s + ωp Jψdq

s + d
dt ψdq

s

02 = Rdq
s,Feidq

s,Fe + ωp Jψdq
s + d

dt ψdq
s ,



 (2)

with stator voltages udq
s := (ud

s , uq
s)
>, stator currents idq

s := (id
s , iq

s)
>, iron currents idq

s,Fe :=

(id
s,Fe, iq

s,Fe)
>, and electrical speed ωp = npωm (i.e., pole pair number np times mechanical

angular velocity ωm; see (3)). Furthermore, Rdq
s and Rdq

s,Fe (both ∈ R2×2; all entries may
be non-zero) denote the resistance matrices of stator windings and iron core, respectively.
Often, if the windings are symmetric (i.e., the resistances are identical in all phases), the
matrices simplify to diagonal matrices Rdq

s = Rs I2 and Rs,Fe I2 with scalar stator Rs and
stator iron Rs,Fe resistances. The dynamics of the mechanical subsystem can be described
as follows

d
dt ωm = 1

Θm

(
mm −ml

)

d
dt φm = ωm,

}
(3)
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with mechanical angular velocity ωm =
ωp
np

, mechanical angle φm, inertia constant Θm, load

torque ml and (nonlinear) machine torque (derivation details omitted, see [4])

mm =
2np

3 κ2

(
idq
s + idq

s,Fe
)> J ψdq

s =
2np

3 κ2

(
idq
s − (Rdq

s,Fe)
−1(ωp Jψdq

s + d
dt ψdq

s
))>

J ψdq
s . (4)

The constant κ ∈ { 2
3 ,
√

2
3} is used to choose between amplitude or power invariant

Clarke transformation, respectively. The right-hand side of (4) is obtained by solving (2)
for idq

s,Fe and inserting the result into the middle part of (4). The sum idq
s + idq

s,Fe of the stator
and iron currents can be interpreted as magnetizing current. The machine torque of IPMSMs
is highly nonlinear; an exemplary torque map is illustrated in Figure 4a. It shows the
nonlinear torque of a 4 kW IPMSM (used later for implementation) over the current locus
overlaid by an exemplary reference torque (gray shaded plane) and the intersection torque
hyperbola (black line) with the admissible currents pairs which can produce this desired
torque. Moreover, several torque hyperbolas for several reference torques are projected to
the current locus (colored lines). Figure 4b depicts the speed-dependent iron losses of the
4 kW IPMSM. The current-dependent flux linkages ψd

s (i
d
s , iq

s) and ψq
s (i

d
s , iq

s) of this machine
are shown in Figure 4c,d, respectively.

−40
−20

0
20

40

−40
−20

0
20

40

−10

0

10

mm,ref

ids / Aiqs / A

m
m

/
N

m

−40 −20
0 20 40

−40
−20

0
20

40
0

500

ids / A
iqs / A

p s
,F
e
/
W

1.6ωm,nom

1ωm,nom

0.2ωm,nom

(a) (b)

−40 −20
0 20 40

−40
−20

0
20

40

0

5

·10−2

ids / A
iqs / A

ψ
d s
/
V
s

−40 −20
0 20 40

−40
−20

0
20

40

−5

0

5

·10−2

ids / A
iqs / A

ψ
q s
/
V
s

(c) (d)

Figure 4. Illustration of machine torque, iron loss and flux linkage nonlinearities of a 4 kW IPMSM
(losses are shown for different speeds). (a) Nonlinear machine torque. (b) Nonlinear iron losses.
(c) Nonlinear d-flux linkage. (d) Nonlinear q-flux linkage.

Remark 1 (Machine nonlinearities). In the most general case, stator flux linkages are nonlinear
functions of currents, speed, angle and temperatures, i.e., ψdq

s = ψdq
s (idq

s , ωp, φp, ϑs, ϑr). Simi-
larly, the stator and stator iron resistance matrices may depend on currents (proximity and skin
effect), speed, angle (asymmetric case) and stator temperature, i.e., Rdq

s = Rdq
s (idq

s , ωp, φp, ϑs) and

Rdq
s,Fe = Rdq

s,Fe(i
dq
s , ωp, φp, ϑs), respectively. To simplify notation, those dependencies (arguments)

are dropped in the remainder of this paper but should be kept in mind as they highlight the complexity
and nonlinearity of the OFTC problem.
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With the electrical and mechanical model, i.e., (2) and (3) above, the ORCC iteratively
solves the nonlinear optimization problem (NLP) with two inequality constraints and one
equality constraint, given by

idq
s,ref = arg min

idq
s

ps,L (5a)

s.t. ‖idq
s ‖ ≤ ı̂s,max, (5b)

‖udq
s ‖ ≤ ûs,max, (5c)

mm = mm,ref = satmm,max
(mm,ref) (5d)

where stator copper losses and stator iron losses (see Figure 4b)

ps,L := (idq
s )>Rdq

s idq
s︸ ︷︷ ︸

=:ps,Cu (copper losses)

+ (idq
s,Fe)

>Rdq
s,Feidq

s,Fe︸ ︷︷ ︸
=:ps,Fe (iron losses)

(6)

are minimized while the machine constraints, i.e., the current limit ı̂s,max in (5b) and the
voltage limit ûs,max in (5c) and, must not be violated and the saturated (feasible) reference
torque mm,ref must be produced. The reference torque mm,ref must be saturated to the
sign-correct maximally available (feasible) machine torque

mm,max := max
idq
s

sign(mm,ref) ·mm (7)

as not all reference torques are feasible and, hence, can not be produced due to the current
and/or voltage constraints in (5b) and (5c). The per-unit machine constraints and the
reference torque are illustrated in Figure 5 in the current locus as (a) current circles for
multiples of the rated current magnitude is,R, (b) voltage ellipses for multiples of rated
electrical angular velocity ωp,R and (c) (reference) torque hyperbolas for multiples of rated
machine torque mm,R.
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Figure 5. Illustration of machine constraints and reference torque in current locus for multiples of
rated current is,R, angular velocity ωp,R and machine torque mm,R. (a) Current circles. (b) Voltage
ellipses. (c) Torque hyperbolas.

Remark 2 (Nonideal voltage ellipses and reference torque hyperbolas). Voltage ellipses
and reference torque hyperbolas in the current locus can (locally) be represented as quadrics of
the form (idq

s )>A idq
s + 2 a>idq

s + α with constant matrix A ∈ R2×2, vector a ∈ R2 and scalar
α ∈ R [4]. However, for nonlinear machines with highly current dependent magnet cross-coupling
and saturation, these global “ellipses” and “hyperbolas” are actually distorted (see Figure 5) and
(idq

s )>A(idq
s ) idq

s + 2 a(idq
s )>idq

s + α(idq
s ) holds where matrix, vector and scalar depend on the

currents as well. That is why an online linearization must be performed which eventually only
allows solving the NLP iteratively.
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1.4. Proposed Solution

In this paper, in contrast to the conventional (LUT-based or numerically or analytically
computed) OFTC approaches, an ANN-based OFTC for IPMSMs is proposed. Basically,
the OFTC block in Figure 2 is replaced by a properly designed, trained and validated ANN as
illustrated in Figure 6. Therefore, the modularity of the control system is preserved and
the implementation effort is minimized. In addition, for the implementation of the ANN,
(data) preprocessing is required in order to accelerate and improve training and validation
and to assure the real-time capability of the ANN. The ANN will compute analytically but
recursively the desired optimal reference currents which then are fed to the inner current
control loop. The ANN-based OFTC is performed based on (a) its inputs (such as voltage
and current constraints, reference torque, electrical angular velocity, etc.) and (b) its input,
hidden and output ANN layers with simple but trained activation functions. The aimed
at advantages of the ANN-based OFTC strategy are (i) a simple implementation, (ii) a
faster computation of the reference currents than with classical ORCC (as no iterations are
required) and (iii) no OOSS is necessary as the trained ANN directly outputs the optimal
reference currents without following a decision tree (as required for conventional OFTC;
see e.g., [4,25]).

