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Abstract: One of the most sought-after applications of cellular technology is transforming a vehicle
into a device that can connect with the outside world, similar to smartphones. This connectivity is
changing the automotive world. With the speedy growth and densification of vehicles in Internet
of Vehicles (IoV) technology, the need for consistency in communication amongst vehicles becomes
more significant. This technology needs to be scalable, secure, and flexible when connecting products
and services. 5G technology, with its incredible speed, is expected to power the future of vehicular
networks. Owing to high mobility and constant change in the topology, cooperative intelligent
transport systems ensure real time connectivity between vehicles. For ensuring a seamless connec-
tivity amongst the entities in vehicular networks, a significant alternative to design is support of
handoff. This paper proposes a scheme for the best Road Side Unit (RSU) selection during handoff.
Authentication and security of the vehicles are ensured using the Deep Sparse Stacked Autoencoder
Network (DS2AN) algorithm, developed using a deep learning model. Once authenticated, resource
allocation by RSU to the vehicle is accomplished through Deep-Q learning (DQL) techniques. Com-
pared with the existing handoff schemes, Reinforcement Learning based on the MDP (RL-MDP) has
been found to have a 13% lesser decision delay for selecting the best RSU. A higher level of security
and minimum time requirement for authentication is achieved using DS2AN. The proposed system
simulation results demonstrate that it ensures reliable packet delivery, significantly improving system
throughput, upholding tolerable delay levels during a change of RSUs.

Keywords: Deep-Q learning; RSU; URLLC; DSRC; E2E Delay; IoV; Markov Decision Process; authentication

1. Introduction

Though 5G is yet to be deployed widely, it appears that 5G stands to affect nearly
every part of our day to day life, be it health care, education, transportation, industry, smart
grids, entertainment and media, etc. 5G is expected to power the future of people’s mobility
through Internet of Vehicles (IoV) technology. It can be called an Internet on wheels and can
allow vehicles to communicate with their drivers, with other vehicles, with traffic signals
and roadside infrastructure, or with any other internet-connected item. Features like the
ability to stream full video games in vehicles, crash prevention, traffic flow monitoring, safe
navigation, intelligent vehicle control, vehicle autonomy, and even electronic toll collection
makes IoV one of the attractive applications of 5G.

The concept of connected vehicles is known as vehicular communications or V2X.
V2X includes vehicle-to-infrastructure/network (V2I/N) and vehicle-to-vehicle (V2V) [1,2].
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IoV is supported by Dedicated Short-Range Communication (DSRC) and cellular mobile
communication systems for effective implementation. DSRC standards in the United States
and ITS-G5 standards produced by the European Telecommunications Standards Institute
(ETSI) have both been created during the last decade to coordinate with the activities
of many stakeholders in vehicular communications. The ITS and smart cities protocols
are grounded in IEEE 802.11p technology, which offers the framework for vehicle ad hoc
network communications. The 3rd Generation Partnership Project (3GPP) has recently
been working on integrating V2X services into LTE and future 5G cellular networks [3–5].

The combination of DSRC and cellular communication is capable of improving intelli-
gence and independent driving capability in IoV, by providing safe, intelligent, comfortable,
and efficient comprehensive services. With the rapid pace of 5G development, it has been
possible to meet different performance criteria’s in varied application scenarios [6]. The
intelligent transportation system (ITS) is expected to see a boom in the upcoming days
due to the unimaginable speeds that can be attained by 5G. Some of the communication
requirements of ITS are the low communication delay and high reliability of vehicle status
data [7]. To provide a seamless mobility experience to the user, the handoff strategy, similar
to cellular communication, is used in IoV. The handoffs may be frequent due to the small
coverage area of RSUs and the dynamic nature of the vehicles. V2X has become a key
enabler for bringing an innovative level of connectivity to automobiles, especially when
combined with onboard computing and sensor technologies.

Since Internet of Vehicles is characterized by a high level of mobility and dynamic
changes in topology, handoff is one of the key technologies enabling efficient deployment
of these connected and autonomous vehicles for providing seamless communication. The
term handoff refers to transferring the active communication from one Road Side Unit to
another seamlessly. This could be horizontal or vertical. It is termed horizontal handoff if
network access technologies across the RSUs are the same and vertical handoff if access
technologies across the RSUs are different.

With self-driving vehicles changing the transportation scenario, connected vehicles
are becoming the core of transportation systems. This calls for redefining business models,
be it transportation sector, energy sector, and even government regulations. Under such a
connected scenario, security in IoV becomes one of the most important entities, since any
system failure can directly impact a user’s safety. Hence, secure and consistent authentica-
tion and low computation overhead are required for the amalgamation of 5G networks and
vehicular network technology.

In IoV, communication is between the RSU and vehicles [8,9]. The information is
transmitted over an unsecure wireless channel between two communication parties that
are highly vulnerable to attacks. Having an efficient authentication scheme ensures that
only authorized users are allowed into the network, and it is effective against active and
passive attacks, hence satisfying the need for a secure design. In addition, it ensures
that communication is amongst trustworthy entities only. For secure communication,
mutual authentication among the involved entities is performed by broadcasting periodic
safety messages. These messages include critical information about vehicle speed and
location, traffic conditions, and braking status. Hence, it becomes significant to guarantee
that an acquired safety message comes from legitimate vehicles and is not altered via
attackers, as any modification and replaying of the broadcasted messages can be disastrous
to drivers [10].

Every vehicle in IoV is viewed as an intelligent object with control units, computing
facilities, sensing platforms, and storage that are accessible via V2X. In IoV, communication
is over a wireless link that is supported by the 5G technology. Nonetheless, due to den-
sification and with limited resources, it is difficult to schedule the resource to collect and
process real-time requests from the vehicles, making it difficult to guarantee efficient and
reliable data transmission by traditional IoV communications. Through resource sharing,
it will be possible to increase the execution speed of a computing task and overcome the
insufficient computing resource problem for the vehicle, thus providing ultra-low latency,
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high bandwidth, higher responsiveness, and throughput to the users [11,12]. In reality,
the network status and available resources of RSU vary dynamically due to the mobility
of vehicles. This results in frequent handoffs between the vehicle and the RSU. To coor-
dinate with V2I links, an effective resource allocation method is required. In traditional
methods, resource allocation may be stated as optimization problem using global network
information, where QoS requirements of V2I act as a constraint [13,14].

IoV has turned into a new, hotly contested arena for innovations in automobile indus-
tries. It calls for the development of applications such as road safety, infotainment, and
efficient traffic management. With the foremost use of a vehicle still being driving, it is the
automakers who will be responsible for putting IoV technologies in the vehicle [15–17].
Artificial Intelligence (AI) can explore and handle the unpredictable requirements of IoV to
achieve this goal. AI with Machine Learning (ML) and Deep Learning (DL) technology can
assist 5G networks in anticipating and managing variable network traffic. Reinforcement
Learning (RL), being a type of ML, can effectively solve decision-making problems [18].

