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Abstract: The Internet of Vehicles (IoV), where people, fleets of electric vehicles (EVs), utility, power
grids, distributed renewable energy, and communications and computing infrastructures are con-
nected, has emerged as the next big leap in smart grids and city sectors for a sustainable society.
Meanwhile, decentralized and complex grid edge faces many challenges for planning, operation,
and management of power systems. Therefore, providing a reliable communications infrastructure
is vital. The fourth industrial revolution, that is, a cyber-physical system in conjunction with the
Internet of Things (IoT) and coexistence of edge (fog) and cloud computing brings new ways of
dealing with such challenges and helps maximize the benefits of power grids. From this perspective,
as a use case of IoV, we present a cloud-based EV charging framework to tackle issues of high demand
in charging stations during peak hours. A price incentive scheme and another scheme, electricity
supply expansion, are presented and compared with the baseline. The results demonstrate that the
proposed hierarchical models improve the system performance and the quality of service (QoS) for
EV customers. The proposed methods can efficiently assist system operators in managing the system
design and grid stability. Further, to shed light on emerging technologies for smart and connected
EVs, we elaborate on seven major trends: decentralized energy trading based on blockchain and
distributed ledger technology, behavioral science and behavioral economics, artificial and computa-
tional intelligence and its applications, digital twins of IoV, software-defined IoVs, and intelligent
EV charging with information-centric networking, and parking lot microgrids and EV-based virtual
storage. We have also discussed some of the potential research issues in IoV to further study IoV. The
integration of communications, modern power system management, EV control management, and
computing technologies for IoV are crucial for grid stability and large-scale EV charging networks.

Keywords: blockchain; cloud computing; distributed renewable energy; electric vehicles; edge
computing; Internet of Vehicles; machine learning; smart grids; transactive energy

1. Introduction

According to the International Energy Agency 2017 report [1], the electric car market
has experienced significant growth over the years, with an electric car stock ranging
between 9 and 20 million by 2020 and between 40 and 70 million by 2025. The EV30@30
campaign has set a collective goal of a 30% EV market share by 2030 [1]. Smart vehicles have
become a larger and integral part of the Internet of Things (IoT) infrastructure. For example,
it was projected that the number of cars worldwide is set to double by 2040 [2]. As cities
grow, such connected and smart vehicles will be massively deployed on the roads. That
relies on massive information exchange computing and communication infrastructures.
These trends represent important steps of Vehicular Ad Hoc Networks (VANETs) towards
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the realization of the Internet of Vehicle (IoV). IoVs will offer communications, storage,
intelligence, and learning capabilities to predict the customers’ intentions [3].

The future IoV ecosystem is expected to provide new roles for the power grid. As il-
lustrated in Figure 1, the IoV vision is to connect people, fleets of electric vehicles, utilities,
power grids (centralized generation, distributed renewable energy generation, distributed
storage), peer-to-peer (P2P) transactions, heterogeneous communication networks (e.g.,
IEEE 802.11p, IEEE 802.11n/ac, 3G/4G LTE/5G), and computing infrastructures in the
loop for a sustainable society. As the world enters the era of IoV, where Vehicle-to-Grid
(V2G), Vehicle-to-Roadside (V2R), Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P),
and Vehicle-to-Infrastructure (V2I) communications are the building blocks of the IoV
ecosystem, a cloud computing (both centralized and distributed) platform is essential not
only for mitigating management complexity but also for computing and storing big data
and supplying resources to P2P direct energy trading between consumers and producers
for economies of scale (refer to Section 5 for direct energy trading).

To put things into perspective, note that conventional Vehicular Ad Hoc Networks
(VANETs) simply enable sharing messages among vehicles. Going beyond this, IoV as
an integral part of the Internet of Things (IoT) enables a range of new capabilities and
services far beyond today’s VANET offerings. IoV considers each vehicle an IoT smart
object that enables vehicles not only to gather data based on its sensing capabilities and
disseminate messages between peers but also allows vehicles to process and compute
such information (e.g., roadside information, obstacles, hazardous location notification,
congestion, or location information). The large-scale deployment of EVs, including com-
mercial trucking (e.g., FedEx, Frito-Lay, Duane Reade have incorporated EVs into their
commercial fleets) in IoV will bring many advantages, especially for smart grids and smart
cities, and will reduce greenhouse gas emissions by an estimated 48 million metric tons per
year by 2030 [4]. Further, IoV is expected to improve traffic efficiency and management and
enhance traffic safety via learning capabilities. In addition, IoV helps accelerate the emerg-
ing transportation-as-a-service business model (e.g., served by on-demand autonomous
EVs) and also improves social equity by creating innovative business models; specifically,
low-income households could participate in P2P energy trading virtual marketplaces and
benefit from the value created by IoV technologies.

Due to the growing number of EVs on the road, there are also growing numbers of
charging/discharging stations (e.g., more than 8000 charging stations, including standard
and Telsa superchargers in Norway). However, large-scale EV charging in the IoV ecosys-
tem poses many challenges. For example, the uncoordinated charging demands of EVs
increase the load during peak hours, which in turn has a negative impact on the stability of
power grids due to its sizable rating. Typically, an EV draws approximately 7 kW power
from the grid even with level-2 charging, which is significantly higher than the peak de-
mand of most of the residential households [5]. Moreover, EV owners tend to charge their
EVs after returning from work, which is also the time of peak demand in the grids, thereby
coinciding with the power drawn from EV and household peaks. This scenario leads to a
significant increase in system peak demand and threatens the stability of the power grid.
In addition, the charging management in a network of charging stations (CSs) requires
massive data exchange and processing. It should be noted that charging management for
EVs is important to achieve efficient energy management and the stability of the power
grid. Studies showed that there are major challenges include: selecting a charging station to
design a reasonable charging plan and constructing an efficient communication framework
between EVs and the power grid [6]. Therefore, cloud-based charging management is
gaining attention. The scalability, flexibility, security, and on-demand performance of cloud
computing provide an efficient platform for EV charging [7]. Existing studies (e.g., [8] and
references therein) deal with the cloud-based charging and discharging management in
public CSs for demand response. However, they do not deal with two levels of cloud-based
charging management of large-scale EVs nor do they consider different service require-
ments of multi-class EVs and scenarios of multi-class CSs. As a representative IoV use case,
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we investigate cloud-based charging management of EVs in IoV to reduce computational
and communication complexity while yielding better profit, thus maintaining the differen-
tiated quality of service (QoS). From a charging management viewpoint, we have proposed
a cloud-based EV charging system that contains cloud server planning, capacity planning
for charging stations, and price-incentive mechanisms. From an architectural perspective,
we have introduced a network architecture of a two-level of cloud computing-based EV
charging system. While distributed renewables will be beneficial in the IoV ecosystem to
meet the surplus demand of EVs, it also creates stability and availability issues in power
systems, which are discussed in greater detail later.
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Figure 1. The Internet of Vehicles (IoV) vision: People, fleets of electric vehicles, utilities, power grids
(centralized generation, distributed renewable energy generation, distributed storage), peer-to-peer
(P2P) transactions as well as control, communications, and computing infrastructures are in the loop
for a sustainable society.

To fully realize the potential of the emerging IoV, many enabling technologies playing
crucial roles in its implementation have been growing fast. In this paper, we present seven
major emerging trends. That includes decentralized energy trading based on blockchain
and distributed ledger technology, behavioral science and behavioral economics, artifi-
cial and computational intelligence and its applications, digital twins of IoVs, software-
defined IoVs, and intelligent electric vehicle charging with information-centric networking,
and parking lot microgrids and EV-based virtual storage. These trends represent beyond
the conventional power and communications fields and will demand collaborative and sus-
tained interdisciplinary measures. Further, to provide a broader technological perspective,
we have discussed other emerging trends, including digital twins of the IoV, software-
defined IoVs, and intelligent electric vehicle charging with information-centric networking.
We have also discussed multiple research issues in IoV, including grid congestion, IoV
charging mechanism, design issues, security and privacy, high mobility of vehicles, QoS
and QoE, and multi-dimensional randomness and heterogeneity. The grid instability has
a significant impact on the service provided to customers, the reputation of the system
operators, existing infrastructure, and charging operations in a network of charging stations.
An unstable grid might also cause voltage collapse. Towards this end, the key contributions
of this paper are summarized as follows.
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• We have discussed an overview of IoV to provide the next step of EV research.
• We have envisioned the Internet of Vehicles (IoV) in a broader context, where people,

fleets of electric vehicles, utilities, power grids (centralized generation, distributed
renewable energy generation, distributed storage), peer-to-peer (P2P) transactions as
well as control, communications, and computing infrastructures are in the loop for a
sustainable society.

• Two-tier cloud computing-based EV charging management in IoV is developed and
evaluated.

• Major enabling technologies in IoV are thoroughly discussed.
• Multiple issues in IoV are thoroughly discussed that open up future research directions.

The remainder of the paper is structured as follows. Section 3 describes a two-tier
cloud computing-based EV charging management in IoV, including network architecture
and operations. Section 4 presents the performance evaluation of cloud-based EV charging
in IoV. Emerging trends in IoV are detailed in Section 5. Open research issues are discussed
in Section 6. Finally, Section 7 concludes the paper.

2. Related Work

Several studies can be found in EV charging. However, there have been a few studies
on IoV-based charging management in recent years. For example, the CS placement
optimization problem integrated with the IoV-based framework was proposed in [9].
In [10], the authors proposed the IoV-based energy trading system with fog computing to
reduce the peak load from EVs. An online double auction method for EVs was proposed
in [11] to address the issues of demand response. To protect customers’ privacy and reduce
the power cost, a cloud-based scheduling method for EV charge and discharge management
was proposed in [12]. A blockchain-enabled energy trading with the Stackelberg game
model between V2V was studied in [13] to perform the optimization for the roles of the
system operator, power buyers, and validator nodes. Demand response has been used as
a method to shift the peak load. Therefore, some studies explored the demand response-
based mechanism in IoV. For example, motivating more customers to get involved in the
demand response method, a contract theory-based incentive mechanism is proposed in [14]
for EVs.

