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Abstract: Making cities smart represents a major potential for sustainable development, where both
the quality of life and the economy improve. Implementing new and efficient solutions in a smart city
involves a large spectrum of uncertainties related to the size and project complexity. Characterization
and assessment of the variables uncertainty in planning methodology seem necessary to reach the best
decision about the best approach to achieve favorable realization outcomes for planned projects. By
including uncertainties in the planning, assessment makes it possible to calculate result uncertainties
for all expectations, and project cost-effectiveness. In this way, planning can be improved, if the
most important parameters of result uncertainties are identified, better defined, and controlled. This
study describes a parameter uncertainty characterization methodology applied on the cost-benefit
analysis of smart city development with a case study, focused on smart metering infrastructure.
Parameter uncertainty characterization is performed based on its variable nature (epistemic and
aleatory), time-dependency, and the available information. Cost-benefit analysis results are given as
both point value and as uncertainties. Uncertainty is considered for 25 variables of investment and
operating costs, and benefits estimation. The presented methodology in smart city planning provides
a way to better identify the critical parameters for achieving the defined objectives.

Keywords: parameter uncertainty characterization; distribution function; smart metering; CBA
methodology; Monte Carlo simulation; smart city planning

1. Introduction

The constant growth of cities leads to increased demand for enhanced infrastructure
and more efficient use of energy, i.e., making cities smart. Planning and development of
smart cities is a challenge for government, city developers, and citizens. Cities consume
more than three-quarters of the total global energy and cause 80% of the total CO2 emissions,
with an annual growth rate of almost two per cent [1]. This places city planning and
development at the center of the sustainable development challenge, with specific goals [2].
For example, in the European Union Sustainable Energy and Climate Action Plan [3], the
goal is to reduce overall greenhouse gas emissions by at least 40% below the reference level
by 2030. The United Nations “Paris Agreement” [4] presents the EU with the high aim
of reducing greenhouse gas emissions by 2050, and because of it, the EU has created the
vision of the long-term development strategy to limit global warming to 1.5 ◦C compared
to pre-industrial times, known as “Clean Planet for All” [5]. These goals may be achieved
through energy efficiency, savings, use of renewable energy sources, etc.

The methodology for simulating and analyzing planning and management is still in
development [6]. Smart grid infrastructures are making technology possible for developing
smart cities and achieving sustainable living [7]. In [8] has been emphasized the importance
of smart grids in launching smart cities by reviewing the advancement of micro/nano
grids, applications of renewable energies, energy storage technologies, smart water grids
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in smart cities. There is a broad consensus about smart grid potential (e.g., economic, and
environmental) on one side and possible obstacles and risks during planning, implemen-
tation, and use (e.g., lack of investment, disengaged customers, complexity, security, and
data privacy) on another side [9,10].

Cost-benefit analysis (CBA) is the usual way of analyzing and evaluating benefits
and risks during the planning and implementation of smart grid projects [11–13]. The
CBA methodology for smart grid deployment used here is from the Joint Research Centre
(JRC) [14] and EPRI [12,13]. These methods use point values for input parameters with the
best estimate for circumstances and project scenario. CBA results for different scenarios are
easy to compare as point values. However, considering project size, complexity, novelty,
and the long time needed for implementation, input parameters have many sources of
uncertainties which impact the results [2]. Considering parameter uncertainties in the CBA
would create results with uncertainties [2]. This would allow the improved comparison of
results for alternative scenarios.

According to [15], for evaluation of smart city implementations it is suggested to
use a Smart City Assessment (SCA) tool bringing benefits for all the different involved
stakeholders [16]. This approach can also be applied to smart metering project evaluation,
but it is not adjusted as the above-mentioned methodologies from JRC [14] or EPRI [12,13].
The main purpose of the SCA is to give feedback and guidance for decision-making,
enabling the assessment of whether the implementations are proceeding towards the
wanted direction, [17]. Many of the existing SCA tools are nowadays mainly used for
promotional purposes and very few for an evaluation of what should be done to increase the
performance of future developments. Possible gaps, in the available SCA tools, were also
identified [15]. In the same paper have been summarized the international standardized
indicators regarding smart cities; and communities are analyzed in [18].

An extended approach to the conventional CBA based on European Commission and
their JRC [14,19,20] is shown in [21]. Here it is emphasized that three different types of
metrics can be used: monetary expressed in a currency (e.g., dollars or euros), quantitative
(expressed in terms of KPIs concerning the key objectives of the project), and qualitative (ex-
pressed by normalized tokens). A more detailed analysis of the integration of a traditional
CBA with other nonmonetizable and qualitative measures could go in the direction of the
integration of CBA with multicriteria analysis with emphasis on the existence of multiple
objectives (i.e., economic, social, environmental, political). According to the authors of [21],
qualitative benefits are not easy to monetize. They are related to judgments by persons,
social groups, or other institutional actors concerning expected externalities and public
goods, with hard to value impacts. Considering that these judgments refer to situations in a
relatively distant future (project evaluation time), the authors have proposed to use metrics
based on tokens. Typical examples of these qualitative benefits are customer satisfaction,
consumers’ awareness of the environmental impact, market attractiveness for new actors,
trust in market fairness, etc. The outcome of the extended CBA is hence a set of metrics
of different types. For this reason, the CBA can capture different impacts, covering all the
aspects and factors considered relevant for the project at hand. This approach is developed
to encompass the concepts of smartness, smart cities, and the prototypical role of smart
grids with a detailed consideration of all the factors which should be considered [21].
Modelling with uncertainty, as pointed out in [2], is known in many different domains
and applications (e.g., the life cycle of equipment and maintenance costs [22]). This is
usually done by propagating parameter uncertainty, using a Monte Carlo (MC) simulation,
producing results with uncertainty [2]. This, applied to the CBA, will provide much more
complete results than are usually produced with sensitivity quantification (e.g., in the CBA
of advanced metering in Slovenia [23]). It is possible to predict all possible outcomes of
planned activities for which the uncertainty of input parameters is considered [2]. With
additional analysis, it is also possible to identify the most important parameters for the
resulting uncertainty, and then to try to investigate further, if possible, to reduce their
uncertainty.
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Some of the energy input parameters are better defined (e.g., from annual reports of
distribution/transmission companies and from energy government reports) than others
(e.g., defined as shadow prices (The opportunity cost of an activity or project to a society,
computed where the actual price is not known or, if known, does not reflect the real sacrifice
made (by Business Dictionary on http://www.businessdictionary.com (accessed on 20
January 2021))). The available information about the parameter and its nature (e.g., physical,
financial, etc.) is used for its uncertainty characterization. Uncertainty is determined by
the available knowledge (epistemic) and many unknown impacts (aleatory). The focus
of this work is to characterize parameter uncertainties for smart grid CBA analysis for
which it can be assumed that it could have the most significant changes in analyzed time
frame. These parameters are considered as the time-invariant parameters: capital costs,
operational costs, social discount rate, reduction in electricity consumption, commercial
losses decrease, etc., and the time-variant parameters: specific CO2 emission factor, average
electricity selling price and electricity consumption changes for household and commercial
consumers, low-carbon generation increase, and price per ton of CO2 emission (CO2).

Uncertainty characterization may be based on one of five situations defined in [24].
They proposed a method for uncertainty characterization considering parameters through
specific steps, i.e., the availability of distribution function for parameter uncertainty charac-
terization in literature, project-specific information, according to analyst knowledge [2], the
parameter’s nature (epistemic and aleatory [25]), and time dependency.

The selected CBA method is described in Section 2.1 with the expected benefits of
the project, including additional non-monetary impacts. Characterization of parameter
uncertainty is presented in Sections 2.2 and 3 presents the results of the practical application
in a case study of smart metering deployment in the city of Ludbreg. The discussion is in
Section 4; conclusions and potentials for future research are presented in Section 5.

2. CBA Methodology and Uncertainty Characterization

In this section, after the selected CBA, the methodology is briefly presented, with
a proposed approach for uncertainty quantification, then a methodology for parameter
uncertainty characterization is described.

2.1. The Selected Methodology of CBA with Integrated Uncertainty Analysis

The CBA methodology used in the paper is based on the JRC methodology of Smart
Metering Deployment (SMD) [14,26] and the EC’s Guide to CBA [11]. This methodology is
expanded by integrated uncertainty characterization of the characteristic variables consid-
ered (costs and benefits; Figure 1). JRC CBA methodology is also based on the approach
developed by EPRI [12,13]. The economic CBA application was used for this study (it could
be also financial [14]).