In this work, RL based on the Markov Decision Policy (RL-MDP) has been used for
making decisions in selecting the best RSU in a reasonable time. However, this is not prefer-
able for huge data sets since it might not lead to making the right decision. Once RSU is
selected, the authentication of vehicles is done using the Deep Sparse Stacked Autoencoder
Network (DS2AN). This technique has resulted in less computation complexity and com-
munication cost, and resource allocation for the vehicle is done, using Deep Reinforcement
Learning (DRL), during handoff. The contributions of this study are as follows:

• To implement a method for reducing handoff delay and to improve QoS parame-
ter performance.

• To develop a secure and fast authentication method using DS2AN during the change
of RSU.

• To implement the DQL method to analyze the node activity and resource for IoV.
• To develop the Bellman-Ford algorithm to search the shortest path between communi-

cation resources.

The paper is structured as follows: Related works are discussed in Section 2. Section 3
describes the methodology adopted in this study, with mathematical modeling of the
RL-MDP for the selection of RSU, DS2AN for authentication, and DRL based resource
allocation during handoff. A discussion on the results obtained is presented in Section 4,
followed by the conclusion in Section 5.

2. Related Work

Awan et al. [19] have proposed a RSU selection method using a dynamic edge-backup
node concept in IoV communication. The proposed method is based on clustering. During
the discovery of a cluster head, the vehicle sends a message to its neighbors; if no response
is received, it initiates a group formation process. A cluster is formed among the vehicles
that are moving in the same direction; they are grouped into one cluster. Messages, which
contain the location, ID, and speed, are transmitted to the peers in the group. During
cluster formation, two nodes, the head node and edge backup node, are selected depending
on a score. The calculation of score is dependent on parameters like storage capacity,
communication range, and energy. When a new node enters the cluster, a new score will
be calculated to decide on the new cluster head. The edge node provides support to the
cluster head upon failure of a head node. The cluster head decides on the RSU, with which
a connection is established thus enabling communication of the peers. This clustering
technique has resulted in higher reliability due to the use of an edge node and an improved
throughput. However, there has been no significant improvement achieved in the packet
loss rate due to the overhead incurred by the cluster head. Still, seamless handoff of the
cluster head is achieved due to the edge node concept used by the author. The authors
in [20,21] have discussed Energy-Efficient system modeling for Ad-Hoc Networks and
in [22] multipath routing protocols for MANET.
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Hussain et al., in [23], have proposed a new method for network selection called the
Fuzzy Convolution Neural Network. The handoff decision, based on performance metrics
like vehicle speed and signal strength, is made by utilizing the Shannon entropy-based
Q-learning algorithm. Metrics such as data type, spacing, vehicular density, number of
obstructions, and signal strength have been used for best network selection. V2V chain
routing has been achieved through the Jellyfish optimization algorithm in order to find
an optimal route amongst the available routes. The authors have been able to achieve an
improved throughput by over 15–20%, a minimized delay, and packet loss. The Fuzzy
Convolution Neural Network has helped speed up the network selection process.

The work proposed by Fang Jia et al. [24] emphasizes the BUS-aided selection of RSUs,
built upon software-defined networking (SDN) and evolutionary games. The authors have
concentrated on selecting the best RSU in overlapping areas of RSU. An SDN controller is
able to communicate with the vehicles, and fixed and mobile RSUs (BUSES). It gathers data
related to the load, throughput, location ID, and bandwidth availability of RSUs, and the
ID, route, location, speed, throughput, load, and bandwidth of the BUSES. Then, using the
evolutionary game theory concept, an RSU which provides best connectivity is selected.
The authors have been able to achieve load balance along with an improved throughput.

Due to the dynamic nature of the network, vehicles exchange information either with
an RSU or other moving vehicles frequently. After selecting a suitable RSU for handoff, the
vehicle authenticates itself to the RSU and in turn checks the RSU’s authenticity. Once mu-
tually authenticated, resource allocation by RSU to the vehicle is done successfully. In [25],
the authors proposed a secure and efficient authentication protocol using cryptographic
analysis. The authors have successfully addressed various attacks like the impersonation,
man in the middle, smart card theft, session key disclosure, and replay attacks. The algo-
rithm has resulted in enhanced security and has been able to preserve a low communication
cost of 138 bytes and a computation cost of 2.262 ms, as compared to related schemes.

In [26], a mutual authentication method based on the identity of the RSU and vehicle
has been proposed. The system related information is stored in the RSU using the bilinear
pair mapping theory and elliptic curve encryption algorithm. The use of the bilinear pair
mapping theory and elliptic curve encryption algorithm has guaranteed the irreversibility
of group operation, making it impossible for attackers to have access to the network
through reverse engineering. The legitimacy of the communicating nodes, RSU, and OBU
(On Board Unit) is ensured through mutual authentication using IDs, shared keys, and the
handshake principle.

Ping Li et al. [27] formulated a problem based on resource allocation to optimize
the throughput of vehicular user equipment (VUEs), while balancing vehicular commu-
nications reliability and latency and Quality of Service (QoS) for Wi-Fi networks using
networks that coexist with VUE and Wi-Fi User Equipment (WUEs). Authors have em-
ployed the listen-before-talk (LBT) method, which requires VUEs to regularly check for
other occupants in the channel before transmitting. They estimated the ideal number of
offload vehicle users and used the Lagrange Dual Method to convert the optimization
issue into a convex optimization problem. Experimentation has proved that their approach
performs better when compared to the Greedy method, in terms of throughput.

Pressas et al. [28] investigated the broadcast transmission in V2V using the IEEE
802.11p standard for DRSCs for a contention-based MAC protocol. With a higher packet
delivery ratio and lower latency than 4G, the IEEE 802.11P protocol can provide superior
performance. The authors of this work have provided a study to handle scalability issues
keeping in mind the need for an ML-based approach. The authors have been able to demon-
strate an effective data packet exchange, discover the best contention window for broadcast
in V2V communication, along with an increased packet delivery ratio and throughput. In
comparison with central TBSs, the RSUs are small and have limited resources. In reality, the
network status and RSUs’ resources change regularly during mobility of the vehicles. As a
result, a time-varying resource allocation method that takes into account the task demands
and dynamic status of vehicles is required. A novel method for network selection using the
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RL-MDP, a fast and secure authentication method using DS2AN and resource allocation
using DQL has been proposed.

In Wireless Sensor Networks (WSN), nodes communicate with one another by using
wireless techniques and through certain routing algorithms. In [29,30], the authors pro-
posed an Energy Efficient Routing and Reliable Data Transmission Protocol for wireless
sensor nodes. In WSN, the size of the nodes are very small, hence the energy efficient
mechanisms play a vital role. In this context, the Energy Efficient Routing (HEESR) protocol
is implemented based on cluster head selection. Information like distance to the base
station and the residual node energy is used to decide on the cluster head. This reduces the
re-clustering, which subsequently leads to reduced energy usage.

