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Abstract: Well-designed energy management strategies are essential for the good operation of Hybrid
Electric Vehicles (HEVs) in terms of fuel economy and pollutant emissions reduction, regardless of
the specific powertrain architecture. The goal of this paper is to propose two innovative supervisory
control strategies for HEVs derived from different optimization algorithms and to assess HEVs’ fuel
consumption reduction (compared to conventional vehicles). These approaches are derived from
the literature and modified by the authors to present novel algorithms for the optimization problem.
One is based on Dynamic Programming (DP), here referred to as the Forward Approach to Dynamic
Programming (FADP) and introduces a different implementation of the DP to achieve computational
and accuracy benefits. The other is based on the Equivalent Consumption Minimization Strategy
(ECMS) approach, and it adapts to the latest driving conditions using information gathered in a
finite-length backward-looking horizon. These techniques are used to achieve the optimal power
share between the thermal engine and the battery of a parallel HEV. Their performances are compared
and analysed in terms of achieved fuel economy and computational time with respect to conventional
DP and Pontryagin’s Minimum Principle (PMP) approaches.

Keywords: energy management; hybrid electric vehicles; optimization; Dynamic Programming;
Pontryagin’s Minimum Principle; equivalent consumption minimization strategy

1. Introduction

In the current world energy scenario, the transport sector accounts for the highest
share (one third) of final energy consumption. Indeed, it has been reported that, in 2014,
passenger cars alone used more energy than the entire residential sector; moreover, together
with freight road vehicles, they accounted for almost a third of global energy-related CO2
emissions [1]. Therefore, the transition to road vehicles that are not powered by fossil
fuels, such as battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs), will
have a huge positive impact on global CO2 emissions, as long as electricity and hydrogen,
respectively, are produced with renewable energy sources. Nevertheless, several decades
will be required to complete this transition because there is still the need for cost reduction,
reliability increase and infrastructure development.

In this context, it is authors’ opinion that hybrid electric vehicles (HEVs) could repre-
sent one of the most feasible and fastest ways in the short term to reduce the impact of the
transportation sector on global energy-related CO2 emissions, combining the advantages
of the conventional (i.e., based on internal combustion engines) vehicles with those of
BEVs. According to the HEV architecture, it is possible to achieve some of the following
improvements [2]:
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• downsize the engine to achieve higher average efficiency;
• recover energy during braking instead of dissipating it as friction losses;
• optimize the power split between prime movers;
• eliminate idle fuel consumption by turning off the engine (stop-and-start);
• reduce clutching losses decoupling the engine from the road.

HEVs were firstly classified in two basic types: series or parallel. In series HEVs, the
electric motor alone drives the vehicle with the electricity supplied by the battery or by the
engine-driven generator. In parallel HEVs, on the contrary, both prime movers can power
the vehicle individually or simultaneously.

When the battery is recharged by the grid, like in BEVs, the HEV is referred to as plug-
in (PHEV). This vehicle is not limited to charge sustaining operation as non-rechargeable
hybrids. Therefore, the battery can be discharged to its lower limit to cover the whole
driving mission length. However, the range that PHEVs can cover in pure electric mode
is limited.

Choosing the best hybrid powertrain architecture and size of the components for a
given vehicle is a trivial task. Indeed, every architecture has strengths and weaknesses that
might be relevant depending on the vehicle size, usage, and final cost. Once the architecture
is established, the control structure should be defined to obtain the greatest benefits in term
of fuel economy increase as well as emissions and life-cycle cost reduction.

In the design of a hybrid powertrain, optimization has a key role in the entire develop-
ment process. Three main optimization levels can be identified:

• structural optimization to find the best possible powertrain layout architecture;
• parametric optimization to find the best possible parameters for the components of a

fixed structure;
• control system optimization to find the best possible supervisory control algorithms.

The structural optimization for HEVs essentially consists in the choice of the best
powertrain architecture (i.e., series, parallel, series-parallel or combined hybrid). Whereas,
the parametric optimization consists in the optimal sizing of the engine, of the battery
pack, of the electric motor (or motors) and of the gearbox gear ratios. Regardless of
the configuration, the potential fuel economy improvement and emission reduction rely
entirely on the power distribution within the hybrid powertrain. Hence, there is the need
for a supervisory controller to determine how the power demand distributes among the
powertrain components, providing the set points for all the low-level controllers.

Choosing the proper control strategy, that can be classified in this context as Energy
Management Strategy (EMS), is complex and requires the knowledge of both vehicle
architecture and driving mission profile, with great burden on computational effort for the
online implementation of such strategies [3].

The contribution of this work is to propose and evaluate the performance of two
novel supervisory control algorithms: a Forward Approach to Dynamic Programming
(FADP) and an adaptation of a causal Equivalent Consumption Minimization Strategy
(ECMS-based). The main advantages and drawbacks of such algorithms are compared
to conventional optimization techniques: Dynamic Programming (DP) and Pontryagin’s
Minimum Principle (PMP) are used as reference since they are well established and are
commonly used offline to find the optimal control law of HEVs over an assigned driv-
ing mission.