In this methodology, general principles are defined and based on the EC’s Guide to
CBA [11], such as basic guidelines (value of discount rate, the time horizon–project evalua-
tion time, etc.) and insight into the logic behind the CBA. JRC and EPRII methodologies
are using the basic principle of CBA like the EC but with the addition of strictly defined
formulas for benefits calculations of smart metering deployment. The costs calculation and
functionalities determination are based on both. JRC’s methodology approach comprises
three main parts with seven steps (Figure 1) and they are used as basic for parameters
uncertainty integration. First, the project needs to be defined (planned activities, costs
of components, benefits, etc.) and the value of the input parameters determined. The
developed methodology will be applied to the uncertainty of selected input parameters
for calculation of capital/operating costs (CAPEX and OPEX) and benefits. The related
functionalities of assets will not be given explicitly here, only through the benefit calcula-
tions and estimations (Section 2.1.1). The result of the CBA analysis will now be presented
as point value and as uncertainty, indicating the range of probabilities for possible project
outcomes, depending on the parameter uncertainties defined.

http://www.businessdictionary.com
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To apply the CAB methodology (Figure 1), it is necessary to define the boundary
conditions, i.e., all parameters describing the contexts underlying the realization of the
project (e.g., demand growth forecast, discount rate, and local grid characteristics) and
implementation choices (e.g., roll-out time, chosen functionalities). The results are costs
and benefits accruing from the project over the chosen time-lapse (project evaluation time),
discounting them and summing to obtain an economic net present value (ENPV). Results
are also ratios between discounted economic benefits and costs (EB/C).

Uncertainty analysis is implemented first with key variable/parameter (e.g., prices,
the realization of the planned effects, low-carbon generation projection, etc.) uncertainty
characterization, and then by performing CBA in Microsoft (MS) Excel with the use of
Quantum XL addition using MC simulation to propagate the uncertainty of the considered
parameters. This requires multiple CBA quantification with sampling input parameter
values using random numbers and respected uncertainty distributions [27]. MC simulation
produces aggregated results, in a shape of percentage statistics graph (histogram), from
many possible outcomes with the respective probability of occurrences for a range of the
CBA results’ values. This is the major advance of the herein proposed methodology in com-
parison to prior sensitivity analysis, where only one parameter is changing at a time: while
the others have point (nominal, expected) values, the change of all parameters together
is considered in presented CBA calculation. The additional novelty of this methodology
is that the uncertainty of input parameters is considered over the project evaluation time.
This way, all predicted changes of parameters’ values during the observed time horizon
and their influence on the result and, finally, on the decision on project acceptance are fully
considered. With additional analysis, it is possible to identify most critical parameters for
results uncertainty (e.g., with a so-called percent contribution (by Quantum XL addition to
MS Excel) or tornado diagram). The most critical parameters could be the subject of further
analysis to reduce their uncertainty, and consequentially, the CBA results’ uncertainty (e.g.,
NPV).

Quantum XL is a statistical simulation program, integrated into MS Excel, which
includes experiment design, general statistics (control charts, histograms, pareto, measure-
ment system analysis, support for most continuous and discrete distributions, as well as
defining a custom distribution from data, etc.), and a proven Monte Carlo technique [28].
For this research and calculation, MC simulation with 1000 simulations was conducted
using two distributions (i.e., triangular and Gaussian continuous) resulting in a histogram
(probability of CBA resulting values) and the parameters’ percent contribution graph.

This study incorporates uncertainty in the economic analysis where the social and
financial parts of the project are assessed together—generated benefits to the project op-
erator and society. The indicators for the economic cost-benefit analysis, with parameter
uncertainty included, that will be calculated here, according to [11], are:

• ENPV—economic NPV as the difference between the discounted social benefits and
costs;

• EB/C ratio, i.e., the ratio between discounted economic benefits and costs.

The economic internal rate of return (ERR)—the discounted rate that produces a zero
value for the ENPV—will be given as the point value.

The economic appraisal needs to be integrated with the qualitative impact analysis to
assess externalities that are not quantifiable in monetary terms, as stated in Section 2.1.2.
The specific values used in the CBA for the social discount rate (SDR), project time horizon,
constant (real) prices without VAT, reinvestments, residual values, etc., are as explained
in [11].
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2.1.1. The Monetization of Costs and Benefits for the Smart Metering Deployment Project

The total cost for smart metering deployment (SMD) consists of investment, additional
and operating costs. The investment cost of the SMD project consists of costs for supply
and installation. These costs depend on the amount and type of advanced metering
infrastructure (AMI) and installation for the specific project. Additional typically estimated
cost is related to project management, expert supervision, audit costs, and combined costs of
publicity, visibility, and customer awareness. Operating costs include the costs of operation
and maintenance (O&M), new or upgraded components, and services. An example for the
case study is given in Section 3.1 and the costs of supply and installation of smart metering
components, their operational cost and upgrades of the automatic meter reading (AMR)
system, are given in Section 3.2.1.

Expected project’s benefit with adjusted equations from the Croatian Government [29]
are given in Table 1. Historical data or baseline means business as usual, while AMI
presents an extended project scenario (Section 3.1). Each benefit is separately calculated
for household and commercial customers for each year of the project evaluation time.
Reduction in electricity consumption is, e.g., because of consumer adjustment of energy use
in off-peak hours using smart meters and better and easier insight in their consumption,
use of energy efficient appliances, and because some consumers have become prosumers
(consumers with energy consumption and self-production (mostly by solar a photovoltaic
plant)). On the contrary, use of smart meters can increase electricity consumption paid by



Energies 2022, 15, 2040 6 of 29

consumers like self-consumption of smart meters, but in this analysis, it is not considered.
Smart metering deployment enables real-time flows of network information and may affect
the network reliability and decrease SAIDI, SAIFI and VLL. Although these values can
be monetized, in this analysis they were not, because of a lack of reliable data (value of
SAIDI, SAIFI and VLL in Ludbreg before the SMD). The formula for an increase in network
reliability is also given in the following Table.

Table 1. Project benefits and non-benefits and the equation for their monetization for one year.

Benefit/Non-Benefit Sub-Benefit Monetization Calculation (€: EUR)

B1. Reduction in
meter reading and
operations costs

B1.1. Reduced meter
reading costs

# 1 Customer × ID 2/y 3 (%) ×
{MeterReadCostBaseline

4/c 5/y (€) −
[MeterReadCostAMI/c/y (€) 6 × (1 −
CommFailRateAMI

7)/y (%)]}

B1.2. Reduced billing
costs

#Customer × ID/y (%) *
{PapaerBillCostBaseline/c/y (€) 8 − [(1 −
EstShareCustomerElectBillAMI

9) (%)) ×
EstPaperBillCostAMI/c/y (€)10 +
EstShareCustomerElectBillAMI (%) ×
EstElectBillCostAMI/c/y (€) 11]}

B2. Reduction of
meter service costs
for customers

B2.1. Reduced costs of
disconnec-
tion/connection for
users

#Customer × ID/y (%) × DisconShare
Baseline and AMI/y (%) 12 ×
[DisconCostBaseline/c (€) 13 −
DisconCostAMI/c (€) 14]

B2.1. Reduced call
center/customer care
costs

ID/y (%) × [#CallMeterPointBaseline
15/y ×

#CallShareReadingBaseline/y (%) 16 ×
CallCostBaseline (€/call) 17 −
#Call–MeterPointAMI

18/y × Est
#CallShare–ReadingAMI/y (%) 19 ×

CallCostBaseline (€/call)]

B3. Electricity cost
savings

Consumption reduction
due to AMI deployment

ID/y (%) × EnergRate (€/kWh) 20 ×
TotalEnergConsumpt (kWh) 21 ×

EstConsumptReducAMI (%) 22

B4. Electricity
non-cost savings

Increase in electricity
costs for customers
because of the increase
in measurable direct
electricity consumption
regarding the reduction
of non-technical losses

ID/y (%) × EnergRate (€/kWh) ×
TotalEnergConsumpt (kWh) ×
NonTechLossesShare (%) 23 ×

EstNonTechLossesShareReducAMI (%) 24

B5. The decrease of
influence on climate
with the reduction of
CO2 emissions

B5.1. Due to the increase
in low-carbon
generation sources

ID/y (%) × [CO2/yearBaseline (ton) −
CO2/yearAMI (ton)] × Price/ton of CO2
(€/Tco2)

B5.2. Due to a decrease
in truck use by field
personnel

ID/y (%) × #lFuel-AvoidAMI/y (#) 25 ×
EmissFactor (ton CO2/#lFuelAvoid) ×
Price/ton of CO2 (€/Tco2)

B5.3. Due to a
consumption reduction

ID/y (%) × TotalEnergConsumpt (kWh)/y
× EstConsumpt-ReducAMI (%) ×
EmissFactor (ton CO2/kWh) 26 × Price/ton
of CO2 (€/Tco2)

B5.4. Due to a reduction
in direct electricity
consumption regarding
the reduction of
non-technical losses

ID/y (%) × EstNonTechLossesReducAMI
(kWh) 27 ×
EstDirectEnergConsumptDecreAMI (%) 28 ×
EmissFactor (ton CO2/kWh) × Price/ton of
CO2 (€/Tco2)
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Table 1. Cont.