In [31], the idea of device monitoring is proposed for the Internet of Things (IoT) and
machine-type communication (MTC). A theoretical model for device monitoring through
data analytics has been proposed. Using the concept of machine learning, the C50 model
was trained and tested for data traffic collected from a cellular network. Performance
parameters like latency, packet loss, and throughput were considered as indicators in the
experiment. In [32], the authors have addressed management of big data.

In [33–35], the authors have addressed DSDV and OLSR, DA-AODV protocol and
AODV Protocol routing protocols respectively.

The following points make it clear that the developed methods are better, compared
to the prevailing approaches discussed in the literature.

1. Some of the algorithms [25,26] have resulted in a greater number of message ex-
changes between the UE and network, leading to an increase in computation cost and
communication overhead.

2. Some algorithms have proposed [19] the concept of clustering. This increases the
communication delay due to an increase in the messages exchanged between the
vehicle nodes, cluster head, and RSU, which is time consuming.

3. Some literatures have considered [19,24] either decision delay alone or network se-
lection alone. The proposed work has emphasized both, leading to best network
selection and reduced decision delay.

4. The difficulty in pre-designing an accurate authentication model: Model-based au-
thentication methods are less efficient with respect to time when they are used in a
complex, time varying environment.

5. The challenge in learning time-varying attributes by the algorithm: Static authentica-
tion methods are severely affected by the unpredictable variations of attributes like
wireless channel parameters.

Points 4 and 5 have been addressed in the work using RL and DQL. Table 1 summarizes
the previous approaches.

Table 1. Summarization of previous approaches.

Reference No. Year Approach Advantages Disadvantages

[19] 2020
Smart Handoff Technique
based clustering of vehicle

nodes.

Decreased overhead on cluster and packet
loss rate.

Consumes more time
for cluster formation.

[23] 2021 Shannon entropy based
Q-learning algorithm.

Throughput improved by 15–20% and
decreases delay and packet losses.

Decision delay during
handoff is not

addressed.

[24] 2019
BUS-aided RSU selection

method based on SDN and
evolutionary game.

Proposed system demonstrates
improvement with respect to load balance

and overall throughput among RSUs.

Decision delay
encountered during
selection of best RSU

has not been
considered.
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Table 1. Cont.

Reference No. Year Approach Advantages Disadvantages

[25] 2020

Secure and efficient
authentication protocol

using cryptographic
analysis

The performance analysis is done in terms
of communication (138 bytes) and

computation cost (2.262 ms).

Only few attacks have
been addressed, not

very secure.

[26] 2021 Bidirectional
authentication

Mutual authentication using ID, shared
key, and handshake principle, resulted in
10% reduction in the computational cost.

Less emphasis on
authentication delay.

[27] 2020
Listen-before-talk (LBT)
method and Lagrange
Dual Method (LDM)

Enhancement of throughput when
compared to Greedy method.

Ignored Packet delivery
ratio and End-to-End

delay.

[28] 2017 ML-based approach Effective data packet exchange, increased
packet delivery ratio and throughput.

End-to-End delay is not
considered.

[31] 2019 Machine Learning concept Resulted in decreased Latency, packet loss
and throughput.

Authentication of
nodes is not discussed.

This paper 2022 RL-MDP, DS2AN and DRL

Resulted in 13% lesser decision delay for
selecting the best RSU.

Reliable packet delivery of 84% and
system throughput of 92 Mbit/s for
28 dBm of power limitation, while

upholding tolerable E2E Delay levels of
0.1 ms (for 100 vehicles).

Reduced authentication delay.

Requirement of large
data set for training the

model.
Suitable only for

infrastructure based
communication.

In comparison with the existing literature, it is found that RL and DQL techniques
are a better option, since they lead to a reduction in computation cost and communication
overhead. This advantage is attributed to the fact that the messages exchanged between the
vehicle nodes and RSU are reduced by the use of DQL compared with regular cryptographic
message exchange protocols, which are found to be time consuming due to the increase in
the messages exchanged between the vehicle nodes, cluster head, and RSU.

The work mainly focuses on the handoff decision phase where the vehicle selects the
best RSU. The obtained results are compared with TOPSIS and GRA methods. Authentica-
tion and security of the vehicles are ensured using the Deep Sparse Stacked Autoencoder
Network (DS2AN) algorithm, developed using a deep learning model. Once authen-
ticated, resource allocation by RSU to the vehicle is done through the DRL method, a
DQL technique.

3. Proposed Methodology

The work aims to enable a vehicle to select the best RSU with minimum delay, ensuring
a fair amount of resource allocation to the vehicle. Bellman-Ford algorithm is used by
the RSU to determine the shortest path between itself and the destination, with help of a
Q-network. AI can explore and handle the unpredictable requirements of IoV. RL, being
a type of ML, can effectively solve decision-making problems. Hence, in this work, the
RL-MDP has been used for making decisions in selecting the best RSU in a reasonable time.
However, this is not preferable for huge data sets, since it might not lead to making the
right decision. Once the RSU is selected, authentication is done using DS2AN and resource
allocation for the vehicle is done using DRL during handoff. This technique has resulted in
lesser computation complexity and communication cost. In recent years, there has been a
surge in applications of DL due to a rise in the volume of accessible data and a decrease in
the cost of processing power.
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3.1. RSU Selection Based on the RL-MDP

This section discusses the best RSU selection during handoff using the RL technique,
based on the Markov Decision process (RL-MDP) [36]. The MDP is used to model the
environment consisting of five components, which are: states (s), actions (a), decision
epochs, rewards (r), and transition possibilities (P). The modeling of the environment is
being done with the aim of maximizing the expected total reward per connection. Each
time agent changes the state when it gets a reward r (s), which is used for calculating the
state value function v (s). The reward r (s, a) is obtained for being in a state “s” and taking
an action “a” and r (s, a, s′) represents the reward for being in a state, taking an action,
and ending up in a new state. This is done to obtain an optimal policy for making a right
decision in selecting the best RSU.

3.1.1. Design and Implementation

Solving the problem of identifying the best RSU using RL comprises three phases: the
environment is formulated into the MDP model, the calculation of reward function, and
estimating the total expected reward per connection using Bellman’s equation through the
Value Iteration algorithm.

i. The MDP model

The network is assumed to be heterogeneous involving “M” RSUs, and at any given
point of time the vehicle has access to more than one RSU. The following are defined:

State: This includes the RSU identification number, bandwidth available at the RSU,
and average delay incurred in connecting to the RSU. Furthermore, it is assumed that
the vehicle periodically receives all these advertised information from each RSU amongst
other parameters within its receiving range. Figure 1 illustrates a block schematic of the RL
technique, based on the MDP.

Figure 1. RL based on the MDP.

