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Abstract: This paper considers the unknown electrical resistance (measurand) as the numerical result
of the measurement that was carried out by means of the well-known direct comparison measurement
method using an appropriate standard resistor and voltmeter. In the literature, this measurement
method is also referred to as a series comparison method. This method of measurement is one of the
indirect methods and is suitable for measuring low resistance. This paper presents two approaches
for evaluating the unknown electrical resistance and its associated combined standard uncertainty.
The entire process of evaluating the combined standard uncertainty that is associated with the
measurand and the standard uncertainties that are associated with the analyzed input quantities
has been entirely performed in accordance with the applicable international recommendations and
guidelines for the uncertainty of measurement. The analyzed approaches for evaluating the combined
standard uncertainty are designed to be universal and valid both for the mutually non-correlated
input quantities and for the mutually correlated input quantities, which can be obtained from a single
observation, or repeated observations or by other means. This paper can substantially contribute to
the measurements in electrical engineering and education.

Keywords: unknown electrical resistance; uncertainty of measurement; direct comparison measure-
ment; series comparison method

1. Introduction

When the result of a quantity measurement is reported, it requires the estimated value
of the measurand (the quantity to be measured) and the uncertainty that is associated with
that value. The uncertainty of measurement as an attribute for expressing the quality of
a measurement result is relatively new in the history of measurement. The acceptance of
uncertainty of measurement as a unique numerical expression of the measurement result
quality ensued from many years of discussions resulting in international agreements that
are outlined in the guidelines [1]. That authoritative document is popularly known as the
GUM, (which stands for guide to the expression of uncertainty in measurement). The GUM
indicates that the formal definition of “uncertainty of measurement” refers to a parameter
that is associated with the measurement result characterizing the dispersion of values that
are reasonably attributable to the measurand. Correspondingly, other standards and guides,
such as [2,3], are strictly based on the guide.

For many years, the determination and expression of uncertainty in measurement has
been subject to debate in several global metrological organizations (IEC, BIMP, ISO, etc.)
around the world for many years. Several recommendations, guidelines, and instructions
have been generated therefrom. The latest internationally accepted document for the
expression of uncertainty in measurement is [2], which was adopted by the European
Cooperation for Accreditation (EA).

For many purposes, unknown resistors are compared to standard resistors by a com-
parison circuit. One such measurement method is the direct comparison measurement
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method using a standard resistor and a voltmeter. There are other similar methods, such as
the substitution method and the direct comparison method using a standard resistor and
potentiometer, to which the same procedure for evaluating and expressing uncertainty in
measurement may apply as the procedure that is described in this scientific paper. Thus
far, the literature has reported only the numerical value of the unknown resistance that
is obtained by means of the direct comparison method, rarely considering the internal
resistance of the voltmeter [4–11].

In general, every value that is obtained through measurement has some uncertainty,
and even though uncertainty may be reduced by thorough planning, a prudent selection of
a measuring instrument, and a careful execution of the experiment, it cannot be eliminated
entirely. Therefore, the main goal of this paper is to calculate the value of the unknown elec-
trical resistance using this direct comparison method, as well as to evaluate the associated
uncertainty of measurement according to [1,2].

In the proposed model, a measurand (output quantity) RX is not measured directly,
but it is determined from four quantities (input quantities: resistance of a standard resistor
RN, input resistance of used voltmeter RV, the voltage drop UN across resistor RN, and the
voltage drop UX across resistor RX) through a functional relationship f (·), also referred to
as the measurement model function. This functional relationship f (·) is based on the theory
of a voltage divider. This paper provides a detailed description of the determination of the
measurand RX and its combined standard uncertainty uC(RX). Generally, the determination
of the combined standard uncertainty of a non-directly measured measurand (output
quantity) is described in many textbooks [12–18]. Ref. [19] provides a simplified form of
the output quantity RX evaluation when it is determined from only three input quantities,
RN, UN, and UX, by applying the direct comparison measurement method using a standard
resistor and voltmeter, in addition to the evaluation of the combined standard uncertainty
that is associated with this RX. Unlike the aforementioned research, the model that is
proposed in this paper is more comprehensive and analyzed in more detail. The output
quantity RX in this model is determined from either four mutually non-correlated or four
mutually independent input quantities, which can be obtained from a single observation,
repeated observations, or by other means.

According to [1,2], the steps for evaluating and expressing uncertainty in the measure-
ment of the unknown electrical resistance that is determined according to the proposed
method may be summarized as follows:

1. Determination of the functional relationship f (·) (measurement model function) be-
tween the unknown electrical resistance RX (output quantity) and the input quantities,
on which it depends. This functional relationship should contain every quantity,
including all corrections and correction factors, that can add a significant component
of uncertainty to the measurement result.

2. Determination of the estimated value of each input quantity in the relationship, which
can be obtained from a single observation, repeated observations, or by other means.

3. Evaluation of the standard uncertainty of each input-estimated quantity. Type A
evaluation of the standard uncertainty will be evaluated for an input estimate that is
obtained from the statistical analysis of a series of observations, and Type B evaluation
of standard uncertainty will be evaluated for an input estimate that is obtained from a
single observation or by other means.