Benefit/Non-Benefit Sub-Benefit Monetization Calculation (€: EUR)

B5.4. Due to a reduction
in direct electricity
consumption regarding
the reduction of
non-technical losses

ID/y (%) × EstNonTechLossesReducAMI
(kWh) ×
EstDirectEnergConsumptDecreAMI (%) ×
EmissFactor (ton CO2/kWh) × Price/ton
of CO2 (€/Tco2)

B6. Reduced outage
time 29

B6.1. Reduced value of
service

TotalEnergConsumpt (kWh)/(#min./y)
× #Average non-supplied min./y ×
Value of lost load (€/kWh) × Decrease in
outage time (%)

B6.2. Recovered revenue
due to reduced outage

Annual supplier revenue LV
(€)/(#min./y) × #Average non-supplied
min./y × Decrease in outage time (%)

B6.3. Reduced cost of
client compensation

Average annual client compensation (€)
× Reduction of client compensation (%)

1 Number of. 2 Installation dynamic (%). 3 Year. 4 Historical meter reading cost (/c/y (€)); baseline—business as
usual. 5 Customer. 6 Average meter reading cost with remote meter reading due to activities of the analyzed project
(project of smart metering deployment) (/c/y (€)); AMI—Advanced metering infrastructure implementation
project. 7 Communication failure rate due to activities of analyzed project (/y (%)). 8 Historical paper billing cost
(/c/y (€)). 9 Estimated share of customers in LV with electronic bill due to activities of the analyzed project (%). 10

Estimated paper billing cost due to activities of analyzed project (/c/y (€)). 11 Estimated electronic billing cost due
to activities of analyzed project (/c/y (€)). 12 Disconnection’s share, historical and due to activities of analyzed
project (/y (%)). 13 Historical disconnection cost (/c (€)). 14 Disconnection cost due to activities of analyzed project
(/c (€)). 15 Historical number of calls regarding measuring point (#/y). 16 The historical share of calls no. regarding
reading (/y (%)). 17 Historical cost per call (€/call). 18 Number of calls regarding measuring point due to activities
of analyzed project (#/y). 19 Estimated share of calls no. regarding reading due to activities of analyzed project (/y
(%)). 20 Energy Rate (€/kWh). 21 Total energy consumption at LV (kWh). 22 Estimated consumption reduction due
to activities of analyzed project (%). 23 The share of non-technical losses (%). 24 Estimated share of non-technical
losses reduction due to activities of analyzed project (%). 25 Avoided number liters of fuel (/y (#)). 26 Emission
factor (ton CO2/kWh). 27 Estimated non-technical losses reduction due to activities of analyzed project (kWh).
28 Estimated resulting decrease in direct energy consumption due to activities of analyzed project (%). 29 This
benefit is not calculated due to lack of reliable data.

This analysis also includes the quantification of the positive effects on climate change
based on the reduction of CO2 emissions. Thermal power plants and large industrial
plants located in Croatia are participants in the EU emission trading system (EU ETS),
while smaller stationary installations must pay taxes on CO2 emissions on a national level
according to the Croatian Government [29]. The CO2 emission reductions also correlate
with the emission reduction of other pollutants (SO2, NOx, and particulars (According
to Croatian legislation [28], SO2 and NOx emission taxes are no longer in force in Croatia
(since 1 January 2015); thus, their impact will not be considered in the benefits calculation
(they could be considered as part of the qualitative analysis)).

2.1.2. Qualitative Analysis—Additional Non-Monetary Impacts

Some benefits related to smart electricity metering rollouts have usually been ad-
dressed (by most EU Member states [30]) in evaluating the costs and long-term benefits,
but they cannot be easily monetized. Among them is smart grid development that allows
closer interaction between suppliers/DSO and customers facilitates and the integration of
the growth potential of renewable energy, electric vehicles, and battery storage systems.
Increased market competition is enabled, like easier and quicker switching between sup-
pliers, while better insight into energy consumption enables customers to seek out better
tariff deals or to adjust their energy consumption toward energy bills reduction.
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Further development of the smart grid will enable new products and services for
customers. The customers could become proactively engaged in energy usage and involved
in the energy market ensuring energy savings. All this will have a positive impact on the
climate and the environment (besides CO2, emission reduction also of SO2, NOx, particu-
lates, and other pollutants). Qualitative benefits resulting from the project implementation
which can be considered are new jobs, security increase, society acceptance, lost/saved
time for customers/citizens, age of the workforce—influence on the decrease in skills and
staff gap, and measures for insurance of privacy and security [14].

According to the McKinsey Global Institute [31], smart cities use data and digital
technology to improve the quality of life. Three layers that work together are needed to
make a smart city. Smart meters and smart sensors and a critical mass of smartphones
connected by high-speed communication networks, as well as open data portals, are first,
the technology base. Smart metering infrastructure links the power generation grid and
consumers by bidirectional exchange of information. The second layer consists of specific
applications. Translating raw data into alerts, insight, and action requires the right tools
(different technology providers and apps). It can be used, i.e., for insight into the electricity
and water consumption, construction of social network and platform for recommendation
on energy savings and could also reinforce the involvement of users in the development of
sustainable environments [32]. The third layer is public usage. It depends on applications’
success, if they are widely adopted and manage to change the behaviors of citizens. They
give more transparent information to the users so they can use them to make better choices.
For a smart city, a new generation of smart grids and power systems can manage the
energy of buildings undergoing modernization by combining smart grids and buildings to
produce energy production/generation [33]. Indeed, by using the available resources [34],
the smart grid introduces additional facilities to smart homes (SH) residents and gives the
potential for the development of their business and economic value with the aim of energy-
saving and environmental protection [21]. The consumers will also have the possibility
to manage their high wattage appliances such as air conditioning, electric water heaters,
pumps, washing machine, clothes dryers, etc., using peak load management demand
response and other services. Electric vehicles enable smart grids to detect and accept the
produced/stored energy from consumers’ premises helping in overcoming the “spinning
reserve” of variable and intermittent production from renewable energy sources [8]. Smart
grids are the key and vital items for supporting the concept of a sustainable future city [35].

2.1.3. Risk Analysis

The uncertainty of the input parameters considered in the herein presented model
of the planned project efficiency analysis is related to the risks that may arise during the
analysis, preparation, and implementation. The possible risks of the pilot project for the
installation of the smart metering infrastructure and the ways to prevent and mitigate them,
among others, are based on the recommendations of the JRC EC [14], EPRI [12], and the
Croatian electricity company HEP d.d., Zagreb, Croatia [36], and are listed in Table 2.

Table 2. Types of risks and recommendations for prevention and mitigation in the preparation and
implementation of the installation of smart metering infrastructure project.

Risk Type Recommendations for Overcoming

Insurance of financing resources

Cost planning for project implementation when
preparing annual or ten-year financial plans of
institutions responsible for ensuring financing,
organization, and implementation of the project. In
Croatia, it is the distribution system operator. Securing
funds for project financing largely depends on
regulations and the need to comply with them, i.e.,
political decisions.
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Table 2. Cont.

Risk Type Recommendations for Overcoming

Selection of customers group for the
pilot project implementation

Pilot customers who have high or low potential to
reduce electricity consumption should not be selected.
They should be chosen randomly. It is recommended
that customers who want to volunteer to participate in
the project should be rejected, but those who do not
want should be selected, to better understand such a
segment of customers.

Focus on an “advanced” customer
group

The project implemented or benefits measured should
not be only for customers with high access to
information and a high propensity to embrace new
technologies. Different customer groups should be
analyzed, regardless of social and educational level.
That will result in a better estimate of the electricity
consumption reduction due to the installation of SMI
would be obtained.

Possibility of the results use on the
national level

When applying a project to a sample group, there is
always a risk of not being able to identify the drivers
for the use of local results at the national level. It is
necessary to use socio-demographic data to compare
customers at the state level, to mitigate this risk. In the
proposed project, the ratio of the number of citizens in
Ludbreg to the number of Croatian citizens is about
1/1000, so the results could easily be scaled to the level
of the whole country.

Mismatch between segments and
services and products

The risk that the products and services used within the
system are not in line with customer type can be
mitigated by conducting initial socio-demographic
analyses to identify which products and services best
suit certain types of customers. Mitigating this risk
would result in better project implementation results,
related to, for example, reducing electricity
consumption due to the installation of SMI, increasing
the share of RES production and the like.

Planning

Project activities and definition of all system
components (choice of communication type, smart
meter type, etc.), project implementation time horizon,
etc., should be following defined professional quality
standards and national and European standards,
strategies, and policies. It is also necessary to consider
the experience of other countries in implementing
similar projects.

Administrative project management

The problems in the organization of project
implementation can be mitigated by selecting
professional staff for administrative management and
project management and the requirement to prepare
frequent reports on the status of project
implementation (on possible implementation
problems and difficulties). Project implementation
must follow existing laws and regulations. The
deadlines set must be realistic and in line with existing
practice.
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Table 2. Cont.

Risk Type Recommendations for Overcoming

Components supply and installation

The risk of problems in the procurement of adequate
equipment (delays, etc.) and timely installation of
components can be mitigated by quality preparation of
tenders for equipment procurement with exact
specifications of required functionalities. The selection
of qualified and professional staff to monitor project
implementation and reliable contractors is also
important.