-
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PIωm

ωm mm,ref
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mm
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Figure 6. Block diagram of the newly proposed control system with ANN-based OFTC and underlying
current controllers of a typical electrical drive system consisting of IPMSM and inverter.

2. Artificial Neural Network based Optimal Feedforward Torque Control

To replace ORCC by an Artificial Neural Network (ANN; ANNs are often also called
Multi-Layer Perceptron (MLP) networks, see Section 3.10 in [63]), the ANN must be
properly designed such that input, hidden and output layers have adequate size and the
used activation functions are simple but powerful enough to be capable of reduplicating
the nonlinear machine behavior. After ANN design, it must be trained and validated by
properly selected training and validation data sets. The data sets must be created and
preprocessed with care such that ANN training and ANN validation are feasible.

For the present application, the following specifications are imposed on ANN design,
training and validation:

• The approximation accuracy of the ANN for OFTC must be (very) high, i.e., approxi-
mation errors should be smaller than 1%;

• Assuming the required data is available, there are no stringent restrictions on training
and validation as it is performed offline, i.e., there are (almost) no computational or
memory storage constraints during training and validation; and
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• The trained ANN should be simple to implement and run in real-time, i.e., a rather
small feedforward network architecture (i.e., without dynamics; no recurrent network)
with a low number of neurons and one or (at most) two hidden layers should be used.

In the following, ANN design, training and validation are explained in more detail.

2.1. Artificial Neural Network Design

The goal of the ANN used for OFTC is to approximate the nonlinear behavior

y :=

(
id
s,ref

iq
s,ref

)
= f

(
mm,ref, ûs,max, ı̂s,max, ωp, . . .

)
= f

(
x
)

(8)

between reference torque, physical constraints and operating conditions (the inputs col-
lected in the vector x := (x1, . . . , xm)

>; recall Figure 1) and the optimal reference currents
(the outputs collected in the vector y := (y1, . . . , yn)

>). As the nonlinear function f (·)
is not known, the ANN must be trained properly to obtain approximated output ŷ and
approximating function f̂

(
·
)

(approximated quantities are indicated by hat) such that the
following holds

ŷ =

(
id
s,ref,ANN

iq
s,ref,ANN

)
= f̂

(
x
)
≈ f

(
x
)
. (9)

The ANN output ŷ is (i) for binary classification tasks typically one or zero and (ii)
for non-binary classification or regression tasks a numerical value. Every input xi with
i ∈ {1, . . . , n} of the input vector x has a different impact, also called weight, on the outcome
of the neural network.

2.1.1. Preliminaries: Neurons, Layers and Recursive Output Computation

In general, an ANN consists of several layers and each layer of several neurons. Each
neuron of the j-th layer is fed by the mj-dimensional input vector xj := (xj,1, . . . , xj,mj

)> ∈
Rmj . The i-th neuron of the j-th layer is equipped with its respective activation function
Φj,i(·) [see Section 2.1.2], which processes the input vector xj—weighted by the weight

vector wj := (wj,1, · · · , wj,mj
)> ∈ Rmj and biased by the bias bj,i ∈ R in order to compute

the neuron’s output
ŷj,i = Φj,i

(
w>j,ixj + bj,i

)
∈ R. (10)

Therefore, the j-th layer with nj neurons generates the output vector

ŷj =




ŷj,1
...

ŷj,nj


 =




Φj,1
(
w>j,1xj + bj,1

)

...
Φj,nj

(
w>j,nj

xj + bj,nj

)


 = Φj

(
W jxj + bj

)
∈ Rnj (11)

where

W j :=




w>j,1
...

w>j,nj


 ∈ Rnj×mj and bj :=




bj,1
...

bj,nj


 ∈ Rnj (12)

collect the weights and biases in compact form in the overall weighting matrix and bias
vector of the j-th layer, respectively. The overall output vector ŷ of the ANN then is
recursively defined by the outputs of the activation functions in the different layers; i.e., for
an ANN with L layers and input vector x, it is given by
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ŷ = ΦL

(
W L ΦL−1

(
W L−1ΦL−2

(
· · ·Φ2

(
W2 Φ1

(
W1x + b1

)

︸ ︷︷ ︸
=ŷ1

+b2

)

︸ ︷︷ ︸
=ŷ2

)
+ bL−1

)

︸ ︷︷ ︸
=ŷL−1

+bL

)

︸ ︷︷ ︸
=ŷL

, (13)

where the first layer is the input layer, the second to the L− 1-th layers are hidden layers and
the L-th layer is the output layer. From (13), the recursive nature of the output computation
becomes clear. The output vector ŷj−1 of the preceding j−1-th layer becomes the input to
the j-th layer. The output vector ŷL of the L-th layer represents the overall output ŷ of the
neural network. For further details, the interested reader is referred to e.g., [64] or [63].

2.1.2. Activation Functions

The core of each ANN are its neurons with their respective activation function Φ(·);
recall (10), (11) and (13). Depending on the location of the neuron in the input, hidden
or output layer, different activation functions have proven to be useful. Most common
activation functions [64], such as sigmoid, tangens hyperbolicus, signum (sign), identity,
rectified linear unit (ReLU) and saturation are illustrated in Figure 7. Their mathematical
definitions with respective derivatives are collected in Table 1.

For input and output layer, simple activation functions such as the identity are most
common whereas for the hidden layers typically sigmoid or tangens hyperbolicus functions
are used [64].
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(a) Sigmoid. (b) Tangens hyperbolicus. (c) Signum (sign).
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(d) Identity. (e) Rectified Linear Unit (ReLU). (f) Saturation.

Figure 7. Illustration of different activation functions and their derivatives, i.e., (a) Φ(x) = Φsig(x),
(b) Φ(x) = Φtanh(x), (c) Φ(x) = Φsgn(x), (d) Φ(x) = Φid(x), (e) Φ(x) = ΦReLU(x) and (f) Φ(x) =
Φsat(x) (for mathematical definitions, see Table 1).
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Table 1. Mathematical definitions of different activation functions and their derivatives.

Function Name Activation Function Φ(x) Derivative Φ
′(x)

Sigmoid Φsig(x) = 1
1+e−x Φ′sig(x) = Φsig(x)

(
1−Φsig(x)

)

Tangens hyperbolicus Φtanh(x) = ex−e−x

ex+e−x Φ′tanh(x) = 1−Φtanh(x)2

Signum (sign) Φsgn(x) =

{
−1 if x < 0
1 if x ≥ 0

Φ′sgn(x) = 0 (not at x = 0)

Identity Φid(x) = x Φ′id(x) = 1

Rectified Linear Unit ΦReLU(x) =

{
0 if x < 0
x if x ≥ 0

Φ′ReLU(x) =

{
0 if x < 0
1 if x ≥ 0

Saturation Φsat(x) =





−1 if x < −1
x if − 1 ≤ x ≤ 1
1 if x > 1

Φ′sat(x) =





0 if x < −1
1 if − 1 ≤ x ≤ 1
0 if x > 1

2.1.3. Implemented Artificial Neural Network Architectures

For the considered application in electrical drive systems with small cycle times
(<10 ms) sophisticated networks with hundreds of neurons, more than two hidden layers
and complicated activation functions are (still) too complex for real-time implementation.
In particular, implementation and evaluation of the sigmoid and tangens hyperbolicus
activation functions and their derivatives (recall Table 1) are computationally demanding.

Therefore, in this paper, due to its low computational requirements, simple ReLU acti-
vation functions with their super simple derivative are utilized for the hidden layers. Input
and output layer are equipped with the identity activation function as the approximation
problem can be considered as a regression problem.