The paper is structured as follows: Section 2 briefly addresses the description of the
model used to simulate the HEV operation, based on information already available in the
literature. Section 3 presents an initial overview on conventional HEVs supervisory control
strategies (i.e., DP and PMP) followed by a more detailed description of the novel strategies
proposed in this work (i.e., FADP and ECMS-based). In Section 4, a critical analysis of
the performances of each optimization technique is performed accounting for required
computational time and achieved fuel economy over several driving missions.
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2. Model of the Hybrid Electric Vehicle

The hybrid vehicle considered in this study presents a parallel P3 hybrid powertrain
configuration, as already presented in [4]. The base vehicle mass is 1400 kg, and the
frontal area is 2 m2, whereas the other key parameters required for the simulation are
taken from [5]. The electrical machine is located on the gearbox output shaft so that the
mechanical power provided by the electric motor is not affected by engine efficiency. With
this architecture, pure electric drive is possible. Such configuration has been chosen instead
of a P1 configuration (with the electric motor located nearby the thermal engine) since it
shows a lower fuel consumption during urban driving due to higher mechanical efficiency
and allows regenerative braking in any driving condition (also when the clutch is not
engaged) [6]. Nevertheless, it can be stated that the algorithms proposed in this work can
be applied to any architecture without loss of generality.

The model proposed here is a backward-facing one, meaning that the driving force
required to move the vehicle is directly computed from the desired velocity trajectory [7].
The driving force propagates backward through the driveline towards the internal com-
bustion engine and the electrical machine. The battery pack consists of 30 branches in
parallel, each made of 24 cells connected in series. The battery charging and discharging
internal resistances are taken from [8]. The single battery is a LiFePO4 cell manufactured
by A123 systems [9], with a nominal voltage of 3.3 V, a nominal capacity of 1.1 Ah and a
weight of 39 g. The transmission is a manual 5-speed manufactured by TREMEC model
TR-2450 [10]. The mechanical and electrical transmission components are modelled with a
constant behaviour, whereas the efficiencies of the internal combustion engine (SI, 1.2 L,
4 in-line cylinders, 105 Nm at 3500 rpm) and the electrical machine (130 Nm max torque,
9000 rpm max speed, 3200 rpm transition speed) are modelled through maps depending
on shaft speed and torque [4]. The main drivetrain transmission parameters are taken
from [5,10]. Further details on the hybrid vehicle model used in this work can be found
in [4].

The main disadvantage of the considered backward approach is that the speed ref-
erence trajectory is always assumed perfectly tracked by the vehicle, regardless of the
powertrain capabilities (i.e., maximum available torque). Moreover, approximating a tran-
sient condition as a sequence of steady states (quasi-static approach) reduces the model
accuracy. Nevertheless, it is worth remarking that the simplicity and computational light-
ness of the proposed model along with the absence of the necessity of a powertrain control
structure (including the driver) represent a strong advantage in terms of model usage for
control strategies’ design and application. Therefore, considering the great computational
benefits, these approximations are considered acceptable for the purpose of this work,
which aims at performing a preliminary estimation of HEVs’ fuel consumption [11]. More-
over, powertrain dynamics can be neglected since it is much faster than the battery state of
charge dynamics [12].

3. Supervisory Control Algorithms

A conventional powertrain based on an internal combustion engine has zero degrees
of freedom (DOF) on the power demand distribution: all the requests are satisfied by
the engine. On the other hand, a hybrid powertrain usually has one DOF, so that the
power demand can be optimally distributed (optimal power split) among its components
to achieve the maximum improvement in terms of fuel economy and emissions reduction.

The control task of optimal power split is referred to as supervisory control or EMS [11].
The strategies that can be adopted by the supervisory controller can be divided into two
main classes: optimal and heuristic. The former uses optimal control theory to formulate a
problem that can be solved afterwards, whereas the latter follows rule-based indications
calibrated beforehand mainly through optimal control techniques.

Another classification can be performed based on the information used: non-causal
and causal. Non-causal control strategies require the perfect knowledge of the inputs
(e.g., the road load) and thus assume that they are completely known. On the other hand,
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causal strategies use information up to the current instant only. All heuristic strategies are
inherently causal, whereas optimal strategies can either be causal or non-causal.

Generally, causal controllers are neither able to find the optimal solution nor to satisfy
the constraint on the final state-of-charge (SoC) of the battery. This latter aspect is particu-
larly relevant when it comes to the comparison between different strategies: if the SoCs at
the end of the mission are different, the comparison is meaningless.

The main novelty brought by this paper to what is currently available in the liter-
ature consists in two novel supervisory control algorithms, being a Forward Approach
to Dynamic Programming (FADP) and an adaptation of a causal Equivalent Consump-
tion Minimization Strategy (ECMS-based). The key features and pros and cons of the
proposed novel algorithms are described in details and compared to two conventional opti-
mization techniques, which are Dynamic Programming (DP) and Pontryagin’s Minimum
Principle (PMP).

All considered techniques are non-causal, except the ECMS-based one, which uses
current and past information only. Both DP [13–17] and PMP [18,19] techniques are well
established and have been extensively presented in the literature for hybrid powertrain
optimization, and are here therefore used to evaluate the performance of the newly pro-
posed FADP and ECMS-based approaches. In the following, a brief overview on optimal
control problem formulation is given, followed by the introduction of the bases of all the
considered methods (both conventional and novel) and the analysis of their performance
for hybrid powertrain optimization.

3.1. Optimal Control Problem Statement

The optimal solution to the energy management problem is the one that minimizes
(or maximizes) a certain performance index J, suitably defined for each specific problem.
The simplest performance index formulation is the one that considers only the fuel mass
consumed to realize the driving mission:

J =
∫ t f

0

.
m f (t, x(t), u(t))dt (1)

where x and u are the system state and control variables respectively. Although further
factors might be considered in the performance index (e.g., pollutants emissions, battery
aging and degradation), this work aims only at minimizing the vehicle fuel consumption.

Several state variables are required to describe the dynamics of HEV systems. Nev-
ertheless, for the purpose of energy management, only the battery SoC is considered as a
relevant state variable to be accounted for (i.e., x = ξ), whose evolution presents the initial
condition ξ(0) = ξ0.