Centralized and decentralized scheduling has been studied for EVs. For example,
a cloud-based scheduling for EVs and fleets of shared-use electric vehicles [8,15] and uti-
lizing big data technology to analyze the decentralized scheduling of EVs with mobile
edge computing (MEC) [16] have been studied. Similarly, MEC-enabled charging and
discharging scheduling were presented to optimize EVs’ performance (waiting time) in
charging stations [17]. Further, MEC-based charging/discharging scheduling for mobile
EVs was proposed in [18]. Cloudlet-based charging station recommendation for EVs was
proposed with federated learning [19]. Based on software-defined networking, a hierarchi-
cal architecture for wireless vehicular networks was studied in [20].

3. Two-Tier Cloud Computing-Based EV Charging Management in IoV
3.1. Network Architecture

Existing power network architectures mainly focus on grid protection or power distri-
bution and thus cannot account for the large-scale communication demands and IT services
(e.g., forecasting and scheduling of charging loads according to various power grid condi-
tions, coordination of multiple charging stations, searchability for charging stations and
available charging outlets, reservation of charging stations, exchange of real-time roadside
information between EVs, software upgradability, payment and consumption cost, optimiz-
ing operations using analytics services, among others) of EVs in the IoV era. To mitigate
these shortcomings, we aim to integrate cloud computing (i.e., coexistent centralized cloud
and decentralized edge computing) and power grid infrastructures as a multi-purpose
asset. As shown in Figure 2, our proposed architecture consists of multiple layers: (a) cloud
computing, (b) edge (fog) computing [21], and (c) V2G and V2I communications. With V2I
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communications on highways and parking lots, it is necessary for EVs to communicate
with charging stations and system operators (e.g., Pacific Gas and Electric Company, San
Francisco, CA, USA). Note that from a safety perspective, a low-latency and high-reliability
V2I solution, in the long run, is significantly more important than V2V communications [22].
Edge (fog) computing exploits wireless one-hop communication and the store-and-forward
principle provides EVs with low-latency, high-bandwidth, real-time information about the
current charging performance, high availability, improved network reliability, fast response,
and backhaul traffic reduction. Further, edge computing infrastructures are decentralized
and serve as local storage of the remote centralized cloud, while periodically synchronizing
with it, and offer various innovative edge applications and services [21].

The future IoV may rely on emerging cellular V2X (C-V2X) communications, which
consists of V2V, V2I, and vehicle-to-pedestrian (V2P) direct communications, and vehicle-
to-network (V2N) wide-area communications to serve next-generation smart EVs [23–25].
There is an enormous benefit from the applications and services of V2X of the intelli-
gent transportation system. C-V2X is expected to bring added value to advanced driver
assistance services such as traffic signal timing/priority, collision avoidance safety sys-
tems, real-time traffic/routing service, efficient road traffic management, cloud services,
safety alerts to pedestrians and bicyclists, and lower pollution, accidents, and driving
times. The salient features, e.g., channel coding, synchronization, transmission scheme,
resource multiplexing across vehicles, resource selection or dynamic scheduling, spectrum
band, a standard roadmap towards 5G, retransmission repeat request, transmission range,
use cases, roadmap, and differences of C-V2X communications compared to DSRC are
summarized in Table 1.

Centralized Cloud (e.g., Amazon EC2)

Fog Node
Edge 

Gateway

Edge Computing Layer

Base Station

Optical Backhaul

System 

Operator

System 

Operator

System

Operator

System

Operator

Figure 2. Network architecture of two-tier cloud computing-based EV charging management system
in IoV.
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Table 1. Comparison of emerging cellular V2X (C-V2X) communications and conventional dedicated
short-range communications (DSRC).

Parameters C-V2X (or LTE V2X) DSRC

Channel coding Turbo codes (for data channel) and tail-biting
convolutional code (TBCC) (for control channel) Convolution codes

Synchronization Synchronous Asynchronous

Transmission scheme
Single-carrier frequency division multiplexing
(SC-FDM), which allows more transmit power
than OFDM

Orthogonal frequency division multiplexing
(OFDM)

Resource
multiplexing across
vehicles

Frequency-division multiplexing (FDM) and
time-division multiplexing (TDM) TDM

Resource selection Semi-persistent scheduling or dynamic scheduling Carrier sense multiple access with collision
avoidance (CSMA-CA)

Spectrum band 5.9 GHz
North America: 5850–5925 MHz; Europe:
5795–5815 MHz, 5855/5875–5905/5925 MHz;
Japan: 755.5–764.5 MHz, 5770–5850 MHz

Standard 3GPP—Release 14 and roadmap towards 5G IEEE 802.11p

Retransmission Hybrid Automatic Repeat Request (HARQ) No HARQ

Transmission range Up to 225 m Over 450 m via direct mode and more than that
via cellular

Use cases

A wide range of use cases (e.g., road safety
services, traffic flow optimization, enhanced
positioning, control loss warning, emergency stop,
curve speed warning, vehicle platooning, remote
driving, extended sensor, and state map sharing a
dynamic ride sharing, collective perception of the
environment, high-definition content delivery)

Limited use cases (e.g., vehicular safety
applications, V2V communications, toll collection)

Roadmap Leverages and enhances existing LTE networks
with roadmap toward 5G-based V2X

Not many new activities in IEEE 802.11 standards
for next-generation DSRC technology. Cellular
D2D may obsolete IEEE 802.11p, but hybrid and
complementary solutions are possible.

3.2. Operations

We developed a hierarchical charging management system, where two classes of EVs
communicate with two different clouds depending on their QoS requirements. The involved
actors and their functionalities in the system are as follows.

Electric Vehicles and Charging Stations: Based on the different charging requirements
and geographical distribution, we divide EVs into two categories: EVs at a highway exit
and EVs in a parking lot. Further, each EV is equipped with a Li-ion battery that enables
them to store energy, whereby different QoS requirements of EVs are taken into account.
EVs in both highway or parking lot scenarios communicate with the edge or remote cloud
to send their information (e.g., spatial location, charging demand) to and receive messages
from the cloud (e.g., price, discount, charging capacity of nearby CSs, charging schedule).
Multi-class CSs (DC fast charge and Level 2) are considered. CSs in highway exits are
placed where the traffic flow is heavy and each charging station supports multiple EVs
charging simultaneously. CSs in parking lots are randomly placed in a city, whereby their
locations, capacity, availability are communicated to all EVs via the clouds. Note that the
class of charging station affects the performance of our proposed solution, as investigated
in more detail in Section 4.

System Operator (SO): The SO purchases energy from utilities and provides charging
services to EVs in CSs. Furthermore, the SO as the operator (e.g., Pacific Gas and Electric)



Energies 2022, 15, 1908 7 of 24

distributes energy to its sub-networks and allocates energy to CSs. It is responsible for
providing secure system operation and tracking the power schedule. Furthermore, the SO
interacts with the cloud control center (CCC) via an LTE network to provide power supply
and pricing information. It also receives capacity planning and price information from the
CCC and reaches an agreement on the capacity and discount price (see Figure 3). The SO
aims at maximizing profit in one of two ways: It either encourages EVs to delay charging
by offering an incentive, or the SO purchases additional electricity from the utility when
the charging demand exceeds supply.

CCC informs system 

operator that 

no discount algorithm 

will be executed

Electric vehicles (EVs) contend to connect in 4G LTE network

CCC evaluates whether total 

power  demand is larger than 

the power supply and every 

CS’ blocking rate ≤ threshold 

CCC executes Capacity Planning Algorithm for charging stations (CSs):

• The objective is to guarantee high QoS to EVs. We aim to minimize

the expected number of EVs being rejected to charge (expected

blocking rate), given a limited supply

• Our greedy algorithm finds the near-optimal numbers of charging

outlets in every CS

CCC executes the price-incentive algorithm:

• Ensures the QoS (low blocking rate) and calculates the optimal

number of EVs to charge in a time slot

• Encourages extra EVs to shift the charging demand from peak

hours to off-peak hours

• Finds the optimal discounts to maximize the system profit, where

the cost of CSs’ power loss,  penalty of not serving EVs, end-to-

end delay of EV, and the cloud servers’ rental fee are considered

An EV joins the system in first come first serve (FCFS) basis. Delayed 

EVs have higher priority compared to the EVs rejecting the discount

Edge cloud and remote cloud send the discounts information to EVs

According to the 

preference, an EV 

decides whether to 

accept the discount 

offer or not

An EV delays charging for one time unit 

and gets a discount for the delay  

Since there is no available 

charging outlet for the EV, 

the EV is blocked

An EV receives 

charging service

No

Yes

Yes

No

EVs in highway exits and parking lots send charging requests to 

edge cloud and remote cloud, respectively

CCC collects the information such as power supply, 

power demand and electricity price

CCC executes Cloud Server Planning Algorithm:

• Considering the QoS provided to EVs, the target is to minimize the

edge cloud and remote cloud servers’ rental fee

• Given the threshold of edge cloud and remote cloud’s expected

waiting time, figure out the optimal number of edge cloud and

remote cloud servers

Admission control:

CCC evaluates whether 

accepting an EV to charge 

according to the current 

available charging outlets

Yes

System operator (SO) sends the information (e.g., power supply and 

electricity price) to the cloud control center (CCC) located at edge cloud

No

SO receives capacity planning and price information from the CCC 

and reaches an agreement on the capacity and discount price

Figure 3. Proposed approach for cloud-based EV charging in IoV: Functionality and interactions
among entities.