Component failure or part of the system
and increase of operating costs

If a component or system (e.g., communication
problems) is prone to failure, then there is a need to
ensure an expert team (in that part of the system) to
prevent outages and network maintenance.
Troubleshooting is needed until a proper and
harmonized system operation is established. The use
of its own infrastructure for data transmission and
processing is recommended.

Emergence of new technologies and
services

It is necessary to give time for the evaluation of new
technologies, to organize lectures and workshops to
acquaint customers with the way of their use and its
advantages.

Data security and protection

Since an advanced metering system will generate large
amounts of data, data protection and security must be
at a high level. The recommendation is to ensure strict
approval of requests for access to data and the
establishment of cyber-attacks protection (cyber
firewalls).

2.2. Parameters Uncertainty Characterization Methodology

The planned project scenario that will be considered is AMI (smart metering) deploy-
ment in the city of Ludbreg. The objective of parameter uncertainty characterization (PUC)
is to define relevant parameter values for probability distribution and to determine time
dependency. A description of the developed method follows with diagram representation
in Figure 2. Application of the method is illustrated in the case study in Section 3.1.

Parameter uncertainty, in general, has epistemic and aleatory sources [25]. Where
the epistemic part of uncertainty reflects a lack of knowledge, and in principle could be
reduced with improved understanding and modelling), the aleatory part presents the
irreducible stochastic (random) source of uncertainty. Parameter uncertainty will then be
modelled on the basis of the available information and analyst professional experience.
Since CBA modelling is about future predictions, it is also important to assess changes in
the parameters and respected uncertainties over the time modelled.

The starting point and base for the parameter uncertainty determination are deter-
mining an expected value (D0) and range of realistically possible values (i.e., a lower Dmin
and an upper Dmax bound values). The total range, D, is the difference between the upper
and the lower boundaries (D = Dmax − Dmin). For comparisons of the range of change of
different parameters, the lower and upper limit of change can be expressed as a relative
percentage in relation to the nominal (expected) value, D%min, D%maks, as stated in the
following equations:

D%min =
Dmin − D0

D0
, D%maks =

Dmaks − D0

D0
, uz D0 6= 0, (1)

where:

Dmin I Dmaks—lower and upper limit expected value in absolute amounts,
D0—nominal (expected) parameter value,
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D%min i D%maks (%)—lower and upper limit value in relative amounts in relation to the
nominal value.

The whole process of parameter uncertainty characterization is divided into consecu-
tive steps (S) and resulting determinations (R).

The first step for uncertainty characterization (as, in short, in Figure 2) is analysis of
the available literature, i.e., S1: Create/calculate uncertainty characterization using the
appropriate literature (e.g., utility, research, and other reports, Eurostat database, scientific
papers, etc.) available for the specific project. With sufficient information available from the
literature, the uncertainty distribution function is characterized. The remaining question is
about the parameter time variance, and this is further explained later. The unavailability
of sufficient information from the literature to determine uncertainty distribution in this
approach also implies that there are not enough data for conventional statistical analysis.

In case it was not possible to determine the uncertainty function in step S1, then in
the second step, i.e., S2 (Figure 2), the analyst determines the parameter’s expected value
and range (expression (1)) based on the data available in the literature. In this step, the
basics for defining the distribution function of the parameters are prepared. By considering
the project specifics, the final expected value and range will then be determined in step S3
(Figure 2).

After determining the expected parameter value and range, determination of the
distribution type follows. There are four possible resulting determinations about the
parameters’ uncertainty distribution type, as presented in Figure 2.

The simplest circumstances are when the expected value is not well defined, and its
likelihood is not much higher compared to the minimum and maximum values. That leads
to the selection of uniform distribution, R1. This also means that the knowledge about
parameter uncertainty is low, and the decision should be reevaluated if the parameters turn
out to be very significant for the results. If the expected value is highly likely but there is
not enough information about the nature of its variance, then triangular distribution is the
proper choice, R2.

Finally, if the expected value is well defined and the variance is symmetrical, with
or without enough information about the variance, normal distribution is considered
as the proper choice (R3), and otherwise, lognormal is the final resulting determination
(R4). This consideration and the resulting determination correspond to the common
approach [37]. The normal distribution is generally suitable as an approximation for
more complex distributions [38]. For asymmetric data with negative values, lognormal
distribution is not suitable, and some other distribution must be used, e.g., minimum
extreme. This is not often the case for the parameters considered here, and for the sake of
brevity, it is excluded from presentation in Figure 2.

The parameters for uncertainty characterization with the distribution function are
the mean value µ and variance σ2, or standard deviation σ, that may be determined as
given in Equation (2). The expected value characterizes the probability-weighted average
of all possible values for the random variable xt. The standard deviation σ of a numerical
variable xt is the mean square deviation of numerical values from their arithmetic mean
value, as given in the following equation:

σ =
√

1
n−1 ∑n

i=1(xti − xt)
2, where xt =

1
n ∑n

i=1 xti , (2)

For the continuous random variable xt distribution function, F(xt) may be given by an
integral whose integrand f (xt) is the density of the distribution or the probability density
function.



Energies 2022, 15, 2040 12 of 29

Energies 2022, 15, x FOR PEER REVIEW  12  of  28 
 

 

part of the variable   𝑥௧  represented by some probability density function as assumed in 

this paper (uniform, triangular, normal, or log normal). 

Time dependency of  the variable  𝑥௧, in some cases, can also be represented by the 

following expression: 

𝑥௧ ൌ 𝑥଴ ൅ 𝑘௝ ∙ 𝑡 ൅ 𝜔௧,  (4) 

where  𝑘௝  represents a constant amount of change,  𝑥௧  in  𝑡 ൌ 1, … , 𝑗  (or during the con‐
sidered period), for example, an increase in its amount, whereby  𝑗 ≤ 𝑛, where  𝑛  is a num‐
ber of years of the reference period of the project acceptability analysis.  𝜔௧  is an uncer‐

tainty part of the variable  𝑥௧  and it has been described in the expression (3). 

Legend:

Action

Data/ Information

Initial analyze (the next year / the 
period)  parameter’s uncertainty

Distribution function is 
available in the literature 

(S1)

Is the parameter
time‐invariant or is the 

end of the project 
evaluation time?

Yes

Is D0 well defined 
(high probability)?

Any value within the 
range Dmin and Dmax is 

just as likely as any other

R1
Uniformn

Is the variance from 
D0 known?

Data clustered around 
the nominal value and 
constrained within the 
range Dmin and Dmax

R2
Triangular

Is the variance 
symmetrical?

Well defined the expected 
value with or without enough 

information about the 
variance; 

Can be an approximation for 
complicated distributions

R3
Normal

Data include only 
positive real values

R4
Lognormal distribution

Parameter uncertainty characterization

Yes

Yes

Yes

No

Yes
No

No

Determine the final D0, Dmin and 
Dmax by the analyst, based on what 
is found in the literature and the 
project‐specific information (S3)

No

The analyst to define parameter 
uncertainty distribution

End of parameter 
uncertainty 

characterization

D0, Dmin, Dmax can be found or 
determined in the literature (S2)

No

 

Figure 2. Diagram of proposed scenarios and methods for parameter uncertainty characterization.
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After selection of the most suitable distribution function, it is also important to de-
termine if the parameter is time-variant. When the parameter is expected to change over
the project evaluation time, and the change may be predicted, the parameter is considered
time-variant, i.e., T. The expectation is that the type of distribution remains the same over
the project evaluation time, while the expected value and range might change for future
years/periods during the evaluation time. Expected values and ranges change depending
on the nature of the parameter and project, with possibly increasing variance during the
evaluation time. For estimation of these changes, the presented approach remains the same
with consideration of the literature, project-specific information, and analysts’ judgment. To
determine the value of these changes, the analyst needs to repeat the uncertainty analysis
for each year or period, starting from step S1. This is in principle the same as for the initial
uncertainty analysis, with the advantage of the already established initial distribution.

If the variable xt is continuous and time-variant, its time dependence can usually be
represented by a linear model with the following expression [39]:

xt = x0(1 + ki·t) + ωt, (3)

where t = 1, . . . , n, n is the number of the number of years of the reference period of the
project acceptability analysis, x0k·t represents the trend of linear parameter change, x0 is
the initial expected value of the variable in the first year of the calculation t = 1, ki is the
coefficient slope of change in time t, for i ≤ n. The parameter ωt is an uncertainty part of
the variable xt represented by some probability density function as assumed in this paper
(uniform, triangular, normal, or log normal).

Time dependency of the variable xt, in some cases, can also be represented by the
following expression:

xt = x0 + k j·t + ωt, (4)

where k j represents a constant amount of change, xt in t = 1, . . . , j (or during the considered
period), for example, an increase in its amount, whereby j ≤ n, where n is a number of
years of the reference period of the project acceptability analysis. ωt is an uncertainty part
of the variable xt and it has been described in the expression (3).

3. Results

The presented methodology for cost-benefit with uncertainty analysis will be applied
to a project for smart metering deployment in the city of Ludbreg, Croatia. The results
of uncertainty characterization for the selected parameters, with illustrative analyses, are
presented in this section.