For the case of an HEV under exam, the control variable adopted throughout this
paper is the battery power (i.e., u = Pb), whose minimum and maximum values depend
on both the cell maximum charge and discharge currents and battery pack configuration,
along with the battery SoC:

Pb,min(ξ) ≤ Pb(t) ≤ Pb,max(ξ) (2)

The gear engaged is always chosen as the one giving the lowest fuel consump-
tion among those of the feasible set, keeping engine speed within its minimum and
maximum values.

The SoC should stay within admissible boundaries during the whole mission ξmin ≤
ξ(t) ≤ ξmax and meet the constraint on its target value ξt at the end of the driving mission
(i.e., ξ(tf) = ξt).

To consider the constraint on the final SoC, a terminal cost (or penalty) φ is usually
added to the performance index J:

J =
∫ t f

0

.
m f (t, ξ(t), Pb(t))dt + φ(ξt) (3)
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3.2. Dynamic Programming

Dynamic programming (DP) was firstly introduced in 1957 as a solution for multi-
stage decision problems in which time plays a significant role and the order of operations
may be crucial [20]. DP has widely been used in literature to solve optimal control problems
for its capability to handle complex multiple constraints and to guarantee global optimality
of the provided solution.

The main drawbacks of the DP are its heavy computational burden, in terms of both
memory usage and CPU operations, which increase exponentially with the number of state
and control variables of the system and linearly with the mission time span.

The practical implementation of DP algorithms requires the discretization of time and
of the feasible sets of state and control variables. Consequently, the solution found with the
algorithm will be optimal only up to the error introduced by this discretization.

Once all the variables have been discretized, the overall cost of the mission, given by
Equation (3), can be written as the sum of the costs of the N time steps and the final cost:

J =
N−1

∑
k=0

.
m f

(
tk, Pk

b

)
+ φ

(
ξN
)

(4)

The constraint on the final SoC is handled as a hard one, yielding to:

φ
(

ξN
)
=

{
0 for ξN = ξt

∞ otherwise
(5)

Starting from the end of the mission, the DP algorithm proceeds backward in time to
find and store the optimal control value Pk

b,opt(ξi) on any state grid point ξi at any time tk,

as in Equation (6), and the cost-to-go Jk(ξi), that is the minimum cost to go from state ξi at
time tk to state ξt at time tN:

Jk(ξi) = min
Pk

b∈V

(
Jk+1

(
f k+1
i

)
+

.
m f

(
tk, Pk

b

))
Pk

b,opt(ξi) = arg min
Pk

b∈V

(
Jk+1

(
f k+1
i

)
+

.
m f

(
tk, Pk

b

)) (6)

where V is the set of all control variable grid values and fi represents the value that the SoC
would assume according to the control variable Pk

b at the next time step starting from ξi:

f k+1
i = ξi +

.
ξ
(

ξi, Pk
b

)
∆t (7)

At time tN, where the algorithm starts, the costs-to-go are known and equal to zero
when ξi = ξt and infinite otherwise, according to Equation (5).

The cost-to-go Jk+1( f k+1
i ) must be interpolated across grid points or approximated with

its nearest neighbour because the arrival states f k+1
i , defined by Equation (7), generally do

not correspond to the state grid points ξi. Once Jk+1( f k+1
i ) is available, it is possible to solve

Equation (6) and find the optimal control value Pk
b,opt(ξi) among the values in the feasible

set V.
Once the optimal control is found for all i and k, starting from ξ0

opt = ξ0, the optimal
state trajectory is reconstructed proceeding forward in time:

ξk+1
opt = ξk

opt +
.
ξ
(

ξk
opt, Pk

b,opt

(
ξk

opt

))
∆t (8)

Since the optimal state ξk
opt generally do not correspond to the state grid points ξi, the

optimal control value Pk
b,opt

(
ξk

opt

)
must be evaluated by interpolation or by approximation

to its nearest neighbour.
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Further detail on Dynamic Programming can be found in [21,22], whereas its applica-
tion to the hybrid vehicle problem can be found, e.g., in [2,13,15–17,23–26].

3.3. Pontryagin’s Minimum Principle

Pontryagin’s Minimum Principle (PMP) is a result of optimal control theory that helps
identifying necessary optimality conditions for control (and, thus, state) variables of a given
dynamic system. Since the optimality conditions are not sufficient, the control candidate
identified might not lead to the global optimum. Nevertheless, the results obtained through
the application of the PMP could be relatively close to global optimum computed through
DP [12]. Further theoretical details on the principle could be found in [21], while examples
of its application to the HEV powertrain control can be found, e.g., in [5,19,27–30].

Given the optimal control problem discussed in the previous section with respect to
DP, it is possible to define the Hamiltonian function as:

H(ξ(t), Pb(t), λ(t)) =
.

m f (Pb(t), t) + λ(t)
.
ξ(ξ(t), Pb(t)) (9)

where λ(t) is the co-state. The PMP states that a necessary condition for optimality is that
the Hamiltonian is minimum in the control variable for all the time window:

H
(

ξopt(t), Pb,opt(t), λopt(t)
)
≤ H(ξ(t), Pb(t), λ(t)) ∀t ∈

[
0, t f

]
& ∀Pb(t) ∈ V (10)

and the optimal state and co-state evolve according to the following equations:{ .
ξ(t) = ∂H

∂λ = − Ib(ξ,Pb(t),t)
Qb

ξ(0) = ξ0
(11)

.
λ(t) = −∂H

∂λ
(12)

The compliance of the constraint on the final SoC depends on the initial co-state value,
i.e., the initial condition of Equation (12). This should be found iteratively (e.g., through the
shooting method) until the final state of charge converges to its target value. Subsequently,
the Hamiltonian minimization and the integration of Equations (11) and (12) are performed
several times until convergence is reached.