Computing and Control: The remote cloud (e.g., Amazon EC2) with large-scale
computing infrastructures provides computing, storage, caching, and networking services
to EVs. Alternatively, the edge cloud offers cloud computing services (computing, storage,
caching, networking) and provides mobile broadband experiences to EVs [21]. The CCC is
a functional component that runs in the cloud and provides the following three functions:
executing server planning, capacity planning, and running price-incentive algorithms at
the edge cloud (see Figure 3). The goal of cloud server planning is to reduce the rental
fee of a server for given QoS requirements, whereas the goal of capacity planning is to
minimize the blocking probability for a given power supply. The CCC incentivizes EVs
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to shift their charging schedule to the slack period by proposing a discount. In addition,
the CCC performs admission control, where it checks all requests and decides whether or
not to admit a given EV for charging in the current timeslot taking the current capacity and
available charging outlets into account.

For illustration, Figure 3 depicts all aforementioned operations of the system in a
comprehensive functional diagram. Specifically, in the optimal cloud server planning,
we model the CCC to be M/M/c queuing system. The objective function in cloud sever
planning is to reduce the total cost of both remote and local cloud servers. The average
waiting time in the cloud servers is considered in the constraints. In the capacity planning
of charging stations, we model each station to be M/M/c/c queue. The optimization
problem is formulated to minimize the expected blocking rate, given the limited supply.

In the price-incentive (PIM) method, the objective function aims at maximizing all the
profits in the whole charging network. In the optimization formulation, it is guaranteed
that the sum of EVs accepting to delay charging from one preceding time slot and EVs
rejecting to delay charging is smaller or equal to the optimal arrival rate. On the other hand,
in the capacity expansion (CEM) method, the penalty for SO purchasing extra power is
taken into account in the profit formulation.

4. Performance Evaluation of Cloud-Based EV Charging in IoV

This section discusses results and findings of cloud-based EV charging obtained from
an analytical evaluation of the considered scenarios. We compare and analyze our two
proposed methods (PIM and CEM) with a baseline scheme of uncontrolled EVs. More
specifically, PIM shifts high demands from on-peak to off-peak hours by offering a discount
to EVs, while CEM is used by the SO to purchase sufficient electricity from the grid to
satisfy the given EV’s demands. The performance metrics of interest include cloud server
allocation, demand response (charging demand and outlet allocation), weighted blocking
probability, and discount. The weighted blocking probability is defined as the average
percentage of unserved EVs.

The proposed schemes are evaluated via an M/M/c queuing model [26]. We assume
a 20 MHz bandwidth, average EV transmission rate of 5 Mbps. A total of 186 2022 Nissan
Leaf S electric cars with a 40 kWh Li-ion battery and 187 Jaguar electric cars with an 85 kWh
Li-ion battery were adopted in the evaluation. A total of 188 EVs arrive at the charging
stations with an hourly arrival time distribution [26]. Further, we consider an Amazon
EC2 California as a remote cloud, similarly to [21]. The system parameters are listed in
Table 2. Matlab was used to simulate the proposed models and obtain the results. In the
implementation process, the dynamics, for example, hourly charging outlets allocation,
hourly charging demands, hourly offered discount, hourly served EV, were considered
and implemented.

Table 2. Parameters and their values.

Parameters Value

Transmission bandwidth 20 MHz
Transmission rate 5 Mbps

Charging levels (kW) 150, 100, 50, 19.2
Electricity supply 350 MW

Service rate of edge cloud servers 2400 EVs/h
Service rate of remote cloud servers 600 EVs/h

Battery size for 2020 Nissan Leaf EVs 40 kWh
Battery size for Jaguar 85 kWh

Charging levels for 2020 Nissan Leaf EVs 50 kW, 19.2 kW
Charging levels for Jaguar 150 KW, 100 kW

Number of charging stations at highway exits 20
Number of charging stations at parking lots 20
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Table 2. Cont.

Parameters Value

EV arrival rate at highway exits (hourly) 4, 2, 3.2, 3, 2.5, 1, 2, 3.5, 2.8, 2.5, 3, 1.8,
2.8, 3.6, 2, 1.2, 2.7, 2.8, 2, 3, 5 (thousand)

EV arrival rate at parking lots (hourly) 3.2, 2.5, 2.2, 5, 3.3, 2.5, 1.7, 1.6, 3, 2,
3, 2.8, 2.9, 3, 3, 2.8, 2.5, 1.9, 3, 1.8

Number of charging stations at highway exits with
150, 100, 50, and 19.2 kW charging level, respectively

4, 4, 6, 6

Number of charging stations at parking lots with
150, 100, 50, and 19.2 kW charging level, respectively

4, 4, 6, 6

Figure 4 depicts the allocation of a number of edge cloud servers and remote cloud
servers. The number of cloud servers depends on the EV traffic. The service rate of the edge
and remote cloud servers are listed in Table 2. Since there is no traffic at the parking lots
at off-peak hours [1–5,11–13,20–24], the number of remote cloud servers is zero. At peak
hours 8, 9, and 16, more remote cloud servers are allocated to satisfy the average waiting
time threshold. Compared to the remote cloud, fewer servers are allocated to the edge
cloud because of its faster processing ability and more even hourly arrival time distribution.
At off-peak hours [1,7,11,15,18,24], the statistics of the three cases in Figures 5–7 are the
same due to sufficient supply. Figure 5 depicts the hourly charging demand. The charging
demand in baseline and CEM are the same since the number of EVs arriving at the charging
stations is the same, which is listed in Table 2. We observe that if supply is insufficient to
ensure that the blocking probability remains within the threshold, the load at peak hours
8, 9, and 16 is shifted to off-peak hours with PIM. A certain percentage of EVs accept
the proposed discount to delay charging based on the model in [26]. With CEM, the SO
purchases more electricity to alleviate the peak load at hours 8, 9, and 16. As a result,
Figure 6 shows that CEM’s number of charging outlets in all charging levels at these peak
hours is greater than in the other two cases.
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Figure 7. Comparison of weighted blocking rate.

Figure 7 shows the total weighted blocking rate in a network of CSs. Due to the
insufficient supply during peak hours 8, 9, and 16 in the baseline scheme, more than 15% of
the EVs have to be rejected in the charging system. Consistent with the results in Figure 5,
the weighted blocking rate in the baseline scheme at peak hour 8, 9, and 16 are higher
than 0.15, while it is within the threshold value (0.1) with both PIM and CEM. Figure 8
depicts the discount in PIM. At peak hours 8, 9, and 16, the charging demand is high. Thus,
the discount is offered both at the CS in highway and parking lots. The amount of discount
depends on the demand condition of each CS. Higher demand leads to higher discounts to
encourage more EVs to delay charging. Even though the EVs at the highway should be
offered a higher discount to delay charging, the discount for parking lots is higher in every
charging level compared to the highway scenario. This is because the charging demand in
parking lots during peak hours is much higher than the case in highways, according to the
arrival time distribution [26]. In other words, a higher discount in parking lots is needed to
decrease a larger amount of charging demand compared to the highway case.

Overall, from our obtained results, we observe that PIM and CEM outperform the
baseline scheme, whereby CEM requires simpler communication procedures than PIM,
though it weakens grid stability. Conversely, PIM is able to mitigate the negative impact on
the grid while maintaining high system performance and QoS assurance.
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5. Emerging Trends in IoV

This section discusses the following major emerging trends in IoV:

1. Decentralized Energy Trading Based on Blockchain and Distributed Ledger Technol-
ogy: The blockchain is a distributed ledger that is visible throughout the network.
Each time a transaction occurs, it is updated to the ledger after verification without
the need for a third-party intermediary. Blockchain is a new technology that mixes
P2P networks with a distributed consensus process that uses cryptography, mathe-
matics, and economic models. Bitcoin, for example, is one of the most widely used
decentralized cryptocurrencies [27].
Blockchain is the latest general-purpose technology (GPT), which is still in its infancy.
It has not been adopted widely in transactive energy and digitization of electron
exchanges. However, the concept of a local energy market is emerging these days,
whereby prosumers (energy producers and consumers) work in unison to equilibrate
demand-supply by the use of two-party contracts giving rise to neighbor-to-neighbor
transactions [27,28]. Blockchain technology is popularized as an economic overlay
in the interlinked world, i.e., IoT [28,29]. Energy is one of the newest sectors to
embrace blockchain-based technologies. Application of such technologies permits
tracking energy usage for a decentralization of energy transactions and supply systems.
Blockchain-based peer-to-peer energy trade offers a lot of promise and is causing
sectors to take notice. For example, Siemens collaborated with LO3 Energy to test
blockchain-enabled energy microgrids on Brooklyn Microgrid (community microgrids
in Brooklyn, NY), which has been evolving its business model for energy trading over
the last few years. This model may depict the energy trade of the future.
Similarly, Distributed Ledger Technology (DLT) also provides cryptocurrency ex-
changes, which can be ideal for secure payment mechanisms and can improve vehicle
cooperation. Not only this, DLT is transparent as all nodes can access the ledger.