State space (S), S = R × Bw × DL = (R1, ····, RM, Bw1, ····, BwM, DL1, · · · , DLM).
R = (R1 . . . RM): Indicates available RSUs in the network.
Bw = (Bw1, · · · , BwM): Bandwidth presented by each RSU.
DL = (DL1 . . . DLM): Delay presented by each RSU.
Action (a): Vehicle takes actions considering the handoff requirement Ex.: a = (a1, a2).

a1 indicates the necessity of handoff and a2 represents to be attached with present RSU.
State transition probability (P): The probability of switching to the subsequent state s′,

given the present state “s” and taken action “a”, given by:

P
(

s′
∣∣s, a

)
=

{
∏mεM P[bw′m, dL′m|bwm, dLm], h′ = a
0, h′ 6= a

(1)

where,
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s = [h, bw1, · · · , bwM, dL1, . . . , dLM]: represents the current state.
s′ = [h′, bw′1, · · · , bw′M, dL′1 . . . dL′M]: denotes next state; m = 1 to M.
P [bw′m, dL′m | bwm, dLm]: transition probability of m network’s bandwidth and delay.

ii. Computation of Reward function (r)

The calculation of reward function is explained below. A vehicle gets a reward r (s, a)
immediately when the vehicle is in state “s” and takes an “a” action. The Equations (2) and (3)
provide the bandwidth and delay reward function, respectively.

fB (s, a) = f(P) =


1, P ≥ UB

(P− LB)/(UB − LB), LB < P < UB
0, P ≤ LB

(2)

P: Total available bandwidth. LB , and UB indicate minimum and maximum required
bandwidth by the connection, respectively.

fD(s, a) = f(ζ) =


1, 0 < ζ ≤ LD

(UD − ζ/(UD − LD), LD < ζ < UD
0, ζ ≥ UD

. (3)

ζ = max{di·ai}, di = RSU delay, i = RSUs, i = 1, · · ·M.
LD and UD = minimum and maximum delay incurred in connecting to the RSU.
The Equation (3) provides the handoff cost function:

q(s, a) =
{

Kh,l h 6= l
0, h = l

(4)

Kh,l: Represents the switching or handoff cost imposed while moving from RSU “h”
to RSU “l”.

Consequently, reward function r (s, a) for being in current state s and the chosen action
a is given by,

f(s, a) =
(

1− w f

)
fB(s, a) + w f fD(s, a) (5)

r(s, a) = f(s, a)− q(s, a) (6)

w f= weight factor 0 ≤ w f ≤ 1

r(s, a) = Reward function between two successive decision epochs during vertical
handoff.

3.1.2. Bellman’s Optimality Equation

This equation is used to find the state value. The Value Iteration Algorithm (VIA) is
used to determine the expected total reward and optimal policy ä*(s). The best network is
to be selected using the optimality equation, as given below:

v(s) = max
aεA

{
r(s, a) + ∑

s′εS
λP
[

s′
∣∣s, a

]
v
(
s′
)}

(7)

The VIA determines the total expected reward and the best policy, consequently this
gives the optimal state value function. Being in a current state “s”, the best RSU is selected
using the optimal policy ä*(s), which is maximum function over all polices.

Through the VIA, the ideal state value is calculated repetitively, improving the esti-
mation of v(s). This algorithm pseudo-code is provided in Figure 2, which starts with the
initialization of v(s) to arbitrary random values. It repetitively updates the action value
function and state values v(s) until it meets an optimal value [37].
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Figure 2. VIA pseudo-code.

This section concludes that the optimality equation leads to the maximum expected
total reward v(s) and optimal policy ä*(s). The optimal policy ä*(s) helps in making the
right decision in selecting the best RSU for handoff, given that the current state is s.

3.2. Authentication in IoV Using DS2AN Algorithm

System Model: This work mainly focuses on vehicle to infrastructure communication.
The system model (Figure 3) incorporates the following communication entities: The entire
5G-V2X network is controlled by the 5G core (5GC). The 5G Core network consists of
the security anchor function (SEAF), access and mobility management function (AMF),
unified data management (UDM), authentication server function (AUSF), and authentica-
tion credential repository and processing function (ARPF). The connection and mobility
management tasks are handled by the AMF entity, communication is handled by the SEAF,
identity verification is performed by the AUSF, authentication data and keys computation
are done by the ARPF, and data management is carried out by the UDM. The Trusted
Base Station (TBS) is a totally trusted system, which is mainly responsible for verifying the
authenticity of RSUs, issuing certificates to the RSUs, generation of public and private keys,
and distribution of public keys.

Figure 3. The System Model.
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The On-Board Unit (OBU) within the vehicle collects information and transmits to
other vehicles and RSUs. An anti- tampering device in the OBU protects the real identity of
the vehicle.

3.2.1. Mathematical Model Analysis

Figure 4 depicts the schematic illustration of the DS2AN; it has three layers: encoder,
code, and decoder. The encoder takes data from the network and compresses it. This is the
code or bottleneck which is transmitted across the network. This code is in turn picked up
by the network and decoded to get back the original values. The DS2AN is the expansion
of the basic autoencoder, with sparsity applied to the hidden layers.

Figure 4. Schematic diagram and layers of the DS2AN.

During authentication, the RSU sends a certificate to the vehicle, which it received
from the TBS, and, in response, the vehicle sends a DS2AN code. When a vehicle wants
to connect to the RSU, it will scan the network for certain channel parameters, such as
the Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP),
Channel Quality Indicator (CQI), Reference Signal Received Quality measurement (RSRQ),
and Signal to Noise ratio (SNR); these are the inputs to the DS2AN. The dimensionalities
of these inputs are reduced to obtain a code; this code in turn is taken up by the network.
The DS2AN algorithm, present on the RSU side, decodes this code to obtain the original
parameters. Sparsity is applied to the hidden layers to reduce the error in replicating the
input, while restricting node information such as channel availability, traffic, and connected
device. The authentication of vehicles is considered to be successful if the reconstructed
values match the predefined values, thus ensuring security against attacks on the system.
Once authenticated, the vehicle communicates with the desired network.

In the hidden layer, the sigmoid activation function is used and the analysis is as follows:
Encoding stage: the input vector xi(i = 1, 2, . . . , p) is converted into the hidden

representation hi by an activation function:

hi = f(xi ) = sigm (W1xi + b1) (8)
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W1 and b1 indicate weight matrix and bias between the input and hidden layer,
correspondingly.

The sigm(x) denotes the logistic sigmoid function, which is calculated by

sigm(x) = (1 + exp(−x)) − 1 (9)

Decoding stage: Reconstructed values x̂i are mapped with the input parameters xi,
and the activation function used is the softmax function.

x̂l = g (hi) = s(W2 hi + b2) (10)

W2 and b2 indicate the weight matrix and bias between the hidden and output layer,
correspondingly.

The reconstruction error is defined by the likelihood function:

L(X, X̂) =
1
2 ∑N

i=1||xi − x̂l||2 (11)

N = number of training samples; xi = ith training sample.
Through backpropagation, fine tuning of the model is done by updating weights and

biases, using following respective equations:

W = W− η ∗ ∂L̂(θ)
∂W

b = b− η∗ ∂L̂(θ)
∂b

The dataset used for training the DS2AN model is pre-processed, which incorporates
the data separation and normalization phases. Data is divided into two sets during data
separation, as a training set (75%) and test set (25%), and both datasets are prone to attacks.
The value of each parameter is scaled to a range between 0 and 1 in the data normalization
phase. Once the model is trained with 75% of the dataset, it will be tested for working with
the remaining 25% dataset. If there is any data mismatch, then the nodes will be considered
as unauthorized nodes and are stopped from accessing the network. The notations used in
the work are provided in Table 2.