To speed up the computation by avoiding the resolution of a minimization problem
every time step, the Hamiltonian is evaluated on a finite set of values of the control variable
Pb of dimension Q, as presented in [31].

3.4. Forward Approach to Dynamic Programming

From a theoretical point of view, DP algorithms can run forward or backward in
time without any difference: the optimal solution will be the same regardless of the ap-
proach. The practical implementation of DP to solve optimal control problems requires
the discretization of the control variable, leading to the backward procedure described
in Section 3.2. DP algorithms involve the use of either the rounding or the interpolation
method, with further reduction in the accuracy of the solution and increase in the compu-
tational time. Moreover, there is no guarantee that, during the forward-calculation phase
of DP, a feasible control trajectory is generated or that such control will lead to the target
state at the end of the mission. This issue is particularly problematic in problems where the
optimal state trajectory lies along or close to the boundary of its feasible set.

In this paper, a novel procedure is proposed to avoid the discretization of the control
variable. This procedure is only possible when a bijective correspondence between state
transitions and control variables is present. The proposed algorithm can run forward or
backward in time without distinction.

The transition from state ξi to ξj is expressed as:

∆ξij = ξi − ξ j (13)
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where the indexes i and j are both related to the same state grid points. A certain cost is
required to realize the transition ∆ξij and, at the same time, satisfy the power request at
the wheels. This cost is referred to as transition cost and is indicated as Lij. The bijective
correspondence between state transitions and control variables is necessary to guarantee
that to each ∆ξij corresponds only one possible Lij.

The procedure to evaluate the transition costs requires particular care and it will be
detailed in the following. Nevertheless, once these costs are known, the optimal con-
trol problem can be basically approached following the same reasoning detailed for the
simplified problem discussed in the previous sections.

The algorithm here proposed starts from the initial time step setting the initial cost to
infinity for values of ξ different from the initial condition:

J0
i =

{
0 for ξi = ξs

∞ otherwise
(14)

For the sake of notation compactness, a slight change in the notation is adopted: Jk
i

represents the cost-to-arrive to ξi at time tk starting from the initial state at the beginning of
the mission.

With reference to Figure 1, the computation proceeds forward in time solving the minimization:

Jk+1
j = min

i

(
Jk
i + Lk

ij

)
(15)
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This algorithm basically finds the optimal state value ξi from which it is convenient to
start in order to arrive at ξj, satisfying the power request at the wheels. The arguments of
the minimization in Equation (15) are stored in a feedback matrix X, whose elements are
defined as:

Xk+1
j = min

i

(
Jk
i + Lk

ij

)
(16)

Each entry Xk+1
j represents the index i to which corresponds the optimal j state grid

value to start from in order to arrive at ξj at tk+1 with the minimum cost-to-arrive. These
values are used to reconstruct the optimal state trajectory ξopt(t) with a backward procedure,



Energies 2022, 15, 1972 8 of 22

starting from j = t and ξk
opt = ξt, and proceeding backward with k that goes from N − 1 to 1

according to the following sequence:

i = Xk+1
j

ξk
opt = ξi

j = i
(17)

The general implementation of the FADP once each transition cost is known and
stored in memory is expressed in the Appendix A (see Algorithm A1). The transition cost
calculation depends on the specific problem, and it will be detailed in the next section for
an HEV optimal control application.

It is worth noting that the output of this optimization is the optimal state trajectory
over time. Nevertheless, since there is a bijective correspondence between each state
transition and the control value needed to realize it and satisfy the power request, the
optimal control law can be easily calculated.

3.4.1. Transition Cost Calculation

The algorithm described in the previous section is general and could be used for any
optimal control problem as an alternative to DP. In this section, the transition cost calcula-
tion for the specific case of the HEV energy management problem previously described
is presented.

Once the state transitions ∆ξij and the time step ∆t have been defined, the rate of
charge/discharge is evaluated as:

.
ξ ij =

∆ξij

∆t
(18)

and the battery power Pb can be then calculated. At this stage, the compliance with the
constraints like those in Equation (2) can be checked.

Once the battery power has been computed, the electric machine mechanical power can
be evaluated and the power required to the thermal engine can be finally calculated as the
difference between the required wheel power and the electric machine mechanical power.

From engine speed and torque, the fuel consumption
.

m f can be evaluated along
with the cost-to-arrive Lk

ij. In the Appendix A (Algorithm A2), the whole process of the
cost-to-arrive calculation is reported.

3.5. Iterative Approach in FADP

To reduce the computational burden of FADP while preserving the accuracy of the
solution, an iterative process is here proposed (IFADP). The main idea is to progressively
narrow the state grid in the neighbourhood of the optimal state trajectory obtained in a
previous iteration performed on a coarser grid.

Similarly, to what shown in Section 3.4, the state grid is discretized into M grid points:

ξi = ξdown + ∆ξ·i for i = 0, 1, . . . , M (19)

while the upper ξup and lower ξdown boundaries of the state grid are defined as:{
ξup(t) = ξopt(t) + ∆ξ∗

ξdown(t) = ξopt(t)− ∆ξ∗
(20)

where ∆ξ* is the chosen amplitude of the neighbourhood region related the optimal state
trajectory found previously. Hence, the state grid step ∆ξ can be calculated as:

∆ξ =
ξup − ξdown

M
=

2∆ξ∗

M
(21)
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At each iteration, the amplitude of the neighbourhood ∆ξ* is progressively reduced
and, as a consequence, a better fuel economy is achieved. On the other hand, the number
of state grid elements M is kept constant to not increase the computational burden.