Energies 2022, 15, 1908 13 of 24

DLT is private as it provides a pseudonymous address to each user. This provides a
pathway to automatic data/resource exchange platform [30]. For IoV applications,
DLT has been proposed for access control [31,32] and also to eliminate common attacks
or forged messages using validation techniques [33,34].
The blockchain is part of a larger computing infrastructure that should also include
storage, communications, file services, and other functions. Blockchain in general and
particularly in the energy sector poses multi-dimensional challenges, thus moving
assets to the blockchain is still in the early stage rather than a viable mainstream
approach. Technical issues include scalability, network bandwidth and size, cyberse-
curity, handling of private-sensitive data (e.g., consumption, locations, transactions),
interoperability among blockchain systems, and storage requirements. Further, inves-
tigating the communications between the blockchain ledger and control systems at
different granularities (i.e., local, system, and system of systems levels) [35] is also
challenging. It is essential to develop an open source testbed for blockchain-based
transactive energy to fully understand its potential benefits and pitfalls under real-
world scenarios. From a business viewpoint, blockchain lacks best practices, business
models, and legal settlements. Currently, Bitcoin is dominating the market. However,
for healthy competition, multi-currency systems should be developed. A fundamental
hurdle of blockchain is the huge amount of energy consumption per transaction with
approximately 300 kWh of electricity being needed for each Bitcoin transaction. More-
over, a single Bitcoin transaction has an electrical energy footprint of 2186.75 kWh,
which is approximately equal to the power consumption of an average U.S. household
over 74.95 days [36]. For illustration, Figure 9 depicts how Bitcoin and Ethereum
combined would rank among the energy consumption of entire countries. Similarly,
Figure 10 shows Bitcoin’s energy consumption relative to some of the world’s biggest
energy consuming nations.
We also note that blockchains are not suitable for handling massive computations and
running consensus algorithms in EVs since they have limited computational power
and storage capabilities. To address these high computation and high bandwidth
issues, mobile-edge computing empowered fiber-wireless (FiWi) broadband networks,
which offer distributed cloud computing capabilities (computing, storage, network,
caching) at the edge of networks and combine the reliability and high capacity of
optical fiber backhaul (e.g., 10 Gbit/s Ethernet Passive Optical Network (EPON))
with the cost-savings and ubiquity of wireless front-end networks (e.g., WiFi, 4G LTE,
5G) [21,37], may be one of the potential candidates. Concerning standardization issues,
ISO has recently established a new technical committee (ISO/TC 307) for blockchain
and distributed ledger technologies. Very recently, the Blockchain Interoperability
Alliance announced its aim to promote interconnectivity between blockchain networks
and develop common industry standard protocols and architectures.
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Figure 9. Energy consumption by country including Bitcoin and Ethereum (energy consumption of
each country according to International Energy Agency and Bitcoin energy index is adopted from
https://digiconomist.net, accessed on 1 January 2022).

Figure 10. Bitcoin energy consumption relative to many countries (energy consumption of each
country according to International Energy Agency and Bitcoin energy index, adopted from https:
//digiconomist.net, accessed on 1 January 2022).

2. Behavioral Science and Behavioral Economics: Going forward, we explore the po-
tential of behavioral economics, a Nobel-Prize-winning theory, as a decision-making
framework that helps understand how uncertainty impacts energy trading. Behavioral

https://digiconomist.net
https://digiconomist.net
https://digiconomist.net
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economics, which incorporates insights from psychology, judgment, decision-making,
and economics to make better predictions about economic behavior [38], has only
recently started to be applied in the energy sector. The widespread and successful
adoption of EVs and energy efficiency in IoV depends not only on the efficient control
and communications systems and charging infrastructures but also largely on the hu-
man interaction with energy systems, i.e., behavioral science and human psychology.
Nudge theory (“a nudge is any aspect of the choice architecture that alters people’s be-
havior in a predictable way without forbidding any options or significantly changing
their economic incentives” [38]; Richard H. Thaler, the father of “nudge theory”, was
awarded the Nobel prize in 2017 for his contributions to behavioral economics)—a
bridge between the economic and psychological (e.g., adaptation, loss-aversion, re-
flection, mental accounting) analyses of individual decision-making, explains about
encouraging people to make better choices for themselves and society [38]. Nudging
holds a powerful promise rather than economic incentives and can be applied in IoV
to nudge prosumers and overcome cognitive barriers. Such barriers may include social
norms, status quo bias, habit, peer influence, bounded rationality, unawareness of
relevant information sources, risk aversion, extremeness aversion, endowment effect,
choice overload, and heuristics, just to name a few. It is noteworthy that nudge-based
mechanisms that include changes to the physical environment, simplification and
framing of information, use of descriptive social norms, and changes to the default op-
tion, have been widely applied in the context of financial services. However, nudging
and the impact of behavioral insights have not yet been widely studied as a means of
changing customers’ behavior in the energy sector [39]. Human behavior within and
between individuals varies depending on multiple factors, including context, social
norms and values, public appeals, incentives, rewards, and time. It is interesting to
investigate how prosumers make decisions and act on them in a particular context by
considering a design of dynamic pricing algorithm, routing of EVs, delay tolerance
in charging models, energy efficiency and time-varying discount models, dynamic
ride-sharing options, and energy trading models for the local energy market. This
may be accomplished by analyzing big data of actual behavior, designing system-
atic predictive models, and estimating predictive accuracy with the help of artificial
intelligence and deep learning.

3. Artificial and Computational Intelligence and its Applications: Given the emergence
of AI in other sectors such as wireless communications, artificial and computational
intelligence should lie at the heart of IoV and therefore highlight promising AI applica-
tions in IoV. AI and machine learning techniques can be used to analyze large amounts
of data and predict the operations and build the models for knowledge of how power
distribution, transmission, and generation systems work and how to allocate energy
resources efficiently. Additionally, machine learning can be used to study the behavior
of players in energy markets, energy pricing patterns, and fast recovery from storms,
cyber-attacks, solar flares, and other disruptions [40]. Furthermore, computational
intelligence techniques such as evolutionary algorithms [41] have shown great po-
tential due to their capability of dealing with multiobjective optimization problems
in smart grids with relatively low demand for computational resources. A similar
approach can be applied in IoV to address multiobjective optimization issues in energy
trading, mobility and routing, and demand-response under uncertain conditions of
distributed renewable energy resources. It should be noted that EV routing problems
in the network of charging stations is a logistics issue and mostly takes the distance
between charging stations and the energy-constrained shortest path. Machine learning-
based distributed routing algorithms help resolve this issue, where different types of
constraints such as uneven demand at the charging station, availability of charging
stations, cost of routes, and capacity constraints should be considered. The algorithm
should ensure that EV chargers receive a proportionally fair (axiomatically justified
fairness) share of the available capacity of the network of charging stations.
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4. Digital Twins of Internet of Vehicles:
A Digital Twin (DT) is a probabilistic, multiphysics, multiscale simulation of a system
that incorporates the best available physical models, sensor updates, and fleet history.
The DT incorporates sensor data from the vehicle’s onboard integrated vehicle health
management (IVHM) system, maintenance history, and all accessible historical and
fleet data gathered by data mining and text [42]. The twinning process is permitted
by the non-stop interaction, communication, and synchronization between the DT,
its physical counterpart, and the surrounding environment [43]. Recently, there have
been some studies on DT and autonomous vehicles. For example, the role of DTs
in connected and automated vehicles is discussed in [44]. Further, Reference [45]
discusses a framework for vehicular digital twins, which includes data collection, data
processing, and analytics phases.
The development of a vehicle is a multi-year process taking anywhere from five to
six years [46]. Product design has a huge impact on sustainable design as a small
drawback during the design development stage can hamper vehicle development.
In such a scenario, a digital twin can help cover all phases of development from
design, production to maintenance [47]. However, implementing DT for IoV also has
its challenges. DT has a high cost of implementation as it is based on the development
of high-fidelity simulation models. This needs a huge amount of data and is expensive
in terms of time. Implementation of DT for IoV should always lead with a cost-benefit
analysis [48]. While considering DT implementation as a challenge for the IoV, it
should also be considered that DT is self-evolving [49]. DT can be developed at the
same pace as its physical counterpart creating a closed-loop development ecosystem
where models are created and optimized with its physical counterpart, thus maturing
the models [43]. This helps achieve high-fidelity data to design DT models for IoV.

5. Software-Defined Internet of Vehicles: To expand the capabilities (e.g., cooperative data
dissemination, security, routing) of vehicular networks and improve the efficiency of
IoV and simplicity of their management, there have been studies on bringing Software
Defined Networking (SDN) concepts to vehicular networks [50–54]. SDN can be
implemented from the edge networks to the vehicles by implementing base stations
having SDN capabilities in the vehicles. This helps tackle the existing issues such as
scalability of the network, security of the IoV networks, and quality of experience
(QoE) of vehicles in the IoV environment. For these issues, Reference [55] presents a
new policy-driven framework considering the security and efficiency of IoV networks.

6. Intelligent Electric Vehicle Charging with Information-Centric Networking (ICN):
ICN is an emerging and promising network architecture that has a focus on content
delivery as opposed to the pairwise communication between end-hosts. ICN has
innate support of location-independent content/information distribution through
the means of in-network caching and multicast, as well as mobile computing [56].
Reference [56] proposes ICN for charging intelligent electric vehicles to counter against
the ineffectiveness resulting from a host-centric model. ICN can help boost the quality
and security in in-charging vehicles and reduce the security as well as communi-
cation complexity [56]. The architecture of ICN presented in [56] defines entities
and interactions among different actors such as distribution system operators, en-
ergy providers, EV, e-mobility service providers, charging stations, charging stations
operator, and governing entities.

7. Parking Lot Microgrids and EV-Based Virtual Storage: Another recent trend in IoV
is the concept of parking lot microgrids. Reference [57] proposes a new structure
for a parking lot microgrid with the introduction of day-ahead peak-shaving and
valley-filling. The parking lots are designed to have smart charging stations where
the EV charging is performed based on the owner’s/grid requirement and flexibil-
ity. The parking lot microgrids can have heat ventilation, air conditioning, lighting,
and energy sources such as rooftop solar and generators. EV are flexible components
with potential where data-driven approaches can be employed to optimize the per-
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formance of parking lot microgrids. With the application of optimization and linear
techniques, References [57,58] presents that the parking lot microgrid can provide
flexibility as well as profit.

Moreover, EVs are presented as a bidirectional electrical load where the realization
of V2G is also a possibility. EVs can help support the distribution networks by acting as
virtual storage. Reference [59] proposes an approach where EVs are presented as energy
storage devices. The aggregation and control methodology for the grid is presented in
the literature as consideration of individual EVs have numerous challenges, including
computational efficiency. Reference [59] presents that the required flexibility for such an
approach can only be realized if the EV’s requirements are prioritized while designing a
storage system based on EVs.

6. Open Research Issues in IoV

IoV is a dynamic and complex system and IoV applications pose multiple technical
issues that hinder the successful implementation of IoV. This following list can by no
measure be complete. Instead, we focus on seven important aspects among others and
briefly discuss them.