3.1. Project Scenario for Smart Metering Deployment in the City of Ludbreg, Croatia

The planned project scenario that will be considered is AMI (smart metering) deploy-
ment in the city of Ludbreg. The city of Ludbreg has 3594 inhabitants with a total of 8458 in
the entire municipality. With existing plans, the city of Ludbreg could become a live lab
and the testbed for smart grid and smart city technology implementation.

The Third Energy Package ([40], in Annex I.2) provides the recommendations for AMI
deployment and their economic assessment. Smart meters used must comply with the
Measuring Instruments Directive EU [41].

Typically, the AMI communication technologies that will be used are the follow-
ing: Power Line Communication (PLC); and Global System for Mobile Communications
(GSM)/The General Packet Radio Service (GPRS).

Input values for the number of metering points for household and commercial cus-
tomers, and the amount of electricity consumption in Ludbreg in 2019, are assumed to be
the same as for the year 2014 [42]. According to the Distribution System Operator (DSO),
the changes so far are negligible.
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Many of the AMI components (smart meters, balancing meters, in-home energy
display, and communication components) that are planned to be installed in this project are
shown in Table 3 (see also footnotes). At household customers will be installed 1433 smart
meters, the same number of IHDs, and 34 balancing smart meters. Commercial customers
will be equipped with 310 smart meters, the same number of IHDs, and 30 balancing
smart meters. The share of these components is based on data received from the Croatian
DSO [36]. The plan is to have 17 PLC concentrators (85% types of smart meters will be with
PLC communication, and the rest with GPRS communication). There are three possible
scenarios for the scope of planned project activities, i.e., “do the minimum”, balanced, and
extended. Scenarios are defined by the type of AMI components used, and the period and
intensity of their installation. In this paper, only the extended scenario is considered, with
the period and installation rate given in Table 4. This paper aim is to describe and show the
application of the developed methodology for parameters uncertainty characterization but
not to compare the results of different project scenarios for smart meters deployment.

Table 3. Number of three types of meters to be installed in the smart metering system in the city of
Ludbreg.

Smart Metering Component
to Install

Number of Smart
Components for Household

Customers 1

Number of Smart
Components for Commercial

Customers 2

One phase smart meter 1003 217

Three phase smart meter 430 93

In-Home energy Display
(IHD) 1433 310

Balancing smart meter on TS
10(20)/0.4 kV 34 30

1 Without 1% of household customers that already have smart meters. 2 Without 8.7% red tariff commercial
customers that already have smart meters.

Table 4. Annual installation rate of the smart metering components in Ludbreg in the extended
scenario.

Year 2019 2020 2021 2022 2023

Rate (%) 5% 20% 35% 35% 5%

The share of total electricity losses in the Ludbreg distribution area was 5.7% and 4.5%
in 2013 and 2014, respectively, and in both years, the share of non-technical losses in the
total electricity losses was 10% [30,31]. These data will be also input for further calculation.

Project implementation will contribute to the increase in the role of the customer in
energy management, to supporting integration of customers into the electricity market
(innovative tariff models, energy consumption adjustment), to better billing and payment
and a rise in customer satisfaction.

The values of some parameters used for the cost and benefits calculation are given in
this and Section 3.2 of this paper. Some of them are given in the Table 5. Their uncertainty
is described within the uncertainty of the total capital costs, not separately for each of them.
Parameters values are based on the authors’ experience from their professional projects
(originally, data have mainly been obtained from the Croatian DSO [36]) or taken from the
available literature.
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Table 5. Values for parameters, used for capital cost calculation, considered unchanged during the
project evaluation time (based on the authors’ experience, and adaptation from DSO [36], and other
literature).

Name of Parameter Unit Value

The average number of electromechanical
meters with 2 tariffs/1 switching clock * #/switching clock 3

Reading cost—households (2 times/year)
Baseline €/met. point (2 times/year) 0.43

Reading cost—enterprises (12
times/year) Baseline €/met. point (12 times/year) 9.67

Cost per call Baseline and AMI €/call 0.45

Cost for uninstallation of switching
clocks €/switching clock 11.0

Cost of disconnection of meter Baseline €/meter 14.6
* according [36].

Values of paper and electronic bill costs for household and commercial customers
(enterprises) for baseline and AMI project analysis are taken from [23] (not listed here for
brevity).

3.2. Parameter Uncertainty Characterization Application

The presented methodology for uncertainty characterization is applied to selected
parameters (Section 2.2 and Figure 2). Parameter characterization consists of three steps
(S1 to S3) and the resulting distribution (R1 to R4) for the initial status and for changes
during the project evaluation time when the parameter is time variant. Selected results
are presented separately for time-invariant and time-variant parameter uncertainty char-
acterization. Initial uncertainty characterization is the same for both types of parameters.
However, they are presented separately to illustrate the first initial uncertainty charac-
terization and then, the characterization of uncertainty changing throughout the project
evaluation time.

3.2.1. Time-Invariant Parameters Uncertainty Characterization

This section illustrates the uncertainty characterization of some parameters which are
determined to be time invariant. The presented parameters are only those for which there
was no characterization of uncertainty available from the literature or there were sufficient
data for conventional statistical analysis (S1, Figure 2). This serves the focus of the paper
best.

The selected parameters with characterized uncertainty as triangular (R2) distribu-
tion are presented in Table 6 with their D0, Dmin, and Dmax values. For all parameters,
the main characterization values were found in the literature or from sources relevant to
the project (see table). Values for selected parameters with uncertainty characterized as
normal (R3) are presented separately because of different key values as will be given
below. There were no parameters with uncertainty characterized as uniform (R1) or
lognormal (R4) distribution.
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Table 6. Characteristics of uncertainty characterization for selected time-invariant parameters with
the R1 and R2 method.

Name of Parameter Type of Density
Function (Result) D%min/Dmin D%max/Dmax D0 Literature

Capital costs (k€)
Operational costs (k€ /annually) *

Costs of reinvestment (k€)

Triangular (R2) −42% of D0 79% of D0 444 [30]
Triangular (R2) −60% of D0 200% of D0 22 [12,23,30,43]
Triangular (R2) −42% of D0 79% of D0 458 [30]

Social discount rate (%)
Reduction in electricity consumption

because of smart meters installation (%)

Triangular (R2) 4.0% 7.2% 5% [11,41]

Triangular (R2) 1.0% 4.5% 2.5% [23]

* Detail PUC is given below in this section.

The probability density functions for parameters whose uncertainty is characterized
as triangular (R2) and Normal (Gaussian) (R3) are presented in Figure 3. Determination of
uncertainty distribution for these two parameters is described in separate sections.
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Parameter Uncertainty Characterization with Triangular Distribution Function
(R2)—Capital Cost

The capital costs of this project are composed of the costs for supply and installation of
smart metering components, the cost for hardware and software communication upgrade
to the AMR center, and the cost of installing communication equipment in the AMR center,
but also, of the costs for project management, expert supervision, audit, and the costs of
public communication, visibility, and customer awareness. The values of those parameters
are mostly based on the authors’ experience from their professional projects (most of the
data were originally obtained from the Croatian DSO [36]), i.e., they are defined by the
analyst on the basis of available data in the literature, and project specifics (S2 and S3). The
nominal value of capital costs is calculated with the use of the costs of components (listed
in Table 3) as follows:

• The price of a PLC smart meter (SM) is from EUR 180 to 215/SM, depending on
the type of SM (single or three-phase meter) with operational costs from EUR 8.2 to
8.4/annually;

• The price of GPRS/GSM SM is from EUR 205 to 230/SM, also depending on the type of
SM (single or three-phase meter), with operational costs from EUR 9.6 to 9.8/annually;

• The cost estimate for hardware and software communication upgrade to the AMR
center is EUR 3.7/SM;

• The cost estimate of installing communication equipment to the AMR center is EUR
0.33/SM with operational costs of EUR 0.94/SM/annually.

The calculated expected value of total capital costs is EUR 530 k. As stated in [2],
accordingly to the value of other capital costs for a similar project available in the lit-
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erature [30], the range of capital costs can be determined (S2 and S3). Because capital
cost values are clustered around the nominal value and constrained within the range of
minimal and maximal estimates, according to the proposed method its uncertainty can be
characterized by triangular distribution function (R2), Figure 2.

The calculated span of capital costs in Croatia, normalized by the number of metering
points used in this project, is given in the Table 7. According to EC [30], the span of total
capital cost per metering point, considered in the CBA of smart meter roll-out in some of
the 27 Member States that have already completed the roll-out or are rolling out smart
metering, is also given in the following table. For Croatia, the capital costs are the sum
of costs for meter purchase, their installation, and operational costs, without additional
costs (e.g., for project management, audit, etc.). Capital costs for other countries may have
excluded operational costs or the broader costs to society, and this is not strictly specified,
so a strict comparison of the respective data as such is not possible.

Table 7. Total capital costs normalized by the number of metering points based on [30].