3.6. Causal ECMS-Based Strategy

In many practical applications dealing with optimal supervisory control of HEVs, the
co-state λ introduced with the PMP method can be treated as a constant. The assumption
is motivated by the weak dependency of the Hamiltonian on the SoC ξ. In fact, while the
fuel flow rate

.
m f does not depend on ξ at all, the battery current depends on ξ through the

battery internal resistance and open circuit voltage [4]. Nonetheless, especially for charge
sustaining control policies, since ξ fluctuates around an intermediate value, the battery
parameters are approximately constant if the range is narrow enough. Subsequently, the
dependency of the Hamiltonian H on ξ is weak and can thus be neglected.

According to [19], the Hamiltonian could be redefined as the sum of the fuel chemical
power plus the battery electrical power, weighted by an equivalence factor s0, represented
by the constant co-state:

H(ξ, Pb, s) = Pf + s0·Pb (22)

Similarly, the Hamiltonian could be redefined as the sum of the fuel mass consumed
by the engine and an equivalent fuel mass consumed by the electric motor:

H(ξ, Pb, s) =
.

m f + s0·
.

mEQ (23)

It is worth noting that if
.

mEQ = Pb/Hi, Equation (23) corresponds to Equation (22).
Nevertheless, in this work, the equivalent fuel consumption is considered equal to the

state dynamics:
.

mEQ =
.
ξ(Pb) (24)

thus, the Hamiltonian is closer to the one defined in Equation (9).
The equivalence factor drives the solution alternatively towards battery charging (i.e.,

high s0 values) or battery depleting (i.e., low s0 values). The ECMS-based technique usually
minimizes the Hamiltonian while adjusting the equivalent factor dynamically over time
using, for instance, a feedback signal on the battery SoC:

s = s0 + ∆s(ξ, . . .) (25)

This allows keeping ξ within a given range of values and obtaining a reduction of
fuel consumption comparable with that obtained through a non-causal method, such as
in [31–33]. The constant baseline value s0 is normally obtained beforehand through an
offline optimization using a non-causal method.

In this paper, s0 is estimated using past driving information and a feedback signal
from the battery SoC:

s(t) = sc
(
UDth(t)

)
+ sp(ξ(t)− ξt) (26)

The first term sc estimates the equivalence factor according to the driving conditions
(e.g., urban, sub-urban, highway, etc.) through the Urban Degree UD:

sc
(
UDth

)
=

{
sc1 + sc2

UDth
UD0

for UDth < UD0

sc1 + sc2 or UDth ≥ UD0
(27)

This latter term expresses if a specific driving cycle shows more “urban” conditions or
not. It is calculated on the backward horizon (th,t) as:

UDth =

∫ t
th

∣∣∣ dv
dt

∣∣∣dt∫ t
th

vdt
(28)
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and its value is greater for urban driving cycles and smaller for highway ones. The second
term sp takes into account the difference between the current SoC and its target value ξt.

The parameters presented for this control algorithm, that are sc1, sc2, sp, UD0 and th,
have to be identified for each powertrain configuration through heuristic approaches or
iteratively solving the optimal control problem with non-causal techniques.

Analogously to what has been done for PMP in Section 3.3, the control variable Pb is
discretized into a finite set of dimension Q on which the Hamiltonian is evaluated to find
its minimum value.

The parameters of the causal ECMS-based control strategy were heuristically deter-
mined and listed in Table 1, according to the hybrid powertrain configuration defined in
the previous sections.

Table 1. Parameters of the causal ECMS-based control strategy.

Parameter Unit Value

sc1 - −2
sc2 - 0.4
sp - 20

UD0 Hz 0.13
th s 120

4. Simulation Results

The performances of each control strategy will now be assessed over several driving
missions in terms of achieved fuel economy and required computational time. All the
results showed in the following section will refer to charge sustaining strategies: the battery
SoC target at the end of the mission is set equal to the initial one (ξt = ξ0 = 0.6). The
driving cycles accounted in this work are listed in Table 2, with the corresponding UD
value evaluated on the whole cycle through Equation (28) and ordered in descending UD.
More information on the accounted driving cycles can be found in [34].

Table 2. Driving cycles considered for the assessment and comparison of the different control
algorithms performance.

Driving Cycle Urban Degree Duration Distance

New York City Cycle (NYCC) 0.121 598 s 1.89 km
Common Artemis Driving Cycles (CADC urban) 0.099 993 s 4.974 km

Federal Test Procedure (FTP-72) 0.045 1372 s 12.07 km
Worldwide Harmonized Light Vehicles Test Cycle

(WLTC class 3) 0.027 1800 s 23.266 km

Common Artemis Driving Cycles (CADC rural) 0.024 1082 s 17.275 km
Highway Fuel Economy Test (HWFET) 0.008 756 s 16.45 km

The Relative Fuel Economy (RFE) is here assumed as the reference parameter for
strategies’ assessment and comparison. Such parameter expresses the percentage reduction
of the total mass of fuel required by the hybrid vehicle to realize the driving mission with
respect to that required by the conventional vehicle (i.e., considering the same powertrain
without the electrical components weight):

RFE = 1−
∫ t f

0
.

m f ,HEVdt∫ t
th

.
m f ,convdt

(29)

A further analysis is performed on the computational effort required by the proposed
strategies. In Table 3, the complexity of each algorithm is reported as the number of
evaluations of the cost function. Specifically, the terms N, M and Q are the number of
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time, state, and control discrete elements, respectively, and i is the number of iterations
(where applicable).

Table 3. Complexity of each considered optimal supervisory control strategy.