Table 2. Notations used.

Notation Definition

x Training sample
x̂ Reconstruction of input
h Hidden layer
W Weight
b Bias
η Learning rate

TBS Trusted Base Station
HRSU_pkj Public Key of Home RSU
FRSU_pkj Public Key of Foreign RSU
RSU_SKj jth RSU Secret key
RSU_IDj jth RSU ID

(asyencr((V_IDj), R_Vj), HRSU_pkj)
Asymmetric encryption of the V_IDj and R_Vj using the Public

key of HRSU_pkj
HRSU_SKj, FRSU_SKj Secret key of home RSU and foreign RSU

Rq_ID, Resp_ID Request ID and Response ID
HRSU_Cj Home RSU certificate

5GCN 5G core network
KSHRSU, KSFRSU Symmetric key of the HRSU and FRSU

STBS System master key
Vj jth vehicle

Rprmkey Pre-master key
Kseaf Session Key

3.2.2. The Authentication Process

The authentication protocol consists of three phases, namely:
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1. Initialization phase—during this phase, private and public keys are generated by
TBS and the same will be loaded to the RSU and vehicle. The ECDSA is used for key pair is
generation. Furthermore, certificates Cj are generated by TBS and issued to all RSUs. When
a vehicle is on roaming mode, symmetric keys are generated amongst the HRSU and FRSU
using the AES 256 algorithm and are sent to the vehicle by the HRSU for authenticating
the FRSU.

2. Registration—The vehicle and RSU register with the TBS to obtain the required
system parameters.

RSU registration: Initially, each RSU has to be authenticated and certified by the TBS.
In this case, it assumed that the TBS is a trusted party. The RSU sends its identity, RSU_IDj,
and location information to the TBS. After authentication, the RSU is provided with a
certificate that will be saved in the RSU’s local database and in the 5GCN. After checking
the legitimacy of the RSUs, the TBS selects an integer and random number and computes
the RSU_SKj (secret key) and RSU_PKj (public key). The TBS assigns the RSU a secret key
through a secure channel, the TBS in turn stores {RSU_IDj, RSU_SKj} in its RSU list.

Vehicle registration: During this phase, the vehicle sends its identity, V_IDj, to the TBS.
The TBS selects a random number and a calculates pseudonym, P_IDj = H(V_IDj || STBS
||nj). The TBS stores V_IDj in its database, and forwards P_IDj to Vj. The vehicle in turn
saves P_IDj into the OBUj. Subsequently, the registration details stored in the TBS are also
shared with the 5GCN.

3. Mutual Authentication—All these three phases of the authentication protocol, along
with mutual authentication, are explained in detail, below.

The Vj sends a handoff request packet Rq_ID = (asyencr((P_IDj), R_Vj), HRSU_pkj)
to the HRSU. Upon receiving Rq_ID, the HRSU forwards it to the 5GCN along with its
HRSU_Cj. In the 5GCN, the AUSF checks for the legitimacy of the HRSU through certificate
verification. This is then forwarded to the UDM, which in turn, with the help of the SIDF,
will provide the vehicle ID by decoding the received message; thus, identity of the vehicle
V_IDj is verified. The HRSU will then share the symmetric key of itself and the FRSU to the
Vj Resp_ID (KSHRSU, KSFRSU), and forward Vj ID, (P_ID)HRSU to the FRSU. Vj will send the
start_packet to the FRSU to initiate a handoff. The FRSU in turn sends a request packet,
(Rq_P_ID)FRSU to the Vj. The Vj responds with its identity information packet, Resp_
(P_IDj)Vj, to the FRSU. Once the FRSU receives the Vj identity information, it is compared
with P_IDj for verification. Once verified, the FRSU sends a certificate and the message
DS2AN_START to the Vj to signal the starting of the DS2AN authentication procedure. On
reception of this message, the Vj first verifies the certificate using the symmetric key of
the FRSU, which is received from the HRSU. On successful verification, the Vj generates a
pre-master key, Rprmkey, and sends DS2AN_AuthCode = (5 parameters, (Rprmkey, P_IDj)
FRSU_pkj). The Vj sends DS2AN_AuthCode = (5 parameters, (Rprmkey, P_IDj) FRSU_pkj)
to the FRSU. The decrypted (Rprmkey, P_IDj) FRSU_pkj gives the pre-master key and P_IDj.
At the FRSU, input is reconstructed and compared with the predefined values, legitimacy
of the Vj is decided, and (AUTH_Success) is sent to the Vj. Thus, mutual authentication is
successful. Now, the authenticated Vj generates the key Kseaf in the same way as the FRSU.
The key, Kseaf, is used by the Vj and RSU for establishing communication.

3.2.3. Security Analysis of the DS2AN

Authentication, being an important aspect of the IoV system, protects against attacks
due to malicious nodes entering the system [38,39]. Authentication can protect IoVs from
internal and external attacks. Confidentiality, integrity, and availability are the three basic
security requirements for wireless networks [40]. Confidentiality is preventing unautho-
rized nodes from reading the contents of data packets. Availability is permitting the
authorized users to view data information. Integrity is avoiding unauthorized modifica-
tions for data packets. The attacks selected in this work are the major attacks that hamper
these requirements. Addressing these attacks suffices to ensure reliable communication.
In [41–43], the authors have discussed several attacks that need to be addressed in vehicular
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networks to assure confidentiality, availability, and integrity of the data. The proposed
authentication system has addressed attacks that occur on vehicular networks in addition
to attacks addressed in [44], such as Sybil, DoS, masquerading attacks, message tampering,
and anonymity.

1. Sybil Attack: In this attack, an attacker disseminates multiple messages using fake
IDs by producing many false identities to interrupt the normal mode of operations
of the IoVs. This attack can be resolved using the DS2AN, as all the participating
entities will be registered with the network; only they can receive the parameters sent
by the network. Therefore, no attacker can access the network without registering to
the network.

2. Mutual Authentication: A security feature of 5G, mutual authentication helps prevent
spoofing of messages. Authentication amongst the Vj, HRSU, and FRSU is robust by
the use of the DS2AN, since authentication is performed at both the ends.

3. Vehicle Identity Protection: The encrypted P IDj that is transmitted to the HRSU
ensures the security of user identity.

4. Passive Attack: The authenticated Vj is identified by the RSU based on a received
code. Access to the network by a malicious node is prevented when the reconstructed
values do not match. Thus, the DS2AN provides protection against passive attacks.