Type of Distribution
Function Chosen

Min. Cost per
Metering Point, Dmin

(EUR) [D%min(%)]

Max. Cost per
Metering Point,

Dmax (EUR)
[D%max(%)]

Expected Cost
per Metering

Point, D0 (EUR)

Croatia (obtained from
the Croatian DSO [36]) 186 (−12%) 237 (+12%) 212

The Member States which
have already completed

the roll-out
Member States rolling

out smart metering

94 (−52%) 288 (+46%) 197

Decrease in direct
electricity consumption

due to the
implementation of

balancing smart meters
(75% of the value of
non-technical losses

reduction)

77 (−63%) 590 (+180%) 211

According to the values given in Table 7, the average lower and upper deviations in
relative values, i.e., the capital cost deviation, is from D%min = −42% of D0 to D%max = 79%
of D0. These values are used for calculation of min. (Dmin = D0 ∗

(
1 + D%min

)
) and max.

(Dmax = D0 ∗
(
1 + D%max

)
) values of the chosen triangular distribution function. The

value of capital costs was determined to be time invariant during the project evaluation
time due to the lack of reliable knowledge.

Parameter Uncertainty Characterization with Normal Distribution Function (R3)—A List
of Parameters and Example

The uncertainty of the following parameters in this project, as stated in [2], was
determined with the use of the normal probability distribution, resulting in uncertainty
characterization R3. The expected value and relative variance of the parameters’ range
are taken from the literature (S2) and were finally determined by an authors’ professional
knowledge and experience, data available from the literature, and project-specific data
(data mainly obtained from the Croatian DSO [36]) (S3). The expected values and standard
deviation for parameters with uncertainty characterization Normal (Gaussian) distribution
are given in Table 8. Uncertainty characterization for one parameter with the resulting
determination of normal distribution is explained in more detail.
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Table 8. Characteristics of uncertainty characterization of time-invariant parameters with the normal
distribution (R3).

Type of Distribution Function Chosen
Normal (Gaussian) Distribution

Literature
D0 σ

Commercial losses decrease due to the implementation of
balancing smart meters (%) * 25% 7.5% (30% of D0 ) [36]

Increase in direct electricity consumption due to the
implementation of balancing smart meters that is now
measurable (25% of the value of non-technical losses
reduction)

25% 7.5% (30% of D0 ) [36]

Decrease in direct electricity consumption due to the
implementation of balancing smart meters (75% of the
value of non-technical losses reduction)

75% 22.5% (30% of D0 ) [36]

The share of customers with an electronic bill in 2020 30% 9% (30% of D0 ) [23]

The share of customers with an electronic bill in 2021 40% 12% (30% of D0 ) [23]

The share of customers with an electronic bill in the
period 2022–2038 50% 15% (30% of D0 ) [23]

Percentage of disconnections per year—households 0.57% 0.17% (30% of D0 ) [36]

Percentage of disconnections per year—enterprises 1.2% 0.36% (30% of D0 ) [36]

Percentage of disconnections per year—enterprises 1.2% 0.36% (30% of D0 ) [36]

Percentage of total calls regarding the reading
problemsBaseline

52% 13% (25% of D0 ) [36]

Percentage of calls no. regarding measuring pointAMI 25% 5% (20% of D0 [36]

Percentage of total calls regarding reading problemsAMI 15% 3% (30% of D0 ) [36]

Number of liters of fuel per reading—households 0.033 L 0.01 L (30% of D0 ) [36]

Number of liters of fuel per reading—enterprises 0.3 L 0.09 L (30% of D0 ) [36]

* Detailed parameter uncertainty characterization for this parameter is given below in this section.

Parameter Uncertainty Characterization with Normal Distribution Function (R3) Detailed
Example—Commercial Losses Decrease Due to the Implementation of Balancing Smart
Meters on a Transformer Station

Implementation of balancing smart meters on transformer stations MV/LV is used
for measuring electrical energy flow. This is important for balancing, better planning of
production, based on known load demand, and mainly to enable control of unauthorized
electricity consumption, as stated in [2]. Based on the authors’ professional experience
and the expert judgment of the authors’ colleges (S3), the expected decrease in com-
mercial losses could be about 25% of the decrease in commercial losses [36]. The range
for this parameter change is judged, by the authors, to be symmetrical (S3). Standard
deviation (σ) was determined concerning the expected value, and equal to 30%, as is
suggested in [10]. PUC is based on an expert’s knowledge and professional experience,
and available data from DSO [36], but at the same time depends on customer behavior
or may reflect distribution system characteristics (e.g., a delay in connecting customers
to the network, etc.). The value of this parameter change is considered by the authors to
be unchanged during the whole project evaluation time [2], i.e., the parameter is time
invariant. This is mainly because of the lack of a reliable base to model this change
during the project time.
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3.2.2. Time-Variant Parameters Uncertainty Characterization

Parameters whose uncertainty characterization is described in this section are judged
to be time variant or time dependent.

The initial uncertainty characterization of the parameter is the same regardless of its
time dependency. As stated in [2], after the resulting initial determination of the most
appropriate uncertainty distribution (R1 to R4), if the parameter is judged to be time
dependent, the whole process is repeated. This means returning to step one (S1) for each
year of the project evaluation time, to determine DF or the basis (S2) for final determination
of the parameter-specific data (S3) needed for further DF selection (with one of the resulting
determinations, R1 to R4). It is expected that future changes in parameters will increase
uncertainty but preserve the initially determined DF during the project evaluation time.
Different methods (e.g., linear) could be applied to the model parameter’s uncertainty
changes on a yearly basis or for certain periods (phases) during the project time. A detailed
description of such models is beyond the scope of this paper.

The following parameters are time variant, and their uncertainty is characterized by the
selected distribution function and time-dependent value of change (with the reference used),
as given in Table 9. Modelling of time-variant uncertainty characterization is explained
and illustrated using two parameters: electricity consumption changes for households and
commercial customers, and price per ton of CO2.

Table 9. Characteristics of the uncertainty characterization of time-variant parameters.

Name of Parameter
Type of

Distribution
Function

Range σ D0,k Literature

Specific CO2 emission
factor (kgCO2/kWh) Normal (Gaussian) 15% of D0

D02019 =
0.121 kgCO2/kWh

k2019−2030 = −0.00281,
D02030 = 0.09 kgCO2/kWh

k2030−2038 = −0.00138

[36,44]—Scenario 1

Average electricity selling
price (EUR/kWh, all taxes,

and levies included) for
household customers
(annual consumption

2.500–5.000 kWh) *

Triangular ±3% of D0

0.1292, with a yearly
increase of k = 1.7% in the

reference period
[45]

The trend in electricity
consumption changes for

household and commercial
customers in the period

2015–2030 **

- - D02019 = 16, 674 GWh with
a yearly increase of k = 1% [44]—Scenario 2

Low-carbon generation
increase by years (%) Normal (Gaussian) σ= 20% of D0

D02019 =
986 MWh, D02030 =

2.8 GWh, D02038 = 5.6 GWh
k2019−2030 = 0.494,
k2031−2038 = 1.055

[44]—Scenario 1, PV
generation

Price per ton of CO2
(EUR/t CO2) *** Triangular −55% of D0;

75% of D0

D0 and range are changing
in the project evaluation

time, see Figure 4
[11]

* PUC for average electricity selling price (EUR/kWh, VAT excluded) for commercial customers (annual consump-
tion 20–500 MWh) has the same characteristics as PUC for household customers with D0 = 0.1019, and k = 0.3%.
** PUC for the trend in electricity consumption change for household and commercial customers in the period
2030–2038 has a yearly increase of k = 0.92% and expected value in the years 2030 and 2038 D02030 = 18, 603 GWh
and D02038 = 20, 017 GWh, respectively. Detail PUC is given below in this section. *** Detail PUC is given below
in this section.
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Parameter Uncertainty Characterization—Specific CO2 Emission Factor

Uncertainty characterization for the parameter “Specific CO2 emissions factor per
kWh of consumed electricity” could not be found in the literature (S1) [2]. However, values
for this parameter are available for Croatia from the Ministry of the Economy [46]. Their
average value for the period 2014–2019 is 0.137 kgCO2/kWh. The uncertainty of this
parameter has an epistemic element (i.e., the trend and development of electricity imports,
availability of NPP Krško, transmission and distribution losses, and the type of fuel used in
thermal power plants and industrial CHP plants) and an aleatory element (e.g., the yearly
variability of production from hydropower plants and other renewable energy sources,
etc.).

Based on the values given in the Table 10, it can be determined that the amount of the
coefficient of the specific CO2 emissions factor change for the period 2019–2030 k2019–2030 =
−0.00281, and the coefficient of change of the specific CO2 emissions factor for the period
2030–2038 k2030–2038 = −0.00138 (step S2). Its time-variant change is characterized by the
application of the expression (2) and the calculated coefficients of change k2019–2030 and
k2030–2038. Therefore, the projection of the amount of the specific CO2 emissions factor in
the period 2020–2038 is given in the following table, while the amount in 2019 is given
according to [46] (Table 11).