Optimal Control Strategy Complexity

DP N·M·Q
PMP N·Q·i
FADP N·M2

IFADP N·M2·i
Causal ECMS-based N·Q

4.1. Analysis of DP Performance

Solving the optimal control problems through DP requires the calculation of the cost-
to-go from every battery SoC at every time instant. The solution obtained with this method
reaches the absolute optimum, compatibly with the state and control discretization. The
main drawback consists in the high amount of resources required in terms of both memory
and computational time. If the number of state elements M is set equal to the number of
control elements Q, the computational time increases quadratically with the number of
elements (as shown for the FADP in Table 3).

The optimal SoC trajectory obtained through DP on a WLTP driving cycle is shown in
Figure 2. In this figure, on the left y-axis it is reported the SoC value is related to the red SoC
trajectory line, whereas the right y-axis relates to the cost-to-go values. It can be observed
that the control algorithm tends to recharge the battery during the Low, Medium and
High speed of the cycle (i.e., from 0 to almost 1600 s, in urban and extra-urban conditions)
and then depletes the battery in the last part of the cycle, when an extra high speed is
encountered (i.e., on the highway). For what concerns the cost-to-go values (proposed as
a contour plot right beneath the SoC trajectory), they decrease over time and with higher
SoC values. This latter result is easily explained by considering that a greater SoC with
respect to the one to be achieved as target value implies a reduction in the overall fuel
consumption.
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driving cycle (Q = M = 2000).

Table 4 lists the RFE achieved through the DP optimization for the driving cycles
reported in Table 2. As expected, higher RFE are obtained on urban driving cycles (e.g.,
NYCC and CADC urban) with higher values of UD (calculated over the whole driving
mission). This is explained with the more frequent braking phases (where energy is
recovered) and the lower average efficiency of the thermal engine in low load conditions.
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Table 4. Results of DP (Q = M = 2000), PMP (Q = 2000) and FADP (M = 2000) applied to the driving
cycles listed in Table 2 in terms of Relative Fuel Economy (RFE).

Driving Cycle RFEDP RFEPMP RFEFADP

NYCC 31.6% 31.6% 31.6%
CADC urban 29.5% 29.5% 29.5%

FTP-72 18.1% 18.1% 18.1%
WLTP class 3 11.5% 11.5% 11.5%
CADC rural 11.8% 11.8% 11.8%

HWFET 1.2% 1.2% 1.2%

On the other hand, on highway missions, the RFE is very limited due to the almost
complete absence of braking phases and the high efficiency achieved by the thermal
engine alone on the conventional vehicle while operating at medium–high loads. The
limited efficiency benefits, along with the additional weight due to the presence of the
battery pack, nearly nullify the benefits brought by the hybrid powertrain configuration on
highway scenarios.

4.2. Analysis of PMP Performance

As already described in Section 3.3, using PMP entails the replacement of the original
boundary value problem (with fixed initial and final conditions on the SoC) with an initial
value problem, where the initial condition on the co-state λ is iteratively updated through
a shooting method until the final condition on the SoC ξ is met.

Clearly, higher absolute values of the co-state lead to higher values of the final SoC,
favouring the recharge mode and penalizing the discharge mode. To find the instantaneous
minimum value of the Hamiltonian, the control variable Pb is discretized into a finite set
of equally distant points Q within its feasible range (i.e., from its current minimum to its
maximum). The Hamiltonian is then evaluated for each possible operating point. Thus,
the optimal control is the one that meets the constraints and corresponds to the minimum
value of the Hamiltonian.

The computational time required to solve the optimal control problem is proportional
to the number of iterations to reach the desired battery SoC at the end of the mission.
It increases linearly with the number of elements and iterations in accordance with the
estimation given in Table 3. However, if the co-state starts from a proper initial guess
and it is suitably updated, just few iterations are required to meet the constraint on the
SoC final value within an acceptable tolerance. The above comments are graphically
represented in Figure 3 (example related to the results obtained on the FTP-72 cycle), where
the linear increase in the computational time with the number of discrete control elements
can be clearly visible. However, it can also be observed that the relative fuel economy
improvement becomes negligible above a certain number of control elements (2000 in the
example), proving that the increase in the computational efforts does not result in further
improvement in the optimal solution.

Figure 4 presents the optimal SoC trajectory obtained with PMP on the WLTP driving
cycle, to allow a visual comparison with the results obtained with the DP. From this figure,
it can be observed that the optimal SoC trajectory is almost the same of that presented
in Figure 2, with only hardly detectable changes. Additionally, in this case, the control
algorithm tends to recharge the battery in almost the entire cycle and depletes it during
highway driving.

Table 4 reports the RFE results obtained through the PMP optimization for several
driving missions. Since PMP obtains the same RFE results as DP (Table 4), it is possible
to state that this technique allows to find the absolute optimal control on the problem
under analysis. Therefore, PMP will be adopted as a comparative reference for the analysis
presented in the following with respect to the novel proposed approaches.
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Q = 2000.

4.3. Analysis of FADP Performance

Approaching the solution of HEV optimal control problem through FADP algorithms
allows to evaluate the cost-to-arrive to each battery SoC at every time instants, as reported
in Figure 5. The evaluation of the cost-to-arrive over time can be particularly useful in the
benchmarking process of causal EMS.

Figure 5 presents the optimal trajectories of the battery SoC obtained with FADP
approach. Compared to that of PMP, it can be observed that only minor deviations in the
achieved optimal state trajectories are present, mainly due to the discretization of the state
and/or control variables.