Regarding the layers, it is stated in [65] that a single hidden layer is sufficient to train
the ANN to match “any non-linearity”. Following this statement, a network with one hid-
den layer is chosen as the minimum requirement and, for comparison, a network with two
layers is implemented as well (the maximum depth of the hidden layers considered here).

For OFTC of IPMSMs, the ANN must output two reference currents and process at
least four input variables. The number of input and output layer neurons should match the
input and output dimensions. For this paper, four input variables, the reference torque, the
(possibly varying) current and voltages limits and the electrical angular velocity, i.e.,

x = (mm,ref, ûs,max, ı̂s,max, ωp)
> ∈ R4, (14)

are considered. Clearly, more inputs such as angular position or rotor and stator tempera-
ture are feasible and might be of interest but are considered as future work. The output
vector comprises the two optimal reference currents, i.e.,

ŷ = (id
s,ref,ANN, iq

s,ref,ANN)
> ∈ R2, (15)

and, therefore, the output layer consists of two neurons.
Lastly, the number of neurons must be defined. A sufficient amount of neurons

in the hidden layer(s) to approximate one single (scalar) output varies between three
(see [34,36]) and up to 100 (see [47,66]). To specify the number of neurons per hidden layer,
the guidelines presented in [47] were adapted to obtain an initial number as starting point
or initial guess. The formula

nj = noutput ·
(√

ni,j + no,j + h
)

(16)
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is proposed to calculate the approximate number nj of neurons of the j-th hidden layer
(for ANN-based OFTC, one (i.e., j = 2) or two hidden layers (i.e., j ∈ {2, 3}) were chosen).
ni,j and no,j represents the numbers of the input and output neurons of the j-th hidden
layer, whereas noutput specifies the number of ANN outputs and h ∈ {1, . . . , 10} is an
integer. In [47], the formula was presented for a single output neuron (i.e., noutput = 1).
Evaluating (16) for the considered case and all h ∈ {1, . . . , 10} yields

• n2 ∈ {6, . . . , 24} for one hidden layer (i.e., j = 2) and
• n2, n3 ∈ {8, . . . , 28} for two hidden layers (i.e., j ∈ {2, 3}).

Based on these initial guesses, several ANN designs with one and two hidden layers
and different number of neurons per hidden layer have been implemented, trained and
validated. The best compromise between accuracy and complexity were obtained for twenty
neurons per hidden layer as illustrated in Figure 8 which shows exemplarily estimation
accuracy (norm of estimation error) and floating point operations (FLOPs; i.e., the number
of required computations incorporating summations and multiplications) over the number
of neurons in the hidden layers of Architecture (A2). Obviously, the estimation accuracy
increases quickly (norm of estimation error reduces) until, for 20 hidden neurons, one of the
lowest values of the error norm (i.e., ‖e‖ ≈ 2428) is reached. For 23 neurons, a similar value
is obtained with ‖e‖ ≈ 0.2425 and, finally, for 28 neurons, the best accuracy is achieved
with ‖e‖ ≈ 0.2343. In contrast to that, the FLOPs increase quadratically with the increasing
number of hidden neurons.
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Figure 8. Illustration of estimation accuracy (norm of estimation error) and floating point operations
of ANN Architecture (A2) for different numbers of hidden layer neurons.

Based on the discussion above, two ANN architectures were implemented: Architec-
ture (A1) with three layers including one hidden layer and Architecture (A2) with four
layers including two hidden layers. Both are illustrated in Figure 9. The key data of both
ANN designs is collected in Table 2.
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Figure 9. Illustration of the two implemented ANN architectures: Each architecture has four input
layer neurons and two output layer neurons; Architecture (A1) has one hidden layer, whereas
Architecture (A2) has two hidden layers with 20 hidden layer neurons each.

Table 2. Key data of implemented ANN architectures (centered entries hold for both architectures).

Description Architecture (A1) Architecture (A2)

ANN type Feedforward Neural Network
Model prediction Regression
Training algorithm Levenberg-Marquardt
Error function Mean Squared Error (MSE)
Overall layers 3 4
Hidden layers 1 2

Input vector x := (mm,ref, ûs,max, ı̂s,max, ωp)
>

Input neurons n1 = 4
Input layer activation function Φid(x) [see Table 1] (without weighting and bias)

Hidden layer activation function ΦReLU(x) [see Table 1]
Hidden layer neurons n2 = 20 n2 = n3 = 20

Output layer activation function Φid(x) [see Table 1]
Output layer neurons n3 = 2 n4 = 2
Output vector ŷ := (id

s,ref,ANN, iq
s,ref,ANN)>
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2.2. Artificial Neural Network Training

Neural networks can be trained by using one of three training or learning methods
which are supervised, unsupervised and reinforced learning (for details see e.g., [64]
or [63]). Supervised learning requires (comprehensive) data, including both input and
corresponding output data. Unsupervised learning mainly is used to cluster input data,
therefore no output data is required. Reinforced learning needs the interaction of a machine
or person that rewards the neural network if it is working as expected. In this paper,
supervised learning is utilized, in order to train both ANN Architectures (A1) and (A2), as
input and corresponding output data are available.

2.2.1. Preliminaries: Data Sets, Performance Measures and Training Algorithms

The available data must be collected and preprocessed. To do so, all individual (e.g., for
each sampling instant n) input-output data sets

(y[n]; x[n])

are collected, for all n ∈ {1, . . . , N}, in the overall input-output data set

(Y ; X) :=
(
(y[1]; x[1]), . . . , (y[N]; x[N])

)
,

which is then preprocessed, split into training data set

(YT; XT) :=
(
(yT[1]; xT[1]), . . . , (yT[NT]; xT[NT])

)
⊂ (Y ; X)

of size NT < N and validation data set

(YV; XV) :=
(
(yV[1]; xV[1]), . . . , (yV[NV]; xV[NV])

)
⊂ (Y ; X)

of size NV < N and finally used for ANN training and validation.
With these two data sets (YT; XT) and (YV; XV) at hand, training and validation of

the ANN can be conducted. To analyze the learning and validation performance of the
ANN, performances measures are required, which quantify the approximation error

e[k] := y[k]− ŷ[k]
(8),(11)
= f

(
x[k]

)
− f̂

(
x[k]

)
(17)

of the ANN for each data subset k (or each sampling instant k) chosen from the training
set (YT; XT) or validation set (YV; XV) (i.e., k ∈ {1, . . . , K := NT} or k ∈ {1, . . . , K := NV}).
The performance measures for a regression neural network, such as the used ANNs, differ
considerably from the accuracy measures for a classification network. Usually, the following
performance measures (see e.g., [64,66] or [63]):

• Mean Error (ME)

e :=
1
K

K

∑
k=1

e[k] =
1
K

K

∑
k=1

y[k]− ŷ[k] (18)

• Standard Error Deviation (SED)

σe :=
√

e[k]2 =

√√√√ 1
K

K

∑
k=1

(y[k]− ŷ[k])2 (computed component-wise) (19)

• Quadratic Euclidean Distance (or Mean Squared Error (MSE))

d(e[k]) := ‖e[k]‖2 = e[k]>e[k] = (y[k]− ŷ[k])>(y[k]− ŷ[k]) (20)
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are used (i) to quantify the approximation error and its probability and (ii) to finally train
and validate the regression network. Note that mean error and standard error deviation
are computed (“averaged”) over all entries k ∈ {1, . . . , K} of the chosen data set, whereas
the quadratic Euclidean distance is evaluated for each individual entry k (as it is used for
data training and adaption of the weights of the ANN).

Based on mean error and standard error deviation, usually three probability distribu-
tion regions are of interest:

• e± 1 σe = 68.7% (Region I);
• e± 2 σe = 95.4% (Region II); and
• e± 3 σe = 99.7% (Region III);

as those cover pre-defined regions of the normal distribution [67] and are used later for
performance analyses.