Table 10. Share of the renewable energy sources and amounts of the specific CO2 emission factor.

Parameters 2015 2019 2030 2038 2050

Share of the renewable
energy sources (%) * 0.42 0.66 0.69 0.786 0.93

Specific factor of CO2
emission (kgCO2/kWh) 0.148 ** 0.121 ** 0.090 0.079 0.067

* data presented in the table were used later in [44]. ** based on [46].

Table 11. Projection of the amount of the specific CO2 emission factor (kgCO2/kWh) for the period
2020–2038.

Year 2019 * 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

Specific CO2
emission factor
(kgCO2/kWh)

D0

0.121 0.118 0.115 0.113 0.110 0.107 0.104 0.101 0.099 0.096 0.093 0.090 0.089 0.087 0.086 0.085 0.083 0.082 0.080 0.079

* based on [46].

For the uncertainty characterization of the amount of this parameter, Normal (Gaus-
sian) distribution (R3) was chosen, with the amount of standard deviation σ = 15% (S3).
Characterization of the uncertainty of this parameter, in short, is shown in Table 9.

Parameter Uncertainty Characterization—The Trend in Electricity Consumption Changes
for Household and Commercial Customers during the Project Evaluation Time

Electricity consumption is expected to increase every year during the project evalua-
tion time mostly because of the expected increase in the use of electric vehicles [44], hence,
this parameter is time variant. There are three assumed scenarios of electricity consumption
change, according to the authors of the Croatian Green book [44], and here for the appli-
cation, Scenario 2 has been chosen—moderate energy transitions. According to this, the
yearly rise in electricity consumption for the period 2015–2030 is: k2015–2030 = 1%, and for
the period 2031–2038: k2031–2038 = 0.92% (S2) with the time-variant change characterization
by the application of the Expression (2). The chosen distribution function for uncertainty
characterization of this change is triangular (R2 method) with a parameter range, as as-
sumed by the analyst, equal to ±1% of the expected value D0 (S3) during the project
evaluation time. The expected value of parameter changes will be calculated for each year
considered. According to [42], electricity consumption in Ludbreg in 2016 for households
(without 1% of them that already have SM) was 3.8 GWh, and for commercial customers,
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without red tariff (8.7% of total commercial customers), it was 12.3 GWh. On this basis,
the total electricity consumption for households and commercial customers in 2019 was
D02019 = 16, 674 GWh, while for 2030 and 2038, it is expected to be D02030 = 18, 603 GWh
and D02038 = 20, 017 GWh, respectively.

It may be noticed that the assumed changes in the parameter range (characterized by
a triangular probability density function) of the trend in electricity consumption changes
for household and commercial customers in Ludbreg in each year of the project evaluation
time is very low in comparison with the assumed change in the expected values during the
project evaluation time; hence, this uncertainty may be ignored [2]. The final PUC of this
parameter, summarized, is given in Table 9.

Parameter Uncertainty Characterization—Price Per Ton of CO2 Emissions

Carbon allowances and carbon taxes internalize climate change externalities by mak-
ing polluters pay. This is a complex parameter with future changes influenced by many
technical and non-technical factors, both aleatory and epistemic. Renewable Portfolio
Standards, energy efficiency measures, and other policies designed to mitigate CO2 emis-
sions (CO2) impose an effective price on carbon. In 2005, the European Union launched
a trading system for emission allowances (1 emission allowance = 1 tCO2) as an impor-
tant part of the strategy for reducing carbon dioxide emissions and other greenhouse
gases, at the lowest cost. Unlike the traditional regulatory approach, by trading emis-
sion allowances on the market, it tries to find the cheapest ways of reducing emissions.
As a result of a change in the European emission allowance (EEA) (Available on http:
//markets.businessinsider.com/commodities/co2-emissionsrechte (accessed on 30 Septem-
ber 2017); European Emission Allowance (EEA) https://www.eex.com/en/market-data/
environmental-markets/spot-market/european-emission-allowances#!/2018/05/30 (ac-
cessed on 10 January 2021.)) market in the second half of 2018, the value of this price
increased from EUR 7.5\tCO2 in January 2018 to EUR 25.6/tCO2 on 10 September 2018.
which indicates the great volatility of this parameter. Considering this, the expected value
of the change in the price per ton of CO2, which will be used here for economic analysis,
will be equal to the central scenario as suggested by the EC for evaluation of investment
projects [11]. According to [11], the price per ton of CO2 in the central scenario started from
EUR 25\tCO2 in 2010 with an assumed gradual increase (for EUR 1/tCO2 in each year)
to EUR 45\tCO2 by 2030. The same rule is applied until 2038, the last year of the project
evaluation time (S2 and S3 steps). The uncertainty of this parameter is characterized by
the triangular distribution function (R2) in each year of the project evaluation time, with
min. and max. values of deviation from the expected value equal to the values of this
parameter suggested by EC [11], as stated in [2], for low and high scenarios, respectively,
i.e., the time-variant change characterization by the application of the Expression (3). In the
low scenario, the price per ton of CO2, ranges from EUR 10\tCO2 in 2010 with an assumed
gradual increase (by EUR 0.5/tCO2 in each year) to EUR 20\tCO2 by 2030, while for high
scenario, it ranges from 40 €\tCO2 in 2010 with an assumed gradual increase (by EUR
2/tCO2 in each year) to EUR 80\tCO2 by 2030. The same rule is applied up to 2038, the
last period of the project evaluation time. According to the given values, the change in
the parameter’s minimum relative deviation from the expected value during the project
evaluation time is around −55%, while the change in the parameter’s maximum relative
deviation from the expected value is around 75%.

The assumed change in the price per ton of the CO2 parameter over the project
evaluation time, with uncertainties considered, characterized by triangular probability DF,
is given in Figure 4.

http://markets.businessinsider.com/commodities/co2-emissionsrechte
http://markets.businessinsider.com/commodities/co2-emissionsrechte
https://www.eex.com/en/market-data/environmental-markets/spot-market/european-emission-allowances#!/2018/05/30
https://www.eex.com/en/market-data/environmental-markets/spot-market/european-emission-allowances#!/2018/05/30
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Figure 4. Value of the price per ton of the CO2 parameter in the project evaluation time with
uncertainty characterization considered with triangular probability DF in some characteristic years.

3.3. CBA Results with Parameter Uncertainty Subsection

The results of the CBA, as presented in Section 2.1 for ENPV, EB/C, ERR, and PBP
(Payback Period: the length of time required for an investment to recover its initial outlay in
terms of profits or savings), are quantified with consideration of the parameter uncertainty.
Table 12 presents the point estimate value results for all four results in one project scenario.
Uncertainty results for ENPV and EB/C (obtained using Quantum XP addition to MS Excel
and the use of Monte Carlo simulation) are presented here to illustrate the importance and
expected outcome of parameter uncertainty consideration in the CBA. Figure 5 presents
the simulation results (histogram) for ENPV and EB/C with parameter uncertainty con-
sideration. Values of both results can be characterized with normal distribution. This is
expected, considering that CBA analysis includes input parameters, which uncertainty has
been characterized with different types of distributions (triangular or Normal (Gaussian)).
Characteristic values of distribution of results are given in Table 13.

Table 12. Characteristic point values of CBA results for the extended scenario of AMI implementation
in Ludbreg.

Scenario 1 ENPV (k€) ERR (%) PBP (#years) EB/C

Results 139 7.29% 11 1.14
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CBA (extended project scenario) considering the uncertainty of some input parameters.

Table 13. Characteristics of uncertainty of ENPV and EB/C results by the Monte Carlo simulation of
the CBA for the extended project scenario with parameter uncertainties included.

Parameter ENPV EB/C

Mean value (k€) −128 0.92
Standard deviation (k€) 293 0.26

Median value (k€) −134 0.87
Max. value (k€)—99.99% of percentile statistics 730 2.12
Min. value (k€)—0.01% of percentile statistics −899 0.36

Interval value (k€) 1.629 1.76
The probability of positive value (%) 40% 40%

The negative expected value of ENPV indicates that the planned project, for the defined
input parameters, is not acceptable for society and the environment. The uncertainty result
of the ENPV indicates that for a large part of the parameter’s values, which uncertainty
is characterized, the project is acceptable for implementation, i.e., for society and the
environment. The net present value histogram in Figure 5a shows positive values with
a 40 percent probability. The mean (expected) net present value including parameter
uncertainty characterization differs from its point value obtained using the conventional
project performance analysis approach. This is because the input parameter’s values in
conventional project assessment are the optimal/nominal values, while the herein presented
methodology includes all possible values that a parameter can take. After 11 years of project
implementation, the benefits become greater than the costs up until 2035 (in the 16th year
of the project evaluation time), when major reinvestments will be required, due to the
life cycle of the AMI equipment. However, the expected value of EB/C indicates that the
planned project is not economically acceptable for the society, but with an uncertainty value
of EB/C of 40% (Figure 5b), that the project is acceptable, and this is partly because of the
additional costs for reinvestment that are needed; but detail analysis of that is beyond the
scope of this paper.