5. Node Impersonation Attack: Guessing the valid ID of the registered users in the
network is performed by the attacker effectively. This attack has been thwarted by the
DS2AN, since the attacker requires the knowledge of the training done at both the Vj
and the RSUs.

6. MitM Attack: The attacker acquires the P_IDj and tries to modify it. However, with a
reduction in the dimensionality of the code containing P_IDj, the attacker is prevented
from making modifications to the P_IDj.

7. Masquerading Attack: The attacker pretends to be another vehicle by using the other
vehicle’s identity and masking their own identity, resulting in a Masquerading Attack.
This attack is thwarted due to the mismatch of the DS2AN_AuthCode.

8. Message Tampering: One of the common attacks in which exchanged messages of
V2V or V2I communication can be altered by the attacker. This can be prevented by
training of the Vj and RSUs using the DS2AN.

9. DoS attack: This attack aims to make valid resources of a system inaccessible. Here,
the attacker sends a message containing P IDj to the network, constantly overloading
the network with the purpose of stealing sensitive data or bandwidth consumption
or to congest the network. This type of an attack has been successfully prevented
through the identification of malicious nodes when the reconstructed values of the
code do not lie in the range of pre-defined values.

10. Eavesdropping Attack: This attack is avoided as due to the training model present at
the Vj and RSU.

11. Anonymity: This aspect is important for vehicle confidentiality protection. In this
scheme, vehicles will communicate using the pseudonym P IDj = H (V IDj || STBS
||nj). Real identity of the vehicle can be restored by using the secret value STBS.

On successful completion of authentication, resources will be allocated to the vehicle
by the FRSU. The next section discusses how the resource allocation is performed.

3.3. Resource Allocation during Handoff Using the DRL

Upon successful authentication, resources are allocated to the vehicles as per their
request. Generally, vehicle applications have two components: content-requesting tasks
and computation tasks. For example, in the case of autonomous vehicular applications, the
vehicle requests the road conditions from the RSU, which subsequently provides the routes
to the vehicles as computed results to avoid crashes of vehicles. Meanwhile, vehicles trans-
mit local routes and traffic conditions in real-time to calculate the best driving routes. The
TBS is believed to have a considerable amount of computational and storage capacity since
the range of its wireless communication is wide enough to reach all vehicles. As a result, the
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RSUs and TBS can work together to respond to user requests. Vehicles may concurrently
receive material and upload the computing tasks from RSUs/TBSs or to them using a
full-duplex radio, which is based on sophisticated 5G wireless communication technology.

The AI-based controller for the RSU has been deployed. Furthermore, the controller
is made up of environment information gathered from IoVs and an AI-based agent. On
the other hand, an AI-based processor takes an action based on existing conditions such as
reward and current states, including caching decisions and RSU resource allocation meth-
ods. For example, in the case where a vehicle travels to RSU2 from RSU1, the computation
offloading and content downloading calculation will shift to RSU2 from RSU1. When the
resources available are insufficient at RSU2 for that particular vehicle in nearby RSUs to
satisfy the user’s demands, the work will be handed over to the TBS for collaboration.

Figure 5 depicts the block diagram of the DRL model. Here, the Supervised DQL
algorithm is proposed for analyzing network activity and vehicle position in IoV and
allocate the communication channel or resource.

Figure 5. The DRL model.

In this method, the details of vehicle location and vehicle position are stored on the
RSU database. The environment is modeled as the MDP with the goal of maximizing
the total expected reward per connection. The Bellman-Ford algorithm is used to search
the shortest path between vehicles with the help of the Q-network. This shortest path
algorithm is used to calculate the overall mobile edge node distance and weight, and to
update to RSU. The algorithm avoids frequent changeover between the control of the RSU
and vehicle. The RSU node tracks the velocity of the vehicle, its location and direction of
travel, and detects all the neighbors of the next forwarding node with the smallest distance
and the least hops [45,46].

The proposed model explanation is as follows:
Node: Represents a vehicular node.
Position estimation: The position of the vehicle is an essential factor to be determined

in the IoV, to know which RSU should do the duties. The duration of time in which the
links are created between the RSUs and vehicles is calculated using velocity.

Deep-Q-Learning: After collecting the status from the RSU, the system uses Deep-
Q-Learning to understand the above details to build a scheme that directs the vehicles
to upload the task to RSU and download content from them. The agent will allocate the
resource dynamically for various requirements.

Communication Resource Selection: Communication resource selection means, during
the movement of vehicles, the RSU will transmit the data based on the vehicle’s request.

Bellman-Ford algorithm: The RSU will communicate and share the destination in-
formation with the vehicle. The Bellman-Ford algorithm is used to share the information
using the shortest path found.

Cloud Server: The cloud server is the moving directions and positions of vehicles that
will be stored to the cloud server from the RSU. All information regarding the location and
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vehicle ID will be taken to the cloud server from the RSU. It is like a centralized server that
will communicate with each RSU.

3.3.1. DQL Algorithm

DQL estimates the values and is a substitute for the traditional Q-table. In neural
networks, input states map to (action, Q-value) pairings instead of mapping to a state-action
combination to a q-value. The learning method in DQL employs two neural networks.
The design of these networks is the same, but the weights are different. A target network
receives the main network’s weights in each of the N steps. The learning process becomes
more stable when both of the networks are used and the algorithm learns more successfully.
After selecting an action, the agent must carry it out and keep the target as well as main
networks up to date by using the Bellman-Ford algorithm (Figure 6).

Figure 6. Deep-Q-Learning.

Algorithm Steps

1. The agent perceives the present condition of a network. If the chosen number is
random and is equal to or less than epsilon, an agent will act in a random action;
otherwise, the DQN will forecast Q-values and take action based on the highest
Q value.

2. The following state, the reward, is kept in the replay memory, along with the termi-
nal variable.

3. When the agent has enough instances in the memory, the DQN is trained by sampling
a certain set of experiences.

4. The collection of current states is regarded as a parameter, and the calculated values
are labelled as “[Target = set_of_reward + gamma× numpy.max(target_net.predict(set
of next_state)) × set_of_done]”. The terminal variable has been constructed and thus
the terminal state’s value is 0.

5. Iteratively, the main and target network are updated.

3.3.2. Bellman-Ford Path Analysis

The Bellman-Ford method will always discover the shortest path. Although it’s more
time-consuming than Dijkstra’s approach, it is more flexible since it can handle graphs with
negative edge weights. In contrast, the Bellman-Ford addresses two major problems with
this procedure:

• If weight cycles are negative, it will continue to find the shortest path, indefinitely.
• Exponential relaxation occurs when the relaxation sequence is incorrect.

Bellman-Ford’s most crucial step is relaxation. This makes the distance from one
vertex to another more precise. Relaxation is achieved by comparing the estimated dis-
tance between the vertices to other known distances and progressively shortening the
distance calculated.