Finally, to train (or optimize) the ANN in order to update the weights and to minimize
the approximation error (17) (more, precisely, its error norm, the Euclidean distance (20)), a
training algorithm must be chosen [68]. Very often, the Gradient descent method is applied
to update the weights by using the negative and by some 0 < η < 1 scaled gradient of the
error norm [63], Section 10.4.4, i.e.,

w[k + 1] := w[k]− η 1
2

d
dw
‖e[k]‖2

︸ ︷︷ ︸
gradient

(20)
= w[k]− η 1

2
d

dw
d(e[k]) (21)

where all weights of all L layers (recall (12)) are collected in the overall weighting vector

w :=
(
(w>1,1, . . . , w>1,n1

)
︸ ︷︷ ︸

1-st Layer

, . . . , (w>L,1, . . . , w>L,nL
)

︸ ︷︷ ︸
L-th layer

)>
.

However, the main problem of the gradient descent method is its slow to moderate
convergence speed. As alternative, the Levenberg-Marquardt algorithm has become popular
to update the weights as follows [63], Section 4.1

w[k + 1] := w[k]−
(

JC(w[k])> JC(w[k]) + µI︸ ︷︷ ︸
scaled & approximated Hessian

)−1
JC(w[k])>e[k] (22)

with Jacobian matrix

JC(w[k]) :=
d

dw
e[k],

identity matrix I (of appropriate dimensions) and scaled & approximated Hessian matrix
JC(w[k])> JC(w[k]) + µI scaled by some µ > 0. The Levenberg-Marquardt algorithm rep-
resents a mixture between gradient descent and the Gauss-Newton method in order to
combine both of their strengths. It uses the Gradient descent method to converge when
the current error is far from its minimum and the Gauss-Newton method to converge
quickly when near a local minimum. The downsides of this algorithm are the relatively
high computational demand during training since the inverse of the (approximated) Hes-
sian matrix must be computed for each sub-data set or sampling time k to update the
weights. The Levenberg-Marquardt algorithm works very effectively for small(er) net-
works but loses against the gradient descent methods in terms of convergence speed for
large (deep) networks.

In this paper, as rather small networks are considered and there are no restrictions
on computational power, the Levenberg-Marquardt algorithm is used for ANN training.
The ANN training (and validation) procedure is illustrated in Figure 10 for the two chosen
ANN architectures.
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1

2

ŷ = idqs,ref,ANNPrepro-
cessing

Validation Set
(Y V;XV)

Training Set
(Y T;XT)

ANN Architecture
(A1) or (A2)

Input Preprocessing Artificial Neural Network Output

y = idqs,ref

−
Approximation
Error e = y − ŷ

Figure 10. Illustration of ANN training and validation procedure, training set and validation set, re-
spectively: Approximation error e := y− ŷ = (id

s,ref, iq
s,ref)

> − (id
s,ref,ANN, iq

s,ref,ANN)> is the difference
between the numerically computed optimal reference currents and the ANN outputs.

2.2.2. Data Set(s) Creation for Training (and Validation)

Before the ANNs can be trained and validated, in this subsection, it will be shown how,
based on available measurement data or available data from Finite Element Analysis (FEA)
of the IPMSM, the required data sets (YT; XT) and (YV; XV) for training and validation can
be created, respectively. Starting points are

• the available rated machine parameters (see Table 3) such as e.g., pole pair number
np, resistance Rs at rated temperature, moment of inertia Θm, rated torque mm,R and
rated current magnitude is,R;

• the available LUTs for iron losses, flux linkages and machine torque parametrized by
the angular velocity ωp (or ωm; see Figure 4) and the (d, q)-currents within the current
circle

{
idq
s = (id

s , iq
s) ∈ R2

∣∣∣
√
(id

s )
2 + (iq

s)
2 ≤ ı̂s,max

}
; (23)

• the admissible ranges of the current and voltage limits, given by

ı̂s,max ∈
[
ı̂s,max, ı̂s,max

]
and ûs,max ∈

[
ûs,max, ûs,max

]
, (24)

with lower (̂ıs,max, ûs,max) and upper (̂ıs,max, ûs,max) bounds on these limits.

Based on this data, either measurements or simulations can be performed for a pre-
specified range of different electrical angular velocities (or speeds), i.e.,

ωp ∈
[
ωp, ωp

]
with ωp < ωp, (25)

and a prespecified range of different reference torques, i.e.,

mm,ref ∈
[
mm,ref, mm,ref

]
with mm,ref < mm,ref. (26)

The implemented automated software framework for data set creation is illustrated as
workflow diagram in Figure 11.
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îs,max
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Figure 11. Software framework and workflow for data set creation: Outputs are the Training Set(s)
(YT; XT) and Validation Set(s) (YV; XV).

The user has to provide the upper and lower bounds on current and voltage constraints,
angular electrical velocity and reference torque (i.e., ı̂s,max, ı̂s,max, ûs,max, ûs,max, ωp, ωp,
mm,ref, mm,ref) as inputs to the software framework. In addition, the user must specify the
desired resolution (number of data points) of the intervals (24)–(26) by ni, nu, nω and nm,
respectively. With this input data, the software framework starts the routine call_OFTC
which will iteratively compute the optimal reference currents numerically based on the
available measurement and/or FEA data and finally outputs training sets and validation
sets for ANN training and validation, respectively.
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The iteration over the current and voltage limit intervals (24) starts by calling the
subroutine OFTC which then iterates over the speed (25) and torque (26) intervals by subse-
quently calling the subroutines Current_Couples, Voltage_Ellipsis, Torque_Hyperbola
and Create_Sample_Set. If the actual reference torque is feasible (i.e., no current or voltage
constraint is violated), the losses are minimized numerically or, if it is not feasible, the
feasible torque is maximized by the subroutine Optimal_Current_Couples to finally obtain
the optimal reference currents y = (id

s,ref, iq
s,ref)

> as comparative output for later training
and validation. For each iteration, the software framework returns and stores a data subset.
These individual data subsets are then combined to the overall data set (Y ; X) which can
be split in training set(s) (YT; XT) and validation set(s) (YV; XV).

Table 3. Rated machine parameters of the considered 4 kW IPMSM.

Description Symbol & Value Unit

Rated power (mechanical) pm,R = 4 kW
Rated torque (mechanical) mm,R = 6.6 Nm
Rated speed (mechanical) nm,R = 5500 (ωm,R = 575.96) rpm ( rad

s )
Rated current (magnitude) is,R = 35 A

Maximal stator current (magnitude) ı̂s,max = 35 A
Maximal stator voltage (magnitude) ûs,max = 110 V

Stator resistance (at nominal temperature) Rs = 0.20 Ω
Inertia Θm = 825× 10−4 kgm2

Pole pair number np = 4 -

In the following, the subroutines introduced above are explained in more detail. At
first, Current_Couples returns a prespecified and large number Ni of current couples
idq
s = (id

s , iq
s)
> within the admissible current circle, satisfying the current constraint (5b), as

data basis for the later computation. The current couples are randomly chosen by Monte
Carlo sampling [69] over a square and equidistant current grid and then truncated in
view of the limitations imposed by the circular current constraint ı̂s,max. The remaining
admissible current couples within the current circle are shown in teal color in Figure 12a.