Parameters whose change has the largest influence on the change of the ENPV can
be determined with the use of the “Percent contribution” command in the Quantum XL
program, an addition to MS Excel. This is one type of sensitivity analysis and is very useful.
One can choose the provisional number of parameters with uncertainty characterization
whose impact of change to the change of the result will be considered. The impact of
the change in the amount of the five most influential parameters (whose uncertainty is
characterized) on the uncertainty of the ENPV in percentages of the changes they cause for
the considered extended scenario is given in Figure 6.
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proportional in red) for the extended scenario.

A detailed evaluation of the CBA uncertainty results is beyond the scope of this paper.
The presented results point to the more complex reality which is accounted for when the
uncertainty of the model parameters is characterized and included in the quantification.
The different readings are possible from the CBA uncertainty results, e.g., how large it is
(5 and 95% values), what the probability is of positive project outcome (in this case, 0.4
for both ENPV and EB/C). In addition, with the assessment of individual parameters’
contribution to the resulting uncertainty, it is possible to analyze further the most important
parameters (CAPEX, reduction in electricity consumption, OPEX, price per ton of CO2,
discount rate, etc.) and potentially reduce their uncertainties. The point value of the ENPV
result is very different from the mean and median values of the uncertain ENPV results.
The reason for this may lie in the large span of uncertainty applied to uncertain parameters,
i.e., the great variability in the values of these parameters.

4. Discussion

Here, the proposed methodology for characterization of parameter uncertainty has
been developed to account for realistic possibilities regarding both the available data and
the existing knowledge. This means that the analytical sophistication of the developed
method is balanced by the available information and modelling needs. The method is
applicable for all situations where there is not enough data available to apply classic
statistical analysis for uncertainty characterization. Parameter uncertainty is characterized
by applying the proposed four determinations (R1 to R4, Section 2.2, Figure 2) depending
on the data (historical/current) and knowledge available about their nature. Both types
of uncertainties (i.e., epistemic and aleatory) are considered in a not so rigorous way by
including only well-defined influences. The aim is to determine the possible value or trend
of each parameter change better, with the most suitable distribution and predictable change
during the project evaluation time. For triangular (R2) distribution, parameter ranges are
determined by known values from the data and information available about expected
values and their changes. For normal distribution (R3), the expected value is well defined,
and the variance is symmetrical, with or without sufficient information about its variance.
Uniform (R1) and lognormal distributions (R4) are not used here for PUC, partly because
of the lack of data for a better description of the parameter range. This methodology also
gives linear models that analytically present parameters’ changes over time, which have
been applied to the time-variant parameters.

Parameters such as reduction in electricity consumption because of smart meter
installation, decreases in commercial losses due to the implementation of balancing smart
meters, and the percentage of disconnections per year for households and enterprises, are
considered as time invariant because of the lack of historical/current data, knowledge,
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and information about them. In addition, for some of them, such as the percentage of
disconnections per year for households and enterprises, it may be concluded that those
data have a smaller influence on the outcome of the results, so the PUC is simplified.

The expected value for time-variant parameters changes over time with a determined
linear coefficient (as for the parameter of the trend in electricity consumption changes
for households and commercial customers) or with values determined in time (as for
the parameter of the price per ton of CO2), both based on data taken from the literature,
project-specific parameters, and the expert judgment (knowledge and experience) of the
analyst.

For both the time-invariant and the time-variant parameters, the relative change in the
parameter range usually increases over time but may also stay constant (as is assumed for
the parameter price per ton of CO2), depending on the nature of the parameter uncertainty
and the available data. The change in the parameter range of the expected value of the
parameter “the trend in electricity consumption change for households and commercial
customers” is low in terms of the value of its yearly change over the project evaluation time;
hence, its uncertainty is ignored. Only its change in each year of the project evaluation time
is considered. For some parameters, such as “reading costs for households and enterprises
and cost per call”, however, changes in the future are expected, but their uncertainty is
not modelled due to the lack of historical/current knowledge and data related to those
changes. Another reason for this may be the analyst’s decision that those parameters have
a small impact on the outcome of the result, so a detailed PUC is unnecessary.

Without detailed analysis, mainly based on the high range of parameter uncertainty,
it may be concluded that the values of the parameter change, such as the price per ton of
CO2, reduction in electricity consumption because of smart meter installations, low-carbon
generation increase, capital costs and operational costs, have the largest influence on the
outcome of the ECBA results. Changes in these values cause the highest change in the
ENPV and lead to the high range of its uncertainty. In relation to these parameters, it
should be verified whether their further assessment would reduce the uncertainty related
to the knowledge and understanding of the results obtained.

The proposed project activity of AMI deployment in the city of Ludbreg is acceptable
for society and the environment with a risk value of 60% that the project will not bring better
prosperity for the stakeholders and the smart city. The reason for the high uncertainty of the
ENPV results is the large amount of parameter uncertainty considered and the large range
of their values. In this analysis, the characterization of input values and their functionalities
are in line with the regulatory obligations for AMI according to the EU directives [40,41].

5. Conclusions

Knowledge, research, and the results of investment analysis can help energy planners,
but also the city leaders or DSO, to better plan and decide in what activities, components,
services, etc., it is better to invest. Including parameter uncertainty in the planned project,
the CBA can show the influence of these uncertainties on the outcome of the CBA results
and the range of uncertainty. Uncertainties of analysis result include distribution, range, as
well as expected value. It helps to determine the limits of the values for some parameters
within which the project is worthwhile and acceptable.

The method presented demonstrates that the results for the CBA with uncertainty
included for the input parameters offer a much more comprehensive picture and provide
the potential for better understanding of analyzed projects, and a comparison of alternative
approaches. This allows for targeted reduction of uncertainties by further investigation
of the most important parameters and assumptions. Comparison of alternative scenarios
could be now undertaken not just based on the point values, but also based on the level of
their uncertainties and the probability of success. The probability of positive value in this
project scenario is 40% (Table 13).

The developed CBA method with uncertainty characterization applied to a case study
of smart metering deployment in the city of Ludbreg is in principle applicable for all
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other smart city assessments and is scalable for implementation in larger cities, regions,
or even to the whole state. By implementing it, the analyst should respect the priorities,
interests, concerns of the local society or the state and geographical region. Most of the
data for cities can be taken from their Sustainable action plans (SEAP), as it was for the
city here analyzed, Ludbreg [42]; while the trend in energy consumption and expected
rise in renewable energy production could be assumed according to the country’s utility
reports (here were used [36,47,48]), the county’s energy action plans (here was used [44]) or
annual energy report [46], applicable legislation (here was used [29]), and similar. Benefits
calculations and risk analysis various reports on CBA results of similar projects in other
cities and countries, together with the analyst’s judgement (regarding cities/countries
specifics), are all important for complete and comprehensive analysis.

The herein presented methodology is useful for uncertainty analysis when character-
izing the parameters’ uncertainty, during the reference period of the project acceptability
analysis evaluation, cannot be determined by conventional statistical methods, due to the
unavailability of sufficient data. The characterization of the parameters’ uncertainty is
based primarily on data from the available literature (historical/current, e.g., from annual
reports of transmission or distribution system operators or national energy reports), project
specifics, and analysts’ expertise.

For a complete assessment of the planned project’s acceptability, it will be necessary to
elaborate the financial CBA of the project and to determine if the project is acceptable for
implementation from the point of view of the distribution system operator, the owner of
the smart metering infrastructure, and under which conditions. The uncertainty of input
parameters, with their characterization, will be also considered.

The benefits of a CBA with quantified uncertainty may be found in cases where several
scenarios are considered because they could be better compared with quantified uncertainty.
The most significant influence of change (uncertainty) of a parameter on the outcome of
the result (net present value) was obtained by applying the Quantum XL program and its
analysis capabilities, more precisely, by plotting the percentage contribution of changes to
each parameter on the outcome. The uncertainty of the most influential parameters needs
to be further characterized to try to reduce the uncertainty of the analysis results to include
uncertainty of parameters and thus help stakeholders to make better project start decisions
based on the most accurate values of input parameters.

The presented methodology of the uncertainty of parameters characterization can
give a more complete and clear idea of the expected results for the analysis of the expected
results of the project. This is valuable for the project acceptability analysis (i.e., cost-benefit
analysis). The resulting uncertainty is presented with the statistical (usually normal)
distribution (Figure 5) and derived additional values (e.g., expected values and probability
of success, etc.).

The results of the project acceptability analysis used in the herein presented method-
ology, including the uncertainty of the parameters, offer a more comprehensive picture
and provide potential for better understanding the analyzed projects and comparison with
alternative approaches. This enables targeted uncertainty reduction by further research of
the most important parameters and assumptions in the project. Comparison of alternative
scenarios could be made then not only based on single values of the analysis results, but
also based on the level of their uncertainty, probability of success, etc.

Further analysis could also include determination of the range of parameter values
that enable the positive outcome of the ENPV based on additional analysis (e.g., the creation
of a Tornado diagram, based on the Monte Carlo simulation, for each parameter that has
been characterized).
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