3.3.3. DRL for Resource Allocation

Resource allocation in V2I communications using the DRL method along with the RL
framework is presented in this section.
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Markov Decision Processes

The MDP formalism may be used to study learning agents mathematically. The vehi-
cle’s status includes the vehicle’s position, velocity, and total size of the content requested by
the vehicle (Figure 7). The action is the allocation of resources to vehicles. The agent accepts
various requests from vehicles and assigns resources, and thus vehicles may download
content from and upload tasks to various RSUs.

Figure 7. Abstract MDP model.

In RL, a time-homogeneous Markov chain is one in which the transition probability is
independent of time, t:

P [St+1 = s′ |St = s] = P [St = s′ |St−1 = s] (12)

At every instance of t, the agent which is the intended RSU link, observes state “s”
from the state space, S, and makes an action, at, from the action space, “A”, and selects the
appropriate resource based on the policy, π. The Q-function, Q (st, at, θ), determines the
decision policy π, where θ is the parameter of the Q-function; it may be acquired using
deep learning.

Return and Policy

In RL, the objective is to take actions over time that maximize the expected value of
the return (i.e., to select the optimum policy). Return and policy can be defined as follows:

The total discounted reward from time-step t is represented by the return Gt as:

Gt = Rt+1 + γRt+2 + ······· = ∑∞
k=0 γk Rt+k+1 (13)

A policy π is a set of actions that the states can take,

Π (a | s) = P [At = a | St = s] (14)

It is independent of time. A policy directs the choice of action at a specific state.
Q-learning is used to determine the best optimal policy for allocating resources in V2I

communications to maximize the long-term predicted accumulated discounted rewards.
Once the Q-values, Q (st, at), are known, an updated policy, π, may be easily created by
performing the action,

at = arg
max

a ∈ A
Q (st, a) (15)

(i.e., the long-term accumulated rewards are used for taking an action).
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With Q-values, the optimal policy Q* can be found based on the following updated
equation; it is possible to find without any knowledge of system dynamics:

Qnew (st, at) = Qold (st, at) + α
[
rt + 1 + γ

max
s ∈ S

Qold (s, at)−Qold (st, at)] (16)

Once an optimal policy has been determined through training, it may be used to
choose resources for V2I links to ensure link latency restrictions.

At each iteration, the Q-network changes its weights, minimizing the loss function
obtained from the same Q-network with old weights on a data set D, as provided by (17),

Loss (θ) = ∑(st,at)∈D(y−Q (st, at, θ))2 (17)

y = rt +
max

a ∈ A
Qold (st, a, θ) (18)

rt denotes the related reward.

4. Results and Discussion
4.1. Best RSU Selection

The novel handoff algorithm that can perform selection of best RSU based on context
information like Bandwidth and delay is developed. The work mainly concentrated on the
handoff decision phase, where the vehicle selects the best RSU with maximum bandwidth
and minimum delay during the handoff period. The obtained results are compared with
that of existing techniques used to choose the best RSU for a seamless connection by
vehicles. The comparison demonstrates less decision delay during RSU selection over the
existing technique. Table 3 presents the simulation parameters.

Table 3. Simulation Parameters.

Parameters Values

Version Ns-in-all-one 2.28
Propagation Model Two Ray Ground

Area 1200 m × 1200 m
Broadcast Area 50–250 m
Transfer pattern UDP, CBR
Mobility Model Random Mobility

Transfer per packet 512 bytes

A scenario where the vehicle must connect to at least one RSU during its transmission
time is simulated using a ns2 simulator. Figure 8 displays the simulation scenario with 98
nodes, in which 2 are vehicle nodes, 9 are RSU nodes, and 1 is a TBS. The vehicle will run
the RL-MDP algorithm to select the best network during handoff, based on the bandwidth
and delay parameters associated with each RSU. The decision delay encountered during
the selection of the best RSU by the vehicles is illustrated in Figure 9.
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Figure 8. Simulation scenario with 98 nodes.

Figure 9. Comparative analysis of decision delay.

Table 4 and Figure 9 display the comparative analysis on decision delay with respect
to the Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS) and Grey
Relational Analysis (GRA) methods. In RL-MDP, it is found that the decision delay has
been reduced on an average of 13%, compared to the TOPSIS and GRA methods.

Table 4. Comparative analysis of decision delay.

No. of Vehicles
Decision Delay (ms)

RL-MDP TOPSIS GRA

20 9.5 15.5 20.9
40 11.2 16.8 22.4
60 12.9 17.4 25.6
80 13.5 18.6 28.4

4.2. Security Analysis

The study is aimed at realizing a secure and fast authentication, with a reduced delay
during handoff. The simulated results have been evaluated based on communication overhead
and computational complexity, which has resulted in decreased authentication delays. The
outcomes demonstrate that DS2AN performs better, compared to existing techniques.

The parameters used for simulation are presented in Table 5 and the model details of
the DS2AN are in Table 6.
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Table 5. Simulation parameters.

Parameters Values

RSUs 6

Vjs per RSU 6

TBS 1

Area Size 1000 × 1000 m

Simulation Duration 50 s

Traffic Model Constant Bit Rate (CBR)

Propagation Model Two Ray Ground model

Malicious Vj per cell 1

Table 6. DS2AN model details.

Architecture
Encoder Code Decoder

L1 L L′1
6 3 6

Activation function Sigmoid and Softmax
Regularizers KL divergence
Loss function MSE

Optimizer Stochastic Gradient Descent

Figure 10 displays the formation of Vjs (Vehicles) and TBase-Station (Trusted Base-
Station) through the ns2 simulator. When a vehicle wants to connect to the RSU, it will scan
the channel to obtain certain input parameters like RSRP, RSRQ, RSSI, SNR, and CQI from
the network, and the dimension is compressed to get the code, which in turn is picked up
by the network. Interchange of Rq_ID and Resp_ID among the Vjs and TBS takes place to
guarantee that the Vj is connected to the authenticated FRSU. On confirmation, Vj sends
the code to the network. The DS2AN algorithm, present on the FRSU, reconstructs the
original parameters from the code authenticating Vj.

Figure 10. Creation of Vjs and TBS using ns2.

4.2.1. A Scenario for Performing DoS Attack

Figure 11 illustrates an unauthorized node (in red colour) performing a DoS attack
on a network. Req_ID and Resp_ID are exchanged between the unauthorized Vj and the
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FRSU. The FRSU_Cj is sent by the FSRU as a response. When the code sent by the Vj to the
FRSU do not match, the Vj is considered to be malicious and is dropped; this prevents a
DoS attack.

Figure 11. The scenario for performing a DoS attack.

The simulation results are evaluated based on communication and computational cost
and are discussed below.

4.2.2. Communication Overhead

Here, a comparison of communication overhead of the DS2AN with some of the
existing methods is presented. In the DS2AN, Rq_ID = (asyencr((P_IDj), R_Vj), HRSU_pkj)
needs 160 bits for encryption done by the Vj and another 160 bits for decryption at the
FRSU. Further V_IDj encryption and decryption requires 320 bits. The DS2AN_AuthCode
= (5 parameters, (Rprmkey, P_IDj) FRSU_pkj) needs another 160 bits for encryption done
by the Vj and another 160 bits for decryption at the FRSU. The size of messages in the
DS2AN is (160 + 160 + 160 + 160) = 640 bits (80 bytes). In Table 7, a comparison of the
communication overhead of the DS2AN along with other schemes used for authentication
has been presented. The DS2AN, developed using deep learning technique, uses fewer
message exchanges between the vehicle and network, which aids in the reduction of
communication overhead. Communication cost comparison across various schemes is
presented in Figure 12.