1. Grid Congestion: Power grids face many issues due to massive deployments of EVs
in IoV. First, due to sizeable ratings of EVs, their high penetration creates voltage
and/or thermal limit violations, hereafter called grid congestion, in most existing
power grids. The massive deployment of EVs also impacts the stability and reliability
of the bulk power system. Since the sustained operation of massive EV deployments
reveals new intra/inter-regional transmission constraints and adds to system peak,
existing levels of system reliability based on interruptions/duration matrices (e.g.,
system average interruption frequency index (SAIFI), expected energy not served
(EENS)) will no longer guarantee the targeted reliability level set forth by regula-
tory councils (e.g., North American Electric Reliability Corporation, Atlanta, GA,
USA). Further, rapid/random fluctuations of substantial power resulting from EV
charging/discharging threaten power balancing. Such large variations in power not
only jeopardize the stability of the power system but also require increased spinning
reserves to compensate for power fluctuations. The mobile nature of EVs not only
adds uncertainty and complexity to the grid operations but also introduces a weak
link for cyber-attacks to the overall electrical systems [5]. Moreover, designing a
proper aggregation framework and strategies for trading small amounts of flexibility
to different grid services is challenging in IoV.

2. Impact on Power Grid: The grid instability has a significant impact on the service
provided to customers, the reputation of the system operators, existing infrastructure,
and charging operations in a network of charging stations. An unstable grid might also
cause voltage collapse. Electric vehicles can cause an instantaneous increase in load,
which can lead to power system instability [60]. The effect of EV charging load and
voltage stability is presented by [61,62]. Reference [63] presents an investigation on
the effect of EV charging load on voltage deviation at the node. Increased EV charging
load can affect peak load demand, power quality, and transformer performance [60].
Peak load demand can be increased due to EV charging load, which has an adverse
effect on the margin [64,65]. Power quality is the ability of a power system to supply
a steady and disturbance-free power output within allowed voltage and frequency
deviations [66]. As PV charging load is non-linear in nature it can present a threat to
the quality of power and introduce frequency deviations [67] and voltage sag [68]. In-
creased EV charging load can also increase the burden on the distribution transformer,
which can decrease the transformer’s life cycle [69].

3. IoV Charging Mechanism: The sizeable rating of IoVs provided by electrical energy
storage and V2G capabilities create a number of opportunities (e.g., operational
framework, control strategies) in the IoV era. Currently, the majority of electrical
grids implement centralized control frameworks, where a handful of large power
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plants are dispatched for ensuring balancing. The deployment of EVs in IoV will entail
millions of small DERs spread across the whole network, calling for distributed control
frameworks. A hierarchical control framework, which is capable of enabling EVs to
participate in multiple-grid services can be one of the solutions for distributed control.
For instance, hourly resolution control can be deployed for grid decongestion, whereas
fraction-of-second resolution control is desired to exploit EVs for frequency regulation
and hence stability. A combination of centralized–decentralized aggregation strategies
is desirable for aggregation of flexibilities from spatially distributed EVs and their
operational integration to utility decision-making frameworks. Since future power
grids will exhibit tight integration of power, communication, and control, multi-
disciplinary modeling and simulation are desired to quantify the impact and grid
support capabilities of massive IoV deployment.
For improved congestion management, reliability, security, and resiliency, IoVs should
incorporate local intelligence and decision-making capabilities such as front-end-
controllers, which integrate local intelligence (e.g., voltage or frequency-based adap-
tive control based on measurement at the grid point of common coupling) to use EVs’
flexibilities for grid congestion. They also can act as a communication interface with
upstream resources for improving grid reliability and stability. In addition, the front-
end controller may incorporate well-defined cyber-physical security algorithms for
EVs, thereby improving grid resiliency against cyber-physical threats.

4. Other Design Issues: There are important design issues, including pricing strate-
gies [70] and transparent energy trading models for energy transactions. In an open
energy market, where multiple stakeholders (e.g., utilities, EVs) with multiple ob-
jectives coexist, price competition is different from an oligopoly market [41]. It is
important to note that today’s payment solutions are ill-suited to handle massive
amounts of micro-transactions due to limited capacity and high transaction costs.
That makes high demands of micro-transactions impractical. However, a single-fee
micro-payment protocol, which accumulates multiple smaller transactions into one
larger transaction might be helpful [71]. However, this requires further investigation.
Finally, the traditional centralized energy market, consisting of large numbers of EVs
spread across a wide area network, cannot guarantee energy availability in real-time
for balancing demand and supply.

5. Security and Privacy: Extensive use of communication protocols during V2G, V2R,
V2V, V2P, V2I, vehicle-to-sensor (V2S) interaction makes IoV based devices vulnerable
to security attacks [72,73]. For example, the types of attacks may be summarised as
eavesdropping, jamming, spyware, denial of service (DoS), GPS spoofing, network
jamming, illusion attacks, location tracking, etc. [72–76]. In Europe, IoV must satisfy
the General Data Protection Regulation (GDPR) (General Data Protection Regulation:
https://gdpr-info.eu/, accessed on 10 January 2022).
The wired sensors communications are vulnerable to malware. In the case of wired
sensor networks, the attackers can take control over the CAN bus and perform
attacks such as DoS attack [74,75]. Moreover, using the wireless sensor networks
attackers can perform the intra-vehicle network attack [76,77]. Other security issues
of V2V communications include selfish attack where an EV might refuse to connect
and cooperate with another vehicle, modification attack where an attacker may act
as a man-in-the-middle and alter messages, Sybil attack where a malicious node
poses as multiple identities, false data injection attack where a malicious node sends
incorrect information to communicating vehicles, and eavesdropping attack by an
unauthorized node to eavesdrop to exploit sensitive data [72]. V2I communications
are also vulnerable to privacy attacks based on the geographical location of the vehicle
that is being transmitted [72].

6. High Mobility of Vehicles: Another consideration with the IoV is communication
issues that arise because of the high mobility of vehicles. The increasing penetration
of IoV requires fast and frequent communication between different participating
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entities. It has a very strict hand-off and latency requirement [78,79]. The mobility
considerations have to address fog and cloud computing technology integration,
balance the signaling load on C/U-plane, and also integrate multiple advanced
computing technologies addressed in the previous sections of this paper [21,78].

7. QoS and QoE: Due to the complex data content as well as high response requirement
from the users, there are stringent service requirements between various networks
such as terrestrial networks, aerial networks, and satellite networks. Hence, consider-
ation of an advanced content caching strategy and resource utilization is essential for
IoV [80,81]. Further, in-vehicle communication requires stringent QoS for simultane-
ous real-time traffic. Time-Sensitive Networking (TSN) (IEEE 802.1Q) (Time-Sensitive
Networking (TSN) Task Group: https://1.ieee802.org/tsn/, accessed on 10 January
2022) is one of the most promising candidates for deployment in vehicles [82,83].
Since QoS and QoE are vital for the IoV, we may need to wait for 6G to meet all
requirements (e.g., ultra-low latency to avoid collisions between vehicles that are con-
trolled remotely, zero tolerance for packet loss, guarantee, and assurance of services).
For example, Network 2030 [84] defined time-engineered communications services
(e.g., autonomous traffic communication) and criteria. Among them, on-time service
guarantees are served by accurate time with the smallest resolution of measurable
time (in the order of 1 ms) [84]. To harmonize the operation of massively connected
vehicles, the on-time delivery of information is mandatory.

8. Multi-dimensional Randomness and Heterogeneity: The network traffic data has the
characteristics of large data scale, multi-network, and multi-source, complex hetero-
geneity, diverse collection methods (e.g., flow and batch), high dimensionality and
complex structure [85]. The development of IoV signifies an increased number of
vehicles connected to the Internet through cloud computing. It also means the con-
nected vehicles transmit the monitored data, and there is a possibility of interception
of data. Hence, the IoV needs a heterogeneous system capable of confidentiality, key
revocation, integrity, authentication, and non-repudiation as the high-level security
features [86].

9. Adoption of Smart Charging Stations: Smart charging stations can be adopted to
charge and discharge the EVs; however, numerous challenges need to be considered
during this adaptation. Some challenges associated with EVs are as follows [87]:

• Integration of EVs and smart grids,
• Concerns related to a driving range,
• Effect of auxiliary loads,
• Hesitancy to participate in the V2G networks,
• EV performance mismatch between the lab and the real world,
• Inadequate government regulation,
• Underdeveloped charging infrastructure,
• EV maintenance and expensive batteries.

EVs can be integrated with the smart grid for those solving problems. However, there
are additional concerns with V2G technology. Issues to be considered are system over-
load, the high initial cost to develop infrastructure, load mismatch, and unmanaged
recharging of EV batteries [87]. The literature presents significant approaches towards
V2G integration and smart charging [88–90]. Reference [88] presents a flexible V2G
coordination scheme. These schemes relate mostly to commercial/ office buildings
that already have EV charging infrastructure. The approach suggests connecting EVs
to the grid during off-hours as well as utilizing EVs to provide V2B services includ-
ing load distributions and demand responses. Smart EV charging can be improved
by utilizing distributed energy resources and battery energy storage systems. Simi-
larly, Reference [89] also presents research on fast-charging stations considering QoS.
It should be noted that the fast charging infrastructure can exert strain on existing
power grids and, hence, charging stations integrated with energy storage devices
are used. Three scenarios ranging from normal conditions to optimal situations are

https://1.ieee802.org/tsn/
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presented. The results show overall improvements leading to profitability, as well as
efficiency, satisfying both the power grid as well as drivers.