In the next step, the subroutine Voltage_Ellipsis extracts from the current cou-
ples obtained by Current_Couples those current couples which satisfy the voltage con-
straint (5c) and, hence, lie within the voltage ellipse (see teal elliptic area in Figure 12b).
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Output

ids , i
q
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Dataset
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Output
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Torque
hyperbola

iqs

ids
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bands

(a) (b) (c)

Figure 12. Illustration of subroutines Current_Couples, Voltage_Ellipsis and Torque_Hyperbola.
(a) Current constraint. (b) Voltage constraint. (c) Reference torque.
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The subroutine Torque_Hyperbola determines those remaining current couples within
the voltage ellipse which satisfy the equality constraint for the given reference torque mm,ref.
Therefore, Torque_Hyperbola returns those current couples on the torque hyperbola which
satisfy current and voltage constraint (see teal line in Figure 12c). The thickness of the teal
line can be set by a tolerance band around the torque hyperbola depending on the actual
reference torque mm,ref and the rated torque mm,R. As the current couples lying on this teal
line are not necessarily equidistantly located on a square grid, the returned current couples
are interpolated. If the reference torque is not feasible as current and/or voltage constraint
would be violated, the subroutine returns an empty set of current couples.

The subroutine Create_Sample_Set merges the obtained data in a sample set of the
desired form (y; x).

Finally, after a feasibility check for the reference torque is performed (see Figure 11), the
subroutine Optimal_Current_Couples selects the optimal reference current couple idq

s,ref =

(id
s,ref, iq

s,ref)
> which either is feasible and produces the desired torque while minimizing

copper and iron losses or which maximizes the torque if voltage and/or current constraints
are violated. This selection is illustrated in Figure 13.
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Figure 13. Illustration of subroutines Optimal_Current_Couples with input mm,ref (dashed line)

and output idq
s,ref = idq

s : If mm,ref is feasible, the current couple is returned which minimizes losses
(see left X); if mm,ref is not feasible the current couple is returned which maximizes the torque (see
right X).

In conclusion, based on the inputs to the software framework, it automatically creates
the three small, medium and large training data sets (YTS; XTS), (YTM; XTM) and (YTL; XTL)
and the two small and large validation data sets (YVS; XVS) and (YVL; XVL). The key data
of these created data sets is collected in Table 4. Amount and size of training and validation
sets can be adjusted if required.
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Table 4. Inputs for data set creation by the software framework illustrated in Figure 11: The created
data set(s) are then split into three training and two validation data sets used for ANN training and
validation, respectively.

Inputs for data set creation:
îs,max îs,max ni ûs,max ûs,max nu ωp ωp nω mm,ref mm,ref nm ND

Output: Small training set (YTS; XTS) with 10k samples
14 42 5 110 185 5 0 1.6 20 0 2 20 10k

Output: Medium training set (YTM; XTM) with 50k samples
14 42 4 110 185 5 0 1.6 50 0 2 50 10k

Output: Large training set (YTL; XTL) with 200k samples
14 42 8 110 185 10 0 1.6 50 0 2 50 10k

Output: Small validation set (YVS; XVS) with 10k samples
14 42 5 110 185 5 0 1.6 20 0 2 20 10k

Output: Large validation set (YVL; XVL) with 200k samples
14 42 8 110 185 10 0 1.6 50 0 2 50 10k

2.2.3. Data Set Preprocessing for Training (and Validation)

In general, before the training of the ANN, it is beneficial to preprocess the training
set(s). This data set preprocessing workflow is illustrated in Figure 14. It consists of data
correction, flattening and normalization.

ANN Correction

Input

Training set

Output

Training set (corrected)

pass
on

ANN Flattening

Input

Training set

Output

Training set (flattened)

⇒

pass
on

ANN Normalization

Input

Training set

Output

Training set (normalized)

ûs,max

U/V

1

U/ûs,max

⇒

Figure 14. Illustration of the workflow of the data preprocessing.

The subroutine ANN_Correction removes and corrects erroneous data entries. After
that the subroutine ANN_Flattening adjusts the data dimensions to the input dimensions
of the neural network (recall x ∈ R4 in (14) and ŷ ∈ R2 in (15) for the considered case). This
is required as the data set creation provides data with the dimensions

(2 + 4)× ni × nu × nω × nm (27)

which must be reduced to

(2 + 4)× (ni · nu · nω · nm︸ ︷︷ ︸
=:ND

) (28)
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resulting in ND data sets of the form (y[n]; x[n]) with n ∈ {1, . . . , ND} which can be repre-
sented as single column vectors (y[n]>, x[n]>)> of dimension R6. In the last subroutine
ANN_Normalization, the corrected and flattened data vectors (y[n]>, x[n]>)> are normal-
ized for all n ∈ {1, . . . , ND} to accelerate the training time as shown in Table 5 for three
different training scenarios. An average decrease in the training time of at least 26% can be
achieved, as by reducing the absolute values of the inputs, the weight values will decrease
as well resulting in less computational effort.

Table 5. Comparison of training duration and achievable time reduction of the training process by
data set normalization for ANN Architecture (A2) trained with small, medium and large training
data set (YTS; XTS), (YTM; XTM) or (YTL; XTL).

Scenario (A2) + (YTS; XTS) (A2) + (YTM; XTM) (A2) + (YTL; XTL)

Training duration without nor-
malization (in s) 136 298 1450

Training duration with normal-
ization (in s) 81 288 937

Relative time reduction (in %) −40.4% −3.4% −35.4%
Average time reduction (in %) −26.4%

The normalization is realized by dividing all input and output data entries by their
respective absolute maximal value in order to return a normalized data set with values
within the intervals [−1, 1]. This division also motivates for the initial data correction step
to assure that the interval [−1, 1] is fully exploited.

2.2.4. Network Training

During the training, the Levenberg-Marquardt algorithm minimizes the squared Eu-
clidean distance (20) by adapting the ANN weights according to (22). Such an ANN training
can easily be implemented in MATLAB R2019b using the feedforwardnet-function of MAT-
LAB’s Deep Learning Toolbox. The training should happen in several epochs (during which
the whole training data set (YT; XT) is used once), to improve the generalization capability
of the ANN. Before the training, multiple training terminators must be specified to provide
stopping criteria for the training process. The most important termination parameters are
collected in Table 6.

In Figure 15, the training results are shown for ANN Architectures (A1) and (A2) and
three different training sets (YTS; XTS) [small set], (YTM; XTM) [medium set] and (YTL; XTL)
[large set]. It can be seen that, independently of the training data sets in use, Architecture
(A2) with two hidden layers, reaches smaller error norms ‖e‖ =

√
d(e) after a smaller

number of epochs. Moreover, note that only for Architecture (A1) with the large training
set (YTL; XTL) all 400 epochs are required for training. All other trainings terminate earlier
due to the fact that no further training improvements are achieved.

2.2.5. Avoidance of Overfitting

Overfitting must be avoided to circumvent deteriorated performance of the trained
ANN outside (and within) the used training data set. To do so, two main aspects must be
considered:
• proper training (and validation) sets must be chosen in order to cover all relevant

regions (operating points) for ANN-based OFTC; in particular, a proper size of the
training set (number of operating points) must be found. Therefore, three different
sizes (small, medium and large) of training sets for training and two validation
sets for validation were used and their respective results were compared. The sets
have been generated by Monte Carlo simulation while an optimal coverage of the
desired operating points was assured. Those sets leading to the best approximation
performance of the ANN were finally used; and
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• proper termination criteria for the training process must be formulated (see Table 6
and, for more details, see Chapter 11.5.2 in [66]), in particular, during training a
quick parallel validation is performed and if here the validation approximation error
increases for a certain number of epochs in a row (see solid green lines in Figure 15),
the training is stopped and the trained weights before the increase of the approximation
error are used as final weights for the trained ANN.

Table 6. Training termination parameters to end training after requirements have been met.

Termination Parameter Value Description

Maximum number of
epochs 400 Training is terminated if the specified number of epochs is

reached (to avoid overfitting and to guarantee termination).
Maximum validation
failure runs 10 Training stops if performance (accuracy) worsens for a

certain number of epochs in a row (to avoid overfitting).

Maximum training time ∞
Training is terminated when the time limit is exceeded (as
no computational limit was imposed/required during
training and validation).
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Figure 15. Evolution of approximation error norm (learning error) over epochs during the training of
the ANN Architectures (A1) & (A2) with the small, medium and large training data sets (YTS; XTS)

(YTM; XTM) and (YTL; XTL), respectively.