Figure 6 shows the influence of the number of discrete state elements M on the required
computational time and the fuel economy achieved through the resulting optimal control
law (the results are presented with respect to the NYCC driving cycle). It is evident that the
computational time increases quadratically with the number of elements, in accordance
with the estimation given in Table 3, but the maximum fuel economy reaches also in this
case a limit value that does not increase with the number of state elements above 1000. The
choice of the NYCC driving cycle in this case is performed to give a wider analysis of the
results, demonstrating that the achievement of the optimal solution does not require a high
computational effort independently from the chosen driving cycle.
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Addressing the use of the iterative approach, the SoC optimal trajectory obtained with
IFADP is shown in Figure 7 with respect to three successive iterations. The procedure
is performed by restraining the search space of the current iteration in a progressively
narrower band (of amplitude ∆ξ*) around the optimal trajectory obtained with the previous
iteration (as described in Section 3.5). The values of ∆ξ* adopted to obtain the results in
Figure 7 are 0.1, 0.01 and 0.005, for the three consecutive iterations. The result achieved with
the third iteration coincides with the trajectory already presented in Figure 5. Therefore,
after few iterations, the same fuel economy of an FADP with a greater state element number
is attained, even though with a reduced computational time. This advancement can be
observed from Figure 8, where the influence of the number of discrete state elements M on
the required computational time and the fuel economy for the IFADP approach is reported
with respect to the NYCC driving cycle. Comparing Figure 8 with Figure 6, it can be seen
that, with a given number of state elements, e.g., M = 2000, the IFADP approach achieves
the same fuel economy of the FADP in half the required time.
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Table 4 reports the RFE results obtained for all investigated driving cycles. It is worth
noting that the difference between the optimal state trajectories in Figure 5 does not lead to
different results in term of fuel saving (see Table 4).

4.4. Analysis of Causal ECMS-Based Strategy Performance

Similarly to what has been obtained for PMP, to solve the optimization problem
through the ECMS-based approach, the control variable Pb is again discretized into Q
points, in which the Hamiltonian is evaluated to find its minimum value.

The computational time required to find the sub-optimal SoC trajectory, and thus the
battery power control law over the whole driving mission, is comparable with the one
required by one iteration of the PMP (see Table 3). The main advantage is that the proposed
causal ECMS-based technique can be implemented online since only information up to the
current time instant is required.
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Figure 9 shows the SoC trajectory obtained with the ECMS-based strategy (green solid
line) compared to that of the DP (blue solid line), PMP (red dashed line), FADP (dotted
line) and IFADP (dot-dashed line) approaches. It is important to notice that both methods
achieve the same final value of SoC ξ(tf) = ξt (although not always guaranteed, as already
explained, with the ECMS-based approach), but following two completely different SoC
trajectories. However, although this is a substantial difference, the achieved relative fuel
economies (reported in Table 5) are very close.
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Figure 9. State of charge trajectories through the presented ECMS-based technique (green line)
compared to those of DP (blue line), PMP (red dashed line), FADP (dotted line) and IFADP (dot-
dashed line) approaches on the WLTP driving cycle.

Table 5. Results of Causal ECMS-based (Q = 1000), applied to the driving cycles listed in Table 2 in
terms of Relative Fuel Economy (RFE).

Driving Cycle Final SoC RFEECMS RFEEMCS/RFEPMP

NYCC 0.5933 41.9% 100%
CADC urban 0.5952 31.8% 99%

FTP-72 0.5989 17.6% 97%
WLTP class 3 0.5997 11.0% 97%
CADC rural 0.6078 9.7% 100%

HWFET 0.6078 −1.4% 100%

To make a fair comparison and to evaluate the distance from the equivalent optimal
solution achieved with the PMP approach, the optimal control problem has been solved
through PMP by setting the SoC final value (ξ(tf) reported in Table 5) as the same final value
obtained through the ECMS-based technique for each driving cycle. The ratio between the
RFE achieved with ECMS, and that of the PMP, has been calculated and reported in the last
column of Table 5. The proximity to the optimal fuel consumption is confirmed by the fact
that these ratios are all greater than or equal to 97%.

Nevertheless, the RFE values reported in Table 5 highlight some substantial differences
with respect to the other techniques presented, due to the differences in the final state of
charge. For example, the negative relative fuel economy, with respect to the conventional
vehicle, on the HWFET test cycle can be explained by assuming that the battery SoC
increases by nearly 1% during the driving mission. This result suggests that a considerable
amount of energy from the fuel is used to recharge the battery, similarly to what happens
by applying the PMP (as confirmed by the RFE ratio of 100%). Moreover, as shown in
Figure 10, it can be observed that the change in Relative Fuel Economy with respect to
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the number of control elements is negligible with a value of Q greater than 1000. With a
lower elements number, the algorithm is less stable and accurate and the constraint on
the final SoC cannot be respected anymore, thus enhancing the RFE change due to battery
energy consumption.
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The differences between causal and non-causal techniques are particularly evident on
short driving cycles. On the other hand, it is possible to practically show the equivalence,
and hence the effectiveness, of the ECMS-based optimization in the long run by running
multiple repetitions of the same test cycle and evaluating the overall fuel consumption. By
doing so, the SoC difference, and thus its fuel equivalent, is compensated by the higher
amount of fuel used. These results are shown in Table 6, where the RFE values line up with
the ones achieved through the other presented non-causal optimization methods.

Table 6. Results of Causal ECMS-based (Q = 1000) applied to the driving cycles listed in Table 2 in
terms of Relative Fuel Economy (RFE) with multiple repetitions of the test cycles.