7. Conclusions and Outlook

We introduced a unified vision of the IoV, in which cloud-based EV charging manage-
ment is presented as a use case of IoV by incorporating the diverse service requirements
of customers and two-tier cloud (edge and remote cloud) computing infrastructure. Con-
sidering EV arrival distribution, diverse communication requirements, different charging
demands at CSs, and limited supply, we proposed a hierarchical model, which included
cloud server planning, CS capacity planning, PIM, and CEM methods of charging man-
agement. The proposed architecture has several benefits. Notably, due to the proximity of
edge computing infrastructures to EVs, real-time IoV services can be supported. Further,
the coexistence of edge and cloud computing helps reduce computing and communications
complexity in a low-cost and scalable manner. Our results reveal the merits and efficiency
of the proposed models. With regard to uncontrolled customers, the system profit in our
system is increased by 10.2% and the QoS (low blocking rate and short waiting time in
the cloud servers) is guaranteed to EVs. In the proposed model, we did not consider the
scenarios of EV routing during peak hours. In the future study, EV routing strategies in a
network could be applied to resolve the uneven charging demands at CSs. Further, in the
proposed models, the optimization problem formulations belong to non-deterministic
polynomial-time (NP)-hard problems. Therefore, approximate algorithms were developed
to achieve more efficient results.

The social and environmental impacts of this paper are involved in providing grid
stability during peak system demand, supporting efficient communication among EVs,
CSs, and cloud control centers, and helping to improve system performance to increase
profit for the system operator and satisfy customers’ QoS and charging requirements. One
of the directions for future research would be implementing energy storage units in the
charging stations to further stabilize the grid. Further, studies reveal that integrating human
behavior models has become crucial in DMS [91,92]. The role of behavioral economics
that we have highlighted in this paper will be instrumental in the overall operation of
IoV in the future. Being a multidisciplinary and integrative research area, IoV must
address both technological and social dimensions from architectures to innovations in user
behavior to realize its full potential and support societal benefits. Looking beyond the
short-term, bringing principles of behavioral economics to both energy and transportation
sectors in conjunction with edge computing and AI represent an exciting new research area
without any doubt, though there are uncertainties about which experimental and theoretical
studies should be performed in large-scale scenarios to study the impact of both short-
and long-run behavioral changes. Moreover, the integration of communications, modern
control, and computing technologies for IoV is of vital importance and yet one of the most
complicated issues. Blockchain-based energy trading, behavioral economics for the energy
sector, and power system complexity are thoroughly discussed in the context of IoV, which
may open up new exciting research directions. Towards this end, we argued that one of
the most innovative and exciting avenues in IoV is the development of blockchain-based
decentralized energy trading, which is synergistically empowered by AI, the nudge theory,
and edge computing. Finally, we have elaborated on multiple open research issues in IoV.
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The following abbreviations are used in this manuscript:
AI Artificial Intelligence
CCC Cloud Control Center
CS Charging Station
CEM Capacity Expansion Method
DoS Denial of Service
DLT Distributed Ledger Technology
DT Digital Twin
EV Electric Vehicles
EPON Ethernet Passive Optical Network
EENS Expected Energy Not Served
ICN Information-Centric Networking
IoV Internet of Vehicles
IVHM Integrated Vehicle Health Management
P2P Peer-to-Peer
PIM Price-incentive Method
QoS Quality of Service
QoE Quality of Experience
SAIFI System Average Interruption Frequency Index
SDN Software Defined Networking
SO System Operator
TSN Time-Sensitive Networking
V2G Vehicle-to-Grid
VANET Vehicular Ad Hoc Networks
V2R Vehicle-to-Roadside
V2P Vehicle-to-Pedestrian
V2I Vehicle-to-Infrastructure

References
1. International Energy Agency. Global EV Outlook 2017; International Energy Agency: Paris, France, 2017; pp. 1–71.
2. World Economic Forum. The Number of Cars Worldwide Is Set to Double by 2040. Available online: https://www.weforum.org/

agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040 (accessed on 16 February 2022).
3. Gerla, M.; Lee, E.K.; Pau, G.; Lee, U. Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds. In

Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 241–246. [CrossRef]
4. Duvall, M. Transportation Electrification: A Technology Overview; EPRI: Palo Alto, CA, USA, 2011; p. 1021334.
5. Graham, R.L.; Francis, J.; Bogacz, R.J. Challenges and Opportunities of Grid Modernization and Electric Transportation; Technical

Report; US Department of Energy; Allegheny Science & Technology: Washington, DC, USA, 2017.
6. Wang, X.; Ning, Z.; Hu, X.; Wang, L.; Guo, L.; Hu, B.; Wu, X. Future Communications and Energy Management in the Internet of

Vehicles: Toward Intelligent Energy-Harvesting. IEEE Wirel. Commun. 2019, 26, 87–93. [CrossRef]
7. Rimal, B.P.; Lumb, I. The Rise of Cloud Computing in the Era of Emerging Networked Society. In Cloud Computing: Principles,

Systems and Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–25.
8. Chekired, D.A.; Khoukhi, L. Smart Grid Solution for Charging and Discharging Services Based on Cloud Computing Scheduling.

IEEE Trans. Ind. Inform. 2017, 13, 3312–3321. [CrossRef]
9. Ejaz, W.; Naeem, M.; Sharma, S.K.; Khattak, A.M.; Ramzan, M.R.; Ali, A.; Anpalagan, A. IoV-based deployment and scheduling

of charging infrastructure in intelligent transportation systems. IEEE Sens. J. 2020, 21, 15504–15514. [CrossRef]
10. Sun, G.; Zhang, F.; Liao, D.; Yu, H.; Du, X.; Guizani, M. Optimal energy trading for plug-in hybrid electric vehicles based on fog

computing. IEEE Internet Things J. 2019, 6, 2309–2324. [CrossRef]
11. Li, D.; Yang, Q.; An, D.; Yu, W.; Yang, X.; Fu, X. On location privacy-preserving online double auction for electric vehicles in

microgrids. IEEE Internet Things J. 2018, 6, 5902–5915. [CrossRef]
12. Zhang, J.; Jiang, Q.; Pan, A.; Li, T.; Liu, Z.; Zhang, Y.; Jiang, L.; Zhan, X. An optimal dispatching strategy for charging and

discharging of electric vehicles based on cloud-edge collaboration. In Proceedings of the 2021 3rd Asia Energy and Electrical
Engineering Symposium (AEEES), Chengdu, China, 26–29 March 2021; pp. 827–832.

https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040
https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040
http://doi.org/10.1109/WF-IoT.2014.6803166
http://dx.doi.org/10.1109/MWC.001.1900009
http://dx.doi.org/10.1109/TII.2017.2718524
http://dx.doi.org/10.1109/JSEN.2020.3006706
http://dx.doi.org/10.1109/JIOT.2019.2906186
http://dx.doi.org/10.1109/JIOT.2018.2872444


Energies 2022, 15, 1908 22 of 24

13. Abishu, H.N.; Seid, A.M.; Yacob, Y.H.; Ayall, T.; Sun, G.; Liu, G. Consensus Mechanism for Blockchain-Enabled Vehicle-to-Vehicle
Energy Trading in the Internet of Electric Vehicles. IEEE Trans. Veh. Technol. 2021, 71, 946–960. [CrossRef]

14. Zhou, Z.; Wang, B.; Guo, Y.; Zhang, Y. Blockchain and Computational Intelligence Inspired Incentive-Compatible Demand
Response in Internet of Electric Vehicles. IEEE Trans. Emerg. Top. Comput. Intell. 2019, 3, 205–216. [CrossRef]

15. Mierau, M.; Fey, S.; Kohrs, R.; Wittwer, C. Communication solutions for a cloud-based charging management system for a fleet of
shared-use electric vehicles. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona,
Spain, 17–20 November 2013; pp. 1–11. [CrossRef]

16. Cao, Y.; Song, H.; Kaiwartya, O.; Zhou, B.; Zhuang, Y.; Cao, Y.; Zhang, X. Mobile Edge Computing for Big-Data-Enabled Electric
Vehicle Charging. IEEE Commun. Mag. 2018, 56, 150–156. [CrossRef]

17. Tang, Q.; Wang, K.; Song, Y.; Li, F.; Park, J.H. Waiting Time Minimized Charging and Discharging Strategy Based on Mobile Edge
Computing Supported by Software-Defined Network. IEEE Internet Things J. 2020, 7, 6088–6101. [CrossRef]

18. Mehrabi, A.; Siekkinen, M.; Ylä-Jääski, A.; Aggarwal, G. Mobile Edge Computing Assisted Green Scheduling of On-Move Electric
Vehicles. IEEE Syst. J. 2021, 1–12. [CrossRef]

19. Teimoori, Z.; Yassine, A.; Hossain, M.S. A Secure Cloudlet-based Charging Station Recommendation for Electric Vehicles
Empowered by Federated Learning. IEEE Trans. Ind. Inform. 2022, 1. [CrossRef]

20. Chekired, D.A.; Togou, M.A.; Khoukhi, L. Hierarchical Wireless Vehicular Fog Architecture: A Case Study of Scheduling Electric
Vehicle Energy Demands. IEEE Veh. Technol. Mag. 2018, 13, 116–126. [CrossRef]

21. Rimal, B.P.; Van, D.P.; Maier, M. Mobile-Edge Computing Versus Centralized Cloud Computing Over a Converged FiWi Access
Network. IEEE Trans. Netw. Serv. Manag. 2017, 14, 498–513. [CrossRef]

22. Cheng, X.; Hu, X.; Yang, L.; Husain, I.; Inoue, K.; Krein, P.; Lefevre, R.; Li, Y.; Nishi, H.; Taiber, J.G.; et al. Electrified vehicles and
the smart grid: The ITS perspective. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1388–1404. [CrossRef]

23. Chen, S.; Hu, J.; Shi, Y.; Peng, Y.; Fang, J.; Zhao, R.; Zhao, L. Vehicle-to-Everything (v2x) Services Supported by LTE-Based
Systems and 5G. IEEE Commun. Stand. Mag. 2017, 1, 70–76. [CrossRef]

24. Mansouri, A.; Martinez, V.; Härri, J. A First Investigation of Congestion Control for LTE-V2X Mode 4. In Proceedings of the 2019
15th Annual Conference on Wireless On-Demand Network Systems and Services (WONS), Wengen, Switzerland, 22–24 January
2019; pp. 56–63. [CrossRef]

25. Garcia-Roger, D.; González, E.E.; Martín-Sacristán, D.; Monserrat, J.F. V2X Support in 3GPP Specifications: From 4G to 5G and
Beyond. IEEE Access 2020, 8, 190946–190963. [CrossRef]

26. Kong, C.; Rimal, B.P.; Bhattarai, B.P.; Devetsikiotis, M. Cloud-Based Charging Management of Electric Vehicles in a Network of
Charging Stations. In Proceedings of the IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24
May 2018; pp. 1–6.

27. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed
on 10 December 2021).

28. Christidis, K.; Devetsikiotis, M. Blockchains and smart contracts for the internet of things. IEEE Access 2016, 4, 2292–2303.
[CrossRef]

29. Bouras, M.A.; Lu, Q.; Dhelim, S.; Ning, H. A lightweight blockchain-based IoT identity management approach. Future Internet
2021, 13, 24. [CrossRef]

30. Mendiboure, L.; Chalouf, M.A.; Krief, F. Survey on blockchain-based applications in internet of vehicles. Comput. Electr. Eng.
2020, 84, 106646. [CrossRef]

31. Sharma, R.; Chakraborty, S. BlockAPP: Using blockchain for authentication and privacy preservation in IoV. In Proceedings of
the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.

32. Singh, M.; Kim, S. Branch based blockchain technology in intelligent vehicle. Comput. Netw. 2018, 145, 219–231. [CrossRef]
33. Kchaou, A.; Abassi, R.; El Fatmi, S.G. Towards a secured clustering mechanism for messages exchange in vanet. In Proceedings of

the 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), Krakow,
Poland, 16–18 May 2018; pp. 88–93.

34. Kchaou, A.; Abassi, R.; Guemara, S. Toward a distributed trust management scheme for vanet. In Proceedings of the 13th
International Conference on Availability, Reliability and Security, Hamburg, Germany, 27–30 August 2018; pp. 1–6.

35. Mylrea, M.; Gourisetti, S.N.G. Blockchain for smart grid resilience: Exchanging distributed energy at speed, scale and security. In
Proceedings of the 13th Resilience Week (RWS), Wilmington, DE, USA, 18–22 September 2017; pp. 18–23.

36. Digiconomist. Bitcoin Energy Consumption Index. Available online: https://digiconomist.net (accessed on 22 January 2022).
37. Rimal, B.P.; Maier, M.; Satyanarayanan, M. Experimental testbed for edge computing in fiber-wireless broadband access networks.

IEEE Commun. Mag. 2018, 56, 160–167. [CrossRef]
38. Thaler, R.H.; Sunstein, C.R. Nudge: Improving Decisions about Health, Wealth, and Happiness; Yale University Press: London,

UK, 2008.
39. Lehner, M.; Mont, O.; Heiskanen, E. Nudging—A promising tool for sustainable consumption behaviour? J. Clean. Prod. 2016,

134, 166–177. [CrossRef]
40. Rigas, E.S.; Ramchurn, S.D.; Bassiliades, N. Managing electric vehicles in the smart grid using artificial intelligence: A survey.

IEEE Trans. Intell. Transp. Syst. 2015, 16, 1619–1635. [CrossRef]

http://dx.doi.org/10.1109/TVT.2021.3129828
http://dx.doi.org/10.1109/TETCI.2018.2880693
http://dx.doi.org/10.1109/EVS.2013.6914884
http://dx.doi.org/10.1109/MCOM.2018.1700210
http://dx.doi.org/10.1109/JIOT.2019.2957124
http://dx.doi.org/10.1109/JSYST.2021.3084746
http://dx.doi.org/10.1109/TII.2022.3148997
http://dx.doi.org/10.1109/MVT.2018.2866268
http://dx.doi.org/10.1109/TNSM.2017.2706085
http://dx.doi.org/10.1109/TITS.2014.2332472
http://dx.doi.org/10.1109/MCOMSTD.2017.1700015
http://dx.doi.org/10.23919/WONS.2019.8795500
http://dx.doi.org/10.1109/ACCESS.2020.3028621
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1109/ACCESS.2016.2566339
http://dx.doi.org/10.3390/fi13020024
http://dx.doi.org/10.1016/j.compeleceng.2020.106646
http://dx.doi.org/10.1016/j.comnet.2018.08.016
https://digiconomist.net
http://dx.doi.org/10.1109/MCOM.2018.1700793
http://dx.doi.org/10.1016/j.jclepro.2015.11.086
http://dx.doi.org/10.1109/TITS.2014.2376873


Energies 2022, 15, 1908 23 of 24

41. Rimal, B.P.; Belgana, A.; Maier, M. Game-Theoretic Approach for Energy Trading in Smart Grids. In Smart Grid: Networking, Data
Management, and Business Models; CRC Press: Boca Raton, FL, USA, 2016; pp. 387–403.

42. Glaessgen, E.; Stargel, D. The digital twin paradigm for future NASA and US Air Force vehicles. In Proceedings of the 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April
2012; p. 1818.

43. Barricelli, B.R.; Casiraghi, E.; Fogli, D. A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design
Implications. IEEE Access 2019, 7, 167653–167671. [CrossRef]

44. Schwarz, C.; Wang, Z. The Role of Digital Twins in Connected and Automated Vehicles. IEEE Intell. Transp. Syst. Mag. 2022, 2–11.
[CrossRef]

45. Almeaibed, S.; Al-Rubaye, S.; Tsourdos, A.; Avdelidis, N.P. Digital Twin Analysis to Promote Safety and Security in Autonomous
Vehicles. IEEE Commun. Stand. Mag. 2021, 5, 40–46. [CrossRef]

46. Lu, Y.; Liu, C.; Kevin, I.; Wang, K.; Huang, H.; Xu, X. Digital Twin-driven smart manufacturing: Connotation, reference model,
applications and research issues. Robot. Comput.-Integr. Manuf. 2020, 61, 101837. [CrossRef]

47. Ibrahim, M.; Rassõlkin, A.; Vaimann, T.; Kallaste, A. Overview on Digital Twin for Autonomous Electrical Vehicles Propulsion
Drive System. Sustainability 2022, 14, 601. [CrossRef]

48. Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital twin: Origin to future. Appl. Syst. Innov. 2021,
4, 36. [CrossRef]

49. LaGrange, E. Developing a digital twin: The roadmap for oil and gas optimization. In Proceedings of the SPE Offshore Europe
Conference and Exhibition, OnePetro, Aberdeen, UK, 3–6 September 2019.

50. Correia, S.; Boukerche, A.; Meneguette, R.I. An Architecture for Hierarchical Software-Defined Vehicular Networks. IEEE
Commun. Mag. 2017, 55, 80–86. [CrossRef]

51. Liu, K.; Ng, J.K.Y.; Lee, V.C.; Son, S.H.; Stojmenovic, I. Cooperative Data Scheduling in Hybrid Vehicular Ad Hoc Networks:
VANET as a Software Defined Network. IEEE/ACM Trans. Netw. 2016, 24, 1759–1773. [CrossRef]

52. Häckel, T.; Schmidt, A.; Meyer, P.; Korf, F.; Schmidt, T.C. Strategies for Integrating Control Flows in Software-Defined In-Vehicle
Networks and Their Impact on Network Security. In Proceedings of the 2020 IEEE Vehicular Networking Conference (VNC),
New York, NY, USA, 16–18 December 2020; pp. 1–8.

53. Mershad, K. SURFER: A secure SDN-based routing protocol for internet of vehicles. IEEE Internet Things J. 2020, 8, 7407–7422.
[CrossRef]

54. Yuan, T.; Neto, W.D.R.; Rothenberg, C.E.; Obraczka, K.; Barakat, C.; Turletti, T. Dynamic Controller Assignment in Software
Defined Internet of Vehicles Through Multi-Agent Deep Reinforcement Learning. IEEE Trans. Netw. Serv. Manag. 2021,
18, 585–596. [CrossRef]

55. Pokhrel, S.R. Software Defined Internet of Vehicles for Automation and Orchestration. IEEE Trans. Intell. Transp. Syst. 2021,
22, 3890–3899. [CrossRef]

56. Katsaros, K.V.; Chai, W.K.; Vieira, B.; Pavlou, G. Supporting smart electric vehicle charging with information-centric network-
ing. In Proceedings of the 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security and
Robustness, Island of Rhodes, Greece, 18–20 August 2014; pp. 174–179. [CrossRef]

57. Daryabari, M.K.; Keypour, R.; Golmohamadi, H. Robust self-scheduling of parking lot microgrids leveraging responsive electric
vehicles. Appl. Energy 2021, 290, 116802. [CrossRef]

58. Daryabari, M.K.; Keypour, R.; Golmohamadi, H. Stochastic energy management of responsive plug-in electric vehicles character-
izing parking lot aggregators. Appl. Energy 2020, 279, 115751. [CrossRef]

59. Jenkins, A.M.; Patsios, C.; Taylor, P.; Olabisi, O.; Wade, N.; Blythe, P. Creating virtual energy storage systems from aggregated
smart charging electric vehicles. CIRED-Open Access Proc. J. 2017, 2017, 1664–1668. [CrossRef]

60. Deb, S.; Kalita, K.; Mahanta, P. Review of impact of electric vehicle charging station on the power grid. In Proceedings of the 2017
International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 21–23 December
2017; pp. 1–6. [CrossRef]

61. Dharmakeerthi, C.; Mithulananthan, N. PEV load and its impact on static voltage stability. In Plug In Electric Vehicles in Smart
Grids; Springer: Berlin/Heidelberg, Germany, 2015; pp. 221–248.

62. Zhang, Y.; Song, X.; Gao, F.; Li, J. Research of voltage stability analysis method in distribution power system with plug-in electric
vehicle. In Proceedings of the 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China,
25–28 October 2016; pp. 1501–1507.