2.3. Artificial Neural Network Validation

After the training of both ANN Architectures (A1) and (A2) with the created small,
medium and large training sets (YTS; XTS), (YTM; XTM) and (YTL; XTL), both are validated
with the help of the created small and large validation sets (YVS; XVS) and (YVL; XVL).

2.3.1. Validation Procedure

The validation procedure is similar to the training procedure as illustrated in Figure 10.
However, instead of using as input the training sets, the validation sets are fed to the
preprocessing block while weight adaption is turned off. Finally, the trained ANNs will
output the optimal reference currents according to the validation input data.

The validation scenarios as well as the closed-loop simulations are performed on a
conventional personal computer (see specification in Table 7).
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Table 7. Computer specification of the utilized MacBook Pro (16-inch, 2019).

Parameter Value

Operating System macOS Monterey Version 12.0.1
Processor 2.6 Hz 6-Core Intel Core i7
Memory 16 2 667 MHz DDR4
Graphics AMD Radeon Pro 5300M 4

Two validation scenarios are considered. The first scenario aims at evaluating the exe-
cution time of the ANN to compute the optimal reference currents (id

s,ref,ANN, iq
s,ref,ANN)

>

based on the provided input validation data xVS[n] and xVL[n] (with n ∈ {1, . . . , ND}) of
the validation sets (YVS; XVS) and (YVL; XVL), respectively. The second scenario aims at
validating the approximation accuracy of the trained ANNs by computing and evaluating
the approximation error

e[n] = y[n]− ŷ[n] =

(
id
s,ref[n]

iq
s,ref[n]

)
−
(

id
s,ref,ANN[n]

iq
s,ref,ANN[n]

)

between numerically obtained optimal reference currents and those computed by the ANN.
The results of both validation scenarios are discussed in the following two subsections.

2.3.2. Validation Scenario I: Execution Time

The execution times of one executation call (i.e., computing an individual sample
(yV[n]; xV[n])) of the ANN Architectures (A1) and (A2) trained each with the training
sets (YTS; XTS), (YTM; XTM) and (YTL; XTL) are validated using the small validation set
(YVS; XVS). The results are shown in Figure 16 over the 10,000 samples of the small
validation set. All six validation test results show that almost the same average execution
time of 3.45 µs per ANN execution are obtained. The size of the training set (small, medium
or large) does not significantly have impact on the executation time. Only the size of
the ANN architecture affects the execution time. The execution time of Architecture (A2)
increases by 16–35% to 3.85 µs on average compared to that of Architecture (A1).
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Figure 16. Illustration of execution times over 10.000 samples during the validation of the ANN
Architectures (A1) [top row] & (A2) [bottom row] with the small validation data set (YVL; XVL)

(trained each with the small, medium and large (YTS; XTS), (YTM; XTM) and (YTL; XTL)).
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2.3.3. Validation Scenario II: Approximation Accuracy

In contrast to the execution time, both, the size of the training sets as well as the size
of the ANN architecture, have a strong impact on the achievable approximation accuracy
(i.e., the norm of the approximation error). The results of the second validation scenario are
shown in Figure 17. For each architecture, the individual approximation errors

ε[n] = id
s,ref[n]− id

s,ref,ANN[n] and ε[n] = iq
s,ref[n]− iq

s,ref,ANN[n],

of d- and q-reference currents are computed for all samples n ∈ {1, . . . , ND} of the consid-
ered validation set and, then, associated to and collected in error bars with a width of 0.1 A.
Finally, mean error e as in (18), standard error deviation σe as in (19) and error distribution
probability

P(ε) = nε
ND

of each error bar are computed, where nε < ND represents the number of samples bundled
in one error bar.
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(a) (A1) + (YTS; XTS) + (YVS; XVS). (b) (A2) + (YTS; XTS) + (YVS; XVS).
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(c) (A1) + (YTM; XTM) + (YVS; XVS). (d) (A2) + (YTM; XTM) + (YVS; XVS).
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(e) (A1) + (YTL; XTL) + (YVS; XVS). (f) (A2) + (YTL; XTL) + (YVS; XVS).

Figure 17. Illustration of individual error distributions ε = id
s,ref − id

s,ref,ANN [left subplots] and
ε = iq

s,ref − iq
s,ref,ANN [right subplots] obtained during the validation of the ANN Architectures (A1)

[left column, i.e., (a,c,e)] & (A2) [right column, i.e., (b,d,f)] with the small, medium and large validation
data sets (YVS; XVS) (YVM; XVM) and (YVL; XVL), respectively.

Figure 17 shows six subplots [see Figure 17a–f] with two error distributions for d-
and q-current approximation error each. The left column shows the results for ANN
Architecture (A1) [see Figure 17a,c,e]; whereas the right column contains the results for
ANN Architecture (A2) [see Figure 17b,d,f]. The vertical red and yellow lines in each
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subplot indicate the error regions which cover 95% (i.e., ≈ e± 2 σe similar to Region II
above) and 99% (i.e., ≈ e ± 3 σe similar to Region III above) of all error bars, i.e., 95%
and 99% of all errors lie between the red and yellow lines, respectively. It becomes clear
that the larger Architecture (A2) has a better approximation accuracy than Architecture
(A1). Moreover, it becomes even better for larger training sets (i.e., red and yellow line
move closer to zero). Note that no approximation errors larger than ±2 A occur. For
example, in the right subplot of Figure 17f, more than 90% of the q-current error bars
yield approximation errors smaller than 0.35A

35A = 1% , which is conform to the specified
approximation accuracy. For the d-current error bars [see left subplot of Figure 17f] about
65% satisfy the specified approximation accuracy, which is still acceptable. This significant
difference is due to the used distribution of the current couples shown in Figure 18, where
clearly more q-currents were in the exemplary training set due to the voltage and current
constraints. Nevertheless, as the following closed-loop implementation results will show,
the approximation accuracy of the ANN Architecture (A2) trained with the large training
set (YTL; XTL) definitely achieves a very acceptable overall performance for ANN-based
OFTC.

−40 −35 −30 −25 −20 −15 −10 −5 0
0

5

10
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20
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40

ids / A

iq s
/
A

Current couples of 50x50 dataset

Figure 18. Distribution of the current couples of an exemplary dataset with constant current and
voltage constraints ı̂s,max and ûs,max but variable ωm and mm,ref.

3. Closed-Loop Implementation and Comparison

Finally, five OFTC approaches are implemented in closed-loop operation of the electri-
cal drive system and compared concerning approximation accuracy and execution time:

• OFTCNLP: OFTC with ORCC using the MATLAB-function fmincon (solving the non-
linear problem (NLP) directly);

• OFTCLUT: OFTC with ORCC using pre-generated LUTs;
• OFTCNUM: OFTC with numerical ORCC;
• OFTCANA: OFTC with analytical ORCC; and
• OFTCANN: OFTC with ORCC utilizing the proposed ANN.

The trained and validated ANN with two hidden layers and 20 neurons per layer
(as described in Section 2) is implemented to achieve ANN-based OFTC (OFTCANN) as
illustrated in Figure 6. OFTCNLP is considered as the benchmark for all other approaches
concerning the accuracy of the obtained reference currents as the nonlinear optimiza-
tion problem with all constraints is solved directly with the powerful fmincon MATLAB-
function. However, concerning the execution time, OFTCNLP is by far the slowest with
111 500 µs = 111.5 ms = 0.112 s and, hence, it is clearly not applicable in real-time. For
OFTCNUM and OFTCANA, the respective ORCC and decision tree are implemented as
discussed in e.g., [4,25] with numerical and analytical solution of the quadric intersection
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problem (i.e., finding roots of fourth-order polynomials). Both, OFTCNUM and OFTCANA,
require an iterative computation due to the necessary online linearization of the nonlinear
optimization problem. OFTCLUT is based on pre-generated LUTs from which the optimal
reference currents are extracted online with inverse interpolation (as mostly used in in-
dustry). More details about implementation, results and comparison are provided in the
following subsections.