Driving Cycle N. of Repetitions Relative Fuel Economy

NYCC 100 31.5%
CADC urban 100 28.8%

FTP-72 10 17.4%
WLTP class 3 10 11.3%
CADC rural 10 10.9%

HWFET 10 1.1%

5. Conclusions

The paper presented a simulation analysis of four supervisory control strategies for
Hybrid Electric Vehicles (HEVs) based on different optimization algorithms, two well-
known in the literature, being the Dynamic Programming (DP) and the Pontryagin’s
Minimum Principle (PMP), and two new algorithms proposed by the authors and modified
from the literature, being the Forward Approach to Dynamic Programming (FADP) and
the Equivalent Consumption Minimization Strategy-based (ECMS-based).

The techniques’ performance comparison has been made focusing on the optimal
power distribution between the components of a parallel HEV, and the achieved results have
been analysed in terms of fuel economy and computational time. The results obtained with
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the FADP, DP and PMP optimizations are in accordance with each other, and all the methods
have shown to be able to reach the absolute optimum, although it is worth recalling that
absolute optimality cannot be guaranteed with the application of PMP alone. Nevertheless,
due to its capability to find the absolute optimum and of its computational speed, PMP
stands out as the ideal candidate for the integration of energy management strategies.

For all the test cycles, the results achieved in terms of relative fuel economy through the
causal ECMS-based technique are always comparable to the ones of non-causal strategies,
which is proof of the goodness of the procedure despite the sub-optimality of the solution
and the differences in the state of charge trajectory.

The presented FADP technique shows comparable computational time with respect
to the well-established DP and the capability to attain the absolute optimum. Moreover,
FADP results are expressed in terms of cost-to-arrive rather than cost-to-go (as in DP),
which makes this technique particularly useful in the benchmarking process of causal
energy management strategies. Clearly, since FADP and DP are slower than real time,
they cannot be used for on-board control applications (along with the fact that they are
non-causal). Conversely, PMP and causal ECMS-based optimizations are faster than real
time and, hence, are suitable for such applications.

In conclusion, in the current automotive scenario, the ideal candidate for on-board
control applications is the causal ECMS-based optimization for the good performance
shown without the need for using information in future driving conditions. On the other
hand, the technological advances in driving assistance systems and connected vehicles that
are leading towards autonomous driving, are the ultimate game changer that can make
the driving horizon more deterministic and, hence, render non-causal techniques more
interesting from the industrial point of view in the near future.

As future advancement of this research, detailed powertrain components modelling
and realistic driving cycles (e.g., Real Driving Emissions cycle) will be considered to provide
more accurate results and make the comparison of optimization approaches more robust.
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Nomenclature

Acronyms
BEV battery electric vehicle
CADC Common Artemis Driving Cycle
DOF degrees of freedom
DP Dynamic Programming
EMS energy management strategy
ECMS equivalent consumption minimization strategy
FADP forward approach to Dynamic Programming
FCEV fuel cell electric vehicle
FTP Federal Test Procedure
HEV hybrid electric vehicle
HWFET Highway Fuel Economy Test
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IFADP iterative forward approach to Dynamic Programming
NYCC New York City Cycle
PHEV plug-in hybrid electric vehicle
PMP Pontryagin’s Minimum Principle
RFE relative fuel economy
SoC state of charge
WLTP Worldwide Harmonized Light Vehicles Test Protocol
Roman symbols
F fstate function
H Hamiltonian function
Hi fuel lower heating value (J/kg)
I current (A)
J performance index
L transition cost
M state grid points number
.

m mass flow (kg/s)
P power (W)
Q control grid points number
Qb battery charge (C)
S equivalence factor (-)
sc equivalence factor parameter (-)
sc2 equivalence factor parameter (-)
sc2 equivalence factor parameter (-)
sp equivalence factor parameter (-)
T time (s)
tf final time (s)
U control variable
UD urban degree (Hz)
V control variables set
V vehicle speed (m/s)
X feedback matrix
X state variable
Greek symbols
ϕ penalty/terminal cost (kg)
λ co-state
ξ battery state of charge (-)
.
ξ battery state of charge time-derivative (s−1)
Subscripts
0 condition
B battery
Conv conventional
Down lower boundary
EQ equivalent fuel consumption
F fuel
I state grid point index
J state grid point index
Min minimum
Max maximum
Opt optimal
Up upper boundary
Superscripts
K time iteration index (-)
N number of iterations in time (-)
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Appendix A

Algorithm A1 General implementation of the Forward Approach to Dynamic Programming
(FADP).

if j == s then
J1
j = 0

else
J1
j = +∞

end if
X1

j = s
for k = 1 : N − 1 do
for j = 1 : M do
Jk+1
j = mini

(
Jk
i + Lk

ij

)
Xk+1

j = arg mini

(
Jk
i + Lk

ij

)
end for
end for
ξN

opt = ξt
j = t
for k = N − 1 : −1 : 1 do
i = Xk+1

j

ξk
opt = ξi

j = i
end for

Algorithm A2 Calculation of the transition cost for the HEV optimal control problem.

for i = 1 : M do
for j = 1 : M do
∆ξij = ξ j − ξi

Lk
ij = ∞·∆ξij

∆t = tk+1 − tk
.
ξ ij =

∆ξij
∆t(

ξi, ξij

)
→ Pb from battery model

if battery constraints met then(
Pb, Pk

w, ωk
w

)
→
(

Pm,
.

m f

)
from electric motor model

if motor constraints met then
if Pk

w < 0 then
if Pm < 0 AND Pm > Pk

w then
Lk

ij =
Pb
Hi

end if
else(

Pb, Pk
w, ωk

w

)
→
(

Pe,
.

m f

)
from engine model

if engine constraints met then
select optimal gear
Lk

ij =
.

m f ∆t
end if
end if
end if
end if
end for
end for
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