Table 7. Communication overhead comparison.

Scheme Communication Overhead in Bytes

[47] 164
[48] 996
[49] 184
[50] 102

DS2AN 80
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Figure 12. Communication overhead comparison.

4.2.3. Computational Cost

Computational cost in the DS2AN has been minimized because of the: reduction in
the cryptographic operations, system or processor related parameters used, key generation,
encryption, decryption, and digital signature verification.

Table 8 displays the computation cost for different schemes. Figure 13 illustrates a
comparison plot of different schemes.

Table 8. Computational cost (ms) comparison.

Scheme Computation Cost (ms)

[47] 4.661
[48] 78.291
[49] 3.901
[50] 3.022

DS2AN 0.45

Figure 13. Computational Cost comparison.

4.2.4. Authentication Delay

The authentication delay, calculated as the communication overhead and computation
cost for a varying number of Vjs, has been presented. Based on the analysis, Figure 14
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illustrates that the proposed DS2AN protocol has reduced authentication delay and lies
well within the standard values specified by the ITU. Table 9 provides the authentication
delay encountered for a varying number of Vjs.

Figure 14. Comparison of Authentication delay of the DS2AN.

Table 9. Comparison of authentication delay.

Authentication Delay (ms)
No. of Vjs DS2AN [50] [49] [47] [48]

18 0.48 1.8 2.5 4.21 8.2
36 0.91 4.1 5.23 8.16 13.53
54 2.33 8.95 11.81 14.52 20.8
72 3.5 11.54 16.02 18.64 26.02

4.3. Resource Allocation during Handoff

In this section, for performance evaluation results of the DRL for various node densities is
presented. NS2 is used to analyze the network QoS parameters, such as throughput, delivery
ratio, and time delay. The proposed DQL method is compared to the existing Lagrange
Duality Method (LDM). The parameters used for configuring the simulation environment are
presented in Table 3. A simulation scenario with 98 nodes, in which 2 are vehicle nodes, 9 are
RSU nodes, and 1 is a TBS, is presented in Figure 8. Figure 15 demonstrates that the vehicle is
requesting the RSU for resource allocation. If a resource is not available, it will communicate
with the next RSU by running the Bellman-Ford algorithm.
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Figure 15. V2I Communication.

4.3.1. Packet Delivery Ratio (PDR)

This is computed using the received and generated packets. As the number of vehicles
increases, it becomes challenging to retain the established path. This results in reduced
throughput, PDR, and increased delay, whereas the DRL approach provides an increased
throughput and PDR, and decreased delay. This has been proven, as demonstrated from
the Figures 16–18.

Figure 16. PDR for increase in vehicle density.

Figure 17. E2E Delay for increase in vehicle density.
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Figure 18. Throughput comparison of Vehicle Users (VUE).

From the above graph it can be concluded that the PDR of the DRL for 100 vehicles is
84%, similarly 80%, 78%, 70%, and 68% of packet delivery for 200, 300, 400, and 500 vehicles,
respectively. Figure 16 demonstrates that, with a higher density of vehicles, PDR decreases.

4.3.2. End-to-End Delay (E2E Delay)

This is the time taken for the packet to traverse across the network from its source to
destination. The delay encountered is the ratio of the time taken to receive the packet to the
number of connections in the IoV.

From Figure 17, it is observed that, in the DRL method, for 100 vehicles the delay is
about 0.1 ms, for 200 vehicles it is 0.15 ms, for 300, 400, and 500 vehicles the delay is found
to be 0.21 ms, 0.24 ms, and 0.30 ms, respectively.

4.3.3. Throughput

This is the total number of bits or bytes received successfully by all vehicles. This, in a
communication system, can be affected by many parameters like limitation of a physical
medium, available computing power of the system, and receiver behavior.

Here, comparison has been made between the Lagrange Dual Method [11] and the
proposed scheme that is the DRL Model. Relation between the input and the optimization
solution may be achieved using deep neural networks (DNNs) universal approximation
capabilities. The new parameter is sent into the trained DNN for real-time implementation,
and a satisfactory solution can be provided instantly [51–53]. Figure 18 displays the
throughput of each vehicle user and the RSU performance of the proposed DRL and the
existing Lagrangian Duality Method (LDM). From the graph it is observed that the DRL
has 92 Mbit/s for 28 dBm of power limitation; it provides higher throughput compared to
the existing method, LDM.

5. Conclusions

With the Internet of Vehicles technology moving towards networking and intelligen-
tization, onboard operating systems, newer automotive electronics, and more in-vehicle
communication, newer service platforms providing enhanced security are becoming re-
search hotspots. This work has discussed the: best RSU selection, authentication of vehicles
for verifying their legitimacy, resource allocation technique, and finding the shortest path
to the destination node for communication during handoff. Handoff, being an important
concept for providing seamless connection, decision and authentication needs to be done
at a faster rate. This has been demonstrated by the RL-MDP and DS2AN methods. Re-
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source allocation and finding the shortest path are done using the DRL and Bellman- Ford
algorithm, respectively.

The proposed DRL relies on DQL to find the optimum resources for different ve-
hicular applications. The dataset has been obtained from a public domain for training
the parameters. The RSU tracks the speed, location, and direction of travel, and detects
all the neighbors of the next forwarding node with the smallest distance and the fewest
hops, so as to reduce the handoff delay. The Bellman-Ford algorithm is used to search the
shortest path between the RSUs with the help of the Q-network. A reduction in handoff
delay of 13% has been achieved by minimizing the decision and authentication delays.
Compared to cryptographic protocols, the DS2AN algorithm has fewer cryptographic key
generation and message exchanges between the vehicle and network. The efficiency of
the proposed algorithm in thwarting several security attacks has also been established
through simulation.

This study demonstrates that the DS2AN is more proficient when it comes to authenti-
cating nodes, with minimum delays. Furthermore, the results demonstrate that the DRL
provides a reliable packet delivery of 84% and a throughput of 92 Mbit/s, while upholding
tolerable delay levels of 0.1 ms.

The requirement of a large data set for training the model becomes a major limitation
of the proposed work. The model is suitable only for infrastructure-based communication.
The higher the density of vehicles, the more will be the memory requirement at the RSU.

Though the addressed attacks in this work ensure a secured IoV communication
and a robust model, several other attacks like the Wormhole and Route modification
attacks can be looked into. As a future work, these attacks can also be addressed in the
algorithm along with an emphasis on memory requirement. A further reduction in delay
encountered during handoff can be achieved through Mobile Edge Computation (MEC),
along with DQL.
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