3.1. Description of Closed-Loop Implementation

The presented machine model of Section 1.3 is implemented in MATLAB & Simulink
R2019b. The simulated machine is a real, nonlinear 4 kW IPMSM with rated parameters
as introduced in Table 3 and nonlinearities like flux linkages and iron losses as shown in
Figure 4. An inverter with pulse-width modulation (PWM) and a switching frequency
of 18 kHz applies the stator voltages to the machine. The idealized inverter model is
taken from [70], Chapter 14 and neglects switching and conduction losses but allows for
switching and varying dc-link voltages (not considered here). For all five OFTC approaches,
a field-oriented control (FOC) system as shown in Figure 6 is used.

For the ANN-based OFTC approach, the utilized ANN Architecture (A2) was trained
with the large Training Set (YTL; XTL), validated by the large Validation Set (YVL; XVL)
and implemented in Simulink using the feedforwardnet-function which allows to specify
the to be used activation functions, number of layers and training terminators (recall
Tables 2 and 6). Architecture (A2) was chosen as it is more accurate than Architecture (A1)
[recall Figure 17] and its execution time is not significantly longer [recall Figure 16].

All five OFTC approaches (i.e., OFTCNLP, OFTCLUT, OFTCNUM, OFTCANA and
OFTCANN) are implemented in Simulink R2019b in combination with FOC, modulator and
voltage source inverter and nonlinear machine model as a closed-loop electrical drive sys-
tem. An identical simulation scenario is run for all five OFTC approaches to allow for a fair
and direct comparison of their individual performances (accuracies) and execution times.

The chosen simulation scenario represents a typical start-up operation of an electrical
drive system: The IPMSM is accelerated from stand-still to 150 % of its rated speed nm,R
while a constant load torque of about 64 % of the rated torque mm,R is applied to illustrate
the optimal operation management over a wide range of different operating conditions
and for several optimal operation strategies (such as MTPL, MC and FW). For all operation
strategies, optimal and feasible reference currents are computed and tracked to stay within
the imposed current and voltage constraints.

3.2. Implementation Results and Discussion

In Figures 19–21, the implementation results are shown. To ease readability of the
presented results, not all OFTC approaches are depicted. Figure 19 presents the time
series plots of OFTCANA (as best conventional OFTC approach) and OFTCANN (as newly
proposed OFTC approach) and Figure 21 shows the comparison of these two time series
plots against those of OFTCNLP (as benchmark concerning accuracy); whereas in Figure 20,
the current loci of OFTCANA and OFTCANN are depicted. The results of all five approaches
are actually very similar (as will be discussed later; see also Table 8) and, hence, no more
insight would be obtained by showing all implementation results.

The time series of actual [ ] and reference or maximum values [ ] of stator
currents iq

s and id
s , current magnitude ‖idq

s ‖, voltage magnitude ‖udq
s ‖, machine speed

nm (in 1/min = rpm) and torque mm are shown in Figure 19, where the left column [see
Figure 19a] presents the simulation results for OFTC with analytical ORCC (OFTCANA)
and the right column [see Figure 19b] for ANN-based OFTC (OFTCANN).

The background colors in Figure 19a,b indicate the active optimal operation strategy
such as MTPL [ ], MCext [ ], MC [ ] and FW [ ] (for details see [4,5,25]). Despite the
fact, that the ANN-based OFTC does not distinguish between different operation strategies,
the background colors from Figure 19a are used in Figure 19b as well to allow for an easier
comparison.
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(a) (b)

Figure 19. Implementation results: (a) OFTC with analytical ORCC (OFTCANA) with smooth transi-
tion between all operation strategies (i.e., MTPL [ ], MCext [ ], MC [ ] and FW [ ]) and (b)
ANN-based OFTC (OFTCANN).

Besides the time series plots, the speed-torque maps with efficiency contour lines [top
row] and the current evolution in the current locus (plane) [bottom row] are depicted in
Figure 20 for the same closed-loop implementation scenario: Again, the left column shows
the results for OFTC with analytical ORCC [i.e., OFTCANA, see Figure 20a,c], whereas the
right column contains the results for ANN-based OFTC [i.e., OFTCANN, see Figure 20b,d].
The actual speed-torque pairs (nm, mm) or actual current pairs (id

s , iq
s) are marked by [�].

The final (optimal) operating point is marked by [ ].
Initially (t ≤ 0.1 s), the machine is slowly ramped up to 20 % of nm,R [cf. Figure 19a,c].

Neither current nor voltage constraints are violated. Therefore, the OFTC goal is to max-
imize efficiency by minimizing copper and iron losses during MTPL operation. The
requested reference torques are feasible and nicely tracked.

At time t = 0.1 s, the reference speed jumps to 150 % of nm,R and subsequently, the
reference torque reaches its maximum at mm,max. Consequently, the feasible reference
currents are limited to the current circle and the optimale operation strategy MCext [ ] is
active until t = 0.22 s.
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(a) OFTC with analytical ORCC: Speed-torque map. (b) ANN-based OFTC: Speed-torque map.

(c) OFTC with analytical ORCC: Current locus. (d) ANN-based OFTC: Current locus.

Figure 20. Implementation results: Illustration of optimal operation management considering copper
and iron losses minimization and voltage and current constraints—Left column: OFTC with analytical
ORCC (OFTCANA) with (a) speed-torque map and (c) current locus; Right column: ANN-based OFTC
OFTCANN with (b) speed-torque map and (d) current locus.

Due to the increasing speed, the voltage constraint is reached at t = 0.22 s and,
therefore, the operation strategy MC [ ] becomes active. The valid current couples move
on the current circle to more negative reference currents [i.e., id

s,ref < 0, see also current loci
in Figure 20b,d, respectively]. Consequently, the produced machine torque is smaller than
the reference torque, since it is not feasible anymore due to the active current and voltage
constraints.

The reference speed is reached at t = 0.368 s for OFTC with ORCC and at t = 0.372 s
for ANN-based OFTC, respectively. As no accelerating torque is required, the reference
torque drops to the load torque. The current constraint does not limit operation anymore,
but the voltage constraint is still active as the IPMSM operates at high speeds. Hence,
the optimal operation strategy now is FW [ ]. After some transients due to the current
control system, the final operating point [ ] is reached at t = 0.44 s and the machine speed
remains constant until the simulation ends at t = 0.45 s. The efficiency for both strategies
is at its maximum for all operating conditions [cf. Figure 20a,b for OFTC with analytical
ORCC and for ANN-based OFTC, respectively].

Finally, in Figure 21, the simulation results of OFTC with analytical ORCC [ ],
ANN-based OFTC [ ] are compared with the optimal reference currents id

s,ref and iq
s,ref

obtained by directly solving the Nonlinear Optimization Problem (NLP) problem (5) with
the MATLAB function fmincon [ ]. The NLP values are considered the benchmark values
for the other two OFTC approaches. The plotted signals in Figure 21 are the actual reference
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currents, utilized reference current magnitude ‖idq
s,ref‖, utilized voltage magnitude ‖udq

s ‖,
actual machine speed nm (in 1/min = rpm) and actual machine torque mm. The results
show that, in particular, all reference current pairs of OFTC with ORCC and ANN-based
OFTC are very similar and close to those obtained by the OFTC solved directly by fmincon
(NLP). Only very small deviations can be observed: From t = 0.23 s to t = 0.37 s, the current
magnitude of ANN-based OFTC is slightly below the current limit. Therefore, the torque
potential is not completely utilized to its full extent. That is why the target speed is reached
about ∆t = 0.004 s later by the ANN-based OFTC than by the other OFTC approaches.