63. Ma, G.; Jiang, L.; Chen, Y.; Dai, C.; Ju, R. Study on the impact of electric vehicle charging load on nodal voltage deviation. Arch.
Electr. Eng. 2017, 66, 495–505. [CrossRef]

64. McCarthy, D.; Wolfs, P. The HV system impacts of large scale electric vehicle deployments in a metropolitan area. In Proceedings
of the 2010 20th Australasian Universities Power Engineering Conference, Christchurch, New Zealand, 5–8 December 2010;
pp. 1–6.

65. Fan, Y.; Guo, C.; Hou, P.; Tang, Z. Impact of Electric Vehicle Charging on Power Load Based on TOU Price. Energy Power Eng.
2013, 5, 1347–1351. [CrossRef]

66. Bollen, M.H. Understanding power quality problems. In Voltage Sags and Interruptions; IEEE Press: Piscataway, NJ, USA, 2000.

http://dx.doi.org/10.1109/ACCESS.2019.2953499
http://dx.doi.org/10.1109/MITS.2021.3129524
http://dx.doi.org/10.1109/MCOMSTD.011.2100004
http://dx.doi.org/10.1016/j.rcim.2019.101837
http://dx.doi.org/10.3390/su14020601
http://dx.doi.org/10.3390/asi4020036
http://dx.doi.org/10.1109/MCOM.2017.1601105
http://dx.doi.org/10.1109/TNET.2015.2432804
http://dx.doi.org/10.1109/JIOT.2020.3038465
http://dx.doi.org/10.1109/TNSM.2020.3047765
http://dx.doi.org/10.1109/TITS.2021.3077363
http://dx.doi.org/10.1109/QSHINE.2014.6928683
http://dx.doi.org/10.1016/j.apenergy.2021.116802
http://dx.doi.org/10.1016/j.apenergy.2020.115751
http://dx.doi.org/10.1049/oap-cired.2017.0937
http://dx.doi.org/10.1109/TAPENERGY.2017.8397215
http://dx.doi.org/10.1515/aee-2017-0037
http://dx.doi.org/10.4236/epe.2013.54B255


Energies 2022, 15, 1908 24 of 24

67. Gao, Z.; Zhao, H.; Zhou, X.; Ma, Y. Summary of power system harmonics. In Proceedings of the 2017 29th Chinese Control and
Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 2287–2291.

68. Yaleinkaya, G.; Bollen, M.H.; Crossley, P.A. Characterization of voltage sags in industrial distribution systems. IEEE Trans. Ind.
Appl. 1998, 34, 682–688. [CrossRef]

69. Godina, R.; Rodrigues, E.M.; Matias, J.C.; Catalão, J.P. Effect of loads and other key factors on oil-transformer ageing: Sustainability
benefits and challenges. Energies 2015, 8, 12147–12186. [CrossRef]

70. Aung, N.; Zhang, W.; Sultan, K.; Dhelim, S.; Ai, Y. Dynamic traffic congestion pricing and electric vehicle charging management
system for the internet of vehicles in smart cities. Digit. Commun. Netw. 2021, 7, 492–504. [CrossRef]

71. Lundqvist, T.; De Blanche, A.; Andersson, H.R.H. Thing-to-thing electricity micro payments using blockchain technology. In
Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017; pp. 1–6.

72. Fraiji, Y.; Ben Azzouz, L.; Trojet, W.; Saidane, L.A. Cyber security issues of Internet of electric vehicles. In Proceedings of the 2018
IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6. [CrossRef]

73. Hasan, K.F.; Kaur, T.; Hasan, M.M.; Feng, Y. Cognitive Internet of Vehicles: Motivation, Layered Architecture and Security Issues.
In Proceedings of the 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 24–25
December 2019; pp. 1–6. [CrossRef]

74. Hoppe, T.; Kiltz, S.; Dittmann, J. Security threats to automotive CAN networks–practical examples and selected short-term
countermeasures. In Proceedings of the International Conference on Computer Safety, Reliability, and Security, Newcastle upon
Tyne, UK, 22–25 September 2008; pp. 235–248.

75. Petit, J.; Shladover, S.E. Potential cyberattacks on automated vehicles. IEEE Trans. Intell. Transp. Syst. 2014, 16, 546–556. [CrossRef]
76. Rouf, I.; Miller, R.D.; Mustafa, H.A.; Taylor, T.; Oh, S.; Xu, W.; Gruteser, M.; Trappe, W.; Seskar, I. Security and Privacy

Vulnerabilities of In-Car Wireless Networks: A Tire Pressure Monitoring System Case Study. In Proceedings of the 19th USENIX
Conference on Security, Washington, DC, USA, 11–13 August 2010; p. 21.

77. Sun, Y.; Wu, L.; Wu, S.; Li, S.; Zhang, T.; Zhang, L.; Xu, J.; Xiong, Y.; Cui, X. Attacks and countermeasures in the internet of
vehicles. Ann. Telecommun. 2017, 72, 283–295. [CrossRef]

78. Wu, Y.; Fang, X.; Wang, X. Mobility Management through Scalable C/U-Plane Decoupling in IoV Networks. IEEE Commun. Mag.
2019, 57, 122–129. [CrossRef]

79. Yan, L.; Fang, X.; Fang, Y. A Novel Network Architecture for C/U-Plane Staggered Handover in 5G Decoupled Heterogeneous
Railway Wireless Systems. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3350–3362. [CrossRef]

80. Zhang, Y.; Wang, R.; Hossain, M.S.; Alhamid, M.F.; Guizani, M. Heterogeneous Information Network-Based Content Caching in
the Internet of Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 10216–10226. [CrossRef]

81. Liang, H.; Zhang, X.; Hong, X.; Zhang, Z.; Li, M.; Hu, G.; Hou, F. Reinforcement Learning Enabled Dynamic Resource Allocation
in the Internet of Vehicles. IEEE Trans. Ind. Inform. 2021, 17, 4957–4967. [CrossRef]

82. Lo Bello, L.; Steiner, W. A Perspective on IEEE Time-Sensitive Networking for Industrial Communication and Automation
Systems. Proc. IEEE 2019, 107, 1094–1120. [CrossRef]

83. Hackel, T.; Meyer, P.; Korf, F.; Schmidt, T.C. Software-Defined Networks Supporting Time-Sensitive In-Vehicular Communication.
In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1
May 2019; pp. 1–5. [CrossRef]

84. FG-NET-2030; Network 2030 a Blueprint of Technology, Applications and Market Drivers Towards the Year 2030 and Beyond. ITU: Geneva,
Switzerland, 2018.

85. Zhang, T.; Zhang, D.G.; Yan, H.R.; Qiu, J.N.; Gao, J.X. A new method of data missing estimation with FNN-based tensor
heterogeneous ensemble learning for internet of vehicle. Neurocomputing 2021, 420, 98–110. [CrossRef]

86. Elkhalil, A.; Elhabob, R.; Eltayieb, N. An efficient signcryption of heterogeneous systems for internet of vehicles. J. Syst. Archit.
2021, 113, 101885. [CrossRef]

87. Potdar, V.; Batool, S.; Krishna, A. Risks and challenges of adopting electric vehicles in smart cities. In Smart Cities; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 207–240.

88. Yoon, S.; Park, K.; Hwang, E. Connected electric vehicles for flexible vehicle-to-grid (V2G) services. In Proceedings of the 2017
International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13 January 2017; pp. 411–413. [CrossRef]

89. Bayram, I.S.; Michailidis, G.; Devetsikiotis, M.; Granelli, F. Electric Power Allocation in a Network of Fast Charging Stations.
IEEE J. Sel. Areas Commun. 2013, 31, 1235–1246. [CrossRef]

90. Wang, G.; Xu, Z.; Wen, F.; Wong, K.P. Traffic-Constrained Multiobjective Planning of Electric-Vehicle Charging Stations. IEEE Trans.
Power Deliv. 2013, 28, 2363–2372. [CrossRef]

91. Saad, W.; Glass, A.L.; Mandayam, N.B.; Poor, H.V. Toward a Consumer-Centric Grid: A Behavioral Perspective. Proc. IEEE 2016,
104, 865–882. [CrossRef]

92. Bayram, I.S.; Ustun, T.S. A survey on behind the meter energy management systems in smart grid. Renew. Sustain. Energy Rev.
2017, 72, 1208–1232. [CrossRef]

http://dx.doi.org/10.1109/28.703958
http://dx.doi.org/10.3390/en81012147
http://dx.doi.org/10.1016/j.dcan.2021.01.002
http://dx.doi.org/10.1109/WCNC.2018.8377181
http://dx.doi.org/10.1109/STI47673.2019.9068070
http://dx.doi.org/10.1109/TITS.2014.2342271
http://dx.doi.org/10.1007/s12243-016-0551-6
http://dx.doi.org/10.1109/MCOM.2019.1700698
http://dx.doi.org/10.1109/TITS.2017.2685426
http://dx.doi.org/10.1109/TVT.2019.2936792
http://dx.doi.org/10.1109/TII.2020.3019386
http://dx.doi.org/10.1109/JPROC.2019.2905334
http://dx.doi.org/10.1109/VTCSpring.2019.8746473
http://dx.doi.org/10.1016/j.neucom.2020.09.042
http://dx.doi.org/10.1016/j.sysarc.2020.101885
http://dx.doi.org/10.1109/ICOIN.2017.7899469
http://dx.doi.org/10.1109/JSAC.2013.130707
http://dx.doi.org/10.1109/TPWRD.2013.2269142
http://dx.doi.org/10.1109/JPROC.2016.2520760
http://dx.doi.org/10.1016/j.rser.2016.10.034

	Introduction
	Related Work
	Two-Tier Cloud Computing-Based EV Charging Management in IoV
	Network Architecture
	Operations

	Performance Evaluation of Cloud-Based EV Charging in IoV
	Emerging Trends in IoV
	Open Research Issues in IoV
	Conclusions and Outlook
	References