Table 8 summarizes the results of the comparison by computing the Integral Absolute
Errors (IAE)

IAE :=
∫ tend

tstart

|e(t)|dt

of reference current differences, reference torque differences (during MTPL, MCext and FW
operation), voltage utilization difference (during MC & FW operation), current utilization
difference (during MCext & MC operation) and mechanical speed difference. Moreover,
the mean execution times of the OFTC with analytial ORCC and ANN-based OFTC are
listed. The mean execution time texec is averaged over 10 simulation runs which results in
10 · 0.45 s× 18 kHz = 81,000 OFTC calls for each of the five OFTC approaches.

Table 8. Comparison of the time series of the implementation results of OFTCLUT (LUT-based OFTC),
OFTCNUM (OFTC with numerical ORCC), OFTCANA (OFTC with analytical ORCC) and proposed
OFTCANN (ANN-based OFTC) against OFTCNLP (OFTC with fmincon-based ORCC) evaluating the
Integral Absolute Error (IAE) performance measure and the executation time.

IAE of Time Interval IAEX :=
∫
|e|dt X = OFTCLUT X = OFTCNUM X = OFTCANA X = OFTCANN

d-current whole
∫ ∣∣∣id

s,ref,OFTCNLP
− id

s,ref,X

∣∣∣dt 0.176 As 0.186 As 0.384 As 0.227 As

q-current whole
∫ ∣∣∣iq

s,ref,OFTCNLP
− iq

s,ref,X

∣∣∣dt 0.195 As 0.207 As 0.256 As 0.213 As

torque MTPL,
MCext, FW

∫ ∣∣mref,X −mm
∣∣dt 0.018 Nms 0.017 Nms 0.026 Nms 0.020 Nms

voltage limit MC, FW
∫ ∣∣∣ûs,max − ‖u

dq
s,ref,X‖

∣∣∣dt 0.445 Vs 0.446 Vs 0.454 Vs 0.459 Vs

current limit MC, MCext
∫ ∣∣∣̂ıs,max − ‖i

dq
s,ref,X‖

∣∣∣dt 0.010 As 0.000 As 0.000 As 0.059 As

speed whole
∫ ∣∣nm,ref − nm,X

∣∣dt 752.4 s
min 750.9 s

min 752.6 s
min 757.8 s

min

mean execu-
tion
time

one OFTC
call texec,X 2 734.782 µs 448.745 µs 439.671 µs 5.855 µs

The first observation is that all differences between the IEA values of all five OFTC
approaches with ORCC and ANN-based OFTC are negligibly small. Only the IAE value
of the current utilization of the ANN-based OFTC is slightly larger than the IAE of the
worst of all other OFTC algorithms (here: OFTCLUT). As already mentioned that is because
the utilized current magnitude is slightly below the current limit during the time interval
[0.23 s, 0.37 s].

Most important, the ANN-based approach requires only 5.855 µs for one OFTC exe-
cution, i.e., almost less than a hundredth of the execution time of the implemented OFTC
with analytical or numerical ORCC and nearly less than a five hundredth of the execution
time of the LUT-based approach. This is a rather impressive result as as the executation
time without OFTC approach takes about 2.52 µs. In this case, “without OFTC” means that

the q-reference current is computed by iq
s,ref =

3κ2

2ψpmnp
mm,ref whereas the d-reference current

is simply set to zero, i.e., id
s,ref = 0.
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In conclusion, the execution time of ANN-based OFTC is significantly shorter than
those of the state-of-the-art OFTC approaches and, hence, it seems definitely more promis-
ing and suitable for real-time implementation.

Figure 21. Implementation results: Direct comparison between OFTC with analytical ORCC=

ORCCana [ ], ANN-based OFTC [ ] and OFTC solved directly by fmincon (NLP) [ ].

4. Summary and Outlook

A novel artificial neural network (ANN) based optimal feedforward torque control
(OFTC) strategy has been proposed where the ANN replaces the computationally expensive
numerical, analytical or LUT-based optimal reference current computation (ORCC) to
minimize copper and iron losses in an electrical drive system with highly nonlinear interior
permanent magnet synchronous machine (IPMSM). ANN design, training and validation
have been explained in detail. Special focus has been put on the data set(s) creation to
obtain training and validation sets for the implemented ANNs.

Finally, the ANN-based OFTC strategy has been implemented in Matlab/Simulink
in combination with field-oriented control of a real, nonlinear IPMSM electrical drive
system and it has been compared to state-of-the-art OFTC approaches with e.g., analytical,



Energies 2022, 15, 1838 34 of 38

numerical and LUT-based ORCC. The validation tests have shown that the ANN is capable
of (a) approximating the nonlinear OFTC behavior accurately with approximation errors
of less than 1% and (b) computing the optimal reference currents within less than 5.9 µs
compared to at least 440 µs of the fastest state-of-the-art OFTC approach. Drive performance
and achieved efficiency for all OFTC strategies are almost identical, which proves not only
that the novel ANN-based OFTC is capable of controlling an electrical drive system requiring
less computational time but also doing so with very high accuracy.

Future research will aim at (i) optimizing ANN design (architecture) for typically used
microcontrollers in electrical drive systems (e.g., exploiting DSP resources and/or FPGA
parallelization capabilities as much as possible), (ii) selecting other reasonable and suitable
input parameters (features) for ANN training to achieve even higher approximation accu-
racies, (iii) considering additional operating conditions (such as angular position and stator
and/or rotor temperature) during ANN training, validation and closed-loop implemen-
tation to improve OFTC performance and efficiency at their maxima, (iv) implementing
recursive or structured neural networks to be able to possibly even cover dynamical effects
(such as e.g., current and/or dc-link dynamics) or optimal pulse patterns (OPP) and (v)
implementing optimized ANN-based OFTC on different real-time platforms to validate its
performance and real-time capability via measurements in the laboratory.
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ADALINE Adaptive Linear Neuron
ANN Artificial Neural Network
back-EMF back-Electromotive Force
BEV Battery Electric Vehicle
CNN Convolutional Neural Network
DNN Deep Neural Network
DSP Digital Signal Processor
FE Finite Element
FEA Finite Element Analysis
FNN Feedforward Neural Network
FLOPS Floating Point Operations
FOC Field-Oriented Control
FPGA Field-Programmable Gate Array
FW Field Weakening
HEV Hybrid Electric Vehicle
IPMSM Interior Permanent Magnet Synchronous Machine
IAE Integral Absolute Error
LMA Loss Minimization Algorithm
LMC Loss Minimization Control
LSTM Long Short-Term Memory
LUT Look-Up Table
MC Maximum Current
MCSA Motor Current Signature Analysis
MLP Multilayer Perceptron
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MDPI Multidisciplinary Digital Publishing Institute
ME Mean Error
MEPA Maximum Efficiency per Ampere
MPC Model Predictive Control
MRAC Model Reference Adaptive Controller
MSE Mean Squared Error
MTPA Maximum Torque per Ampere
MTPC Maximum Torque per Current
MTPF Maximum Torque per Flux
MTPL Maximum Torque per Losses
MTPV Maximum Torque per Voltage
NAN Not A Number
NLP Nonlinear Optimization Problem
OFTC Optimal Feedforward Torque Control
OOSS Optimal Operation Strategy Selection
OPP Optimal Pulse Pattern
ORCC Optimal Reference Current Computation
PHEV Hybrid Electric Vehicles
PMSM Permanent Magnet Synchronous Machine
PNN Probabilistic Neural Network
PTC Predictive Torque Controller
RBF Radial Basis Function
ReLU Rectified Linear Unit
RNG Random Number Generator
RNN Recurrent Neural Network
SED Standard Error Deviation
SM Synchronous Machine
VMC Voltage Matching Circuit
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