4. Evaluation of the covariances that are associated with any correlated input estimates.
5. Calculation of the measurement result.
6. Determination of the combined standard uncertainty of the measurement result

from the standard uncertainties and covariances that are associated with the input-
estimated quantities that were obtained in step 2.

7. If necessary, the determination of an expanded uncertainty.
8. Presentation of the measurement result.

An illustrative example that is presented at the end of this paper describes the practical
application of the proposed measurement method.
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The main contributions and originality of the proposed model include:

• the new and the original form of the mathematical expression for the calculation of
the electrical resistance value, which is extremely suitable for conducting higher-order
partial derivatives which can be of great importance when the model of measurement
functions has a nonlinear character,

• the complete the measurement model function,
• the method that is proposed in this paper allows the elimination of the influence of

thermo-electrical voltages, if any,
• the proposed model includes the cases where the input quantities are correlated and

mutually independent,
• the proposed model can be used in the determination of the electrical resistance value

by means of the direct comparison method using a standard resistor and potentiometer,
and in case when the unknown resistors are compared to standard resistors by a
comparison circuit (comparators).

2. Direct Comparison Method Using a Standard Resistor and Voltmeter

In this method, the unknown resistor RX, the standard resistor RN and a current source
are connected in series, as shown in Figure 1, and a voltmeter is used to measure the voltage
drop across each resistor.
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Figure 1. Direct comparison method using a standard resistor and a voltmeter.

2.1. Formulation of the Functional Relationship (Measurement Equation)

This measurement method is based on the principle of a voltage resistive divider. In
this case, a simple example of a voltage resistive divider is presented by two resistors that
are connected in a series with the input DC voltage applied across the resistor pair, Figure 2.
One of them has the unknown electrical resistance RX and the second one is a standard
resistor with the known electrical resistance RN. According to the principle of a voltage
resistive divider, the well-known equation applies:

I =
UX
RX

=
UN
RN
⇒ UX

UN
=

RX
RN

(1)

Deriving from (1), the value of the unknown resistance RX is:

RX = RN
UX
UN

(2)

If the unknown resistance RX is to be determined by measuring the voltage UN and
UX using a voltmeter according to Figure 1, then (2) would be valid only if the measure-
ment is performed by using an ideal voltmeter (voltmeter with an infinitely large internal
resistance). However, although the voltmeters typically have a large internal resistance RV,
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they introduce systematic effects in the measurement of electrical voltage, which in some
circumstances may be neglected, and considered in others.
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Figure 2. Equivalent circuit of a voltage resistive divider with two resistors.

Due to this internal resistance of the voltmeter, a systematic effect occurs in the above
voltage measurement, so the measured voltage values UX and UN will also contain this
systematic effect.

In order to minimize and ignore the systematic effect, the following conditions must
be met:

(a) During the measurement of voltages UX and UN, the current I in the circuit shown in
Figure 1 must remain unchanged, respectively

U0

RN + RX ‖ RV
=

U0

RX + RN ‖ RV
= I = constant (3)

which is achieved by using a highly stabilized DC power source or by adjusting the
variable resistor Rp (see Figure 3).

(b) During the measurement of voltages UX and UN, the value of the internal resis-
tance of the voltmeter RV should remain unchanged, which is achieved if both the
measurements are performed within the same voltmeter measuring range.

(c) The resistance values of RX and RN should be approximately in the same order of
magnitude and significantly lower (102 to 104 times less) than the voltmeter resistance
value RV. Therefore, this measurement method is commonly used when measuring
the low resistance values RX (up to a few kΩ only).
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If voltages UX and UN are measured simultaneously using the same high-resolution
voltmeter while maintaining the same measuring range and without changing the current
intensity during the measurement, the systematic effects in measuring these voltages
can be neglected (Figure 1). In this case, no correction of the calculated value of the
unknown resistance RX is required, which can be derived from (2), as corroborated by the
following observation.

The voltage UN can be derived from Figure 1 by the following expression:

UN = U0
(RN ‖ RV)

RX + (RN ‖ RV)
= I

RN · RV
RN + RV

(4)
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Analogously, the voltage UX can be derived from Figure 2 by the expression:

UX = U0
(RX ‖ RV)

RN + (RX ‖ RV)
= I

RX · RV
RX + RV

(5)

Dividing (5) by (4), with the fulfilled conditions (a), (b) and (c) and by using (1), the
following equation is obtained:

UX
UN

=
RX
RN

RX + RV
RN + RV

=
RX
RN

→0︷ ︸︸ ︷
RX/RV + 1
RN/RV︸ ︷︷ ︸
→0

+ 1
=

RX
RN

(6)

It is evident from Equations (2) and (6) that the value of the unknown resistance RX is
independent of the connected voltage U0, the current I, or the internal resistance of the
voltmeter RV. That means that this method of comparing the voltage with the fulfilled
conditions (a), (b), and (c) is exempt from the systematic voltage deviation. Hence, we
obtain the following simplified measurement model function:

RX = f (RN , UN , UX) (7)

In practice, the following circuit diagrams are commonly used to measure small
resistances using the direct comparison method (Figure 3a). The variable resistor Rp adjusts
the current intensity I so that it remains unaltered during voltages measurement and lower
than the continuous allowed current intensity through the RX and RN resistors. That is
controlled by means of an ammeter.

The method of four-terminal (four-wire) connections for electrical resistance mea-
surement (according to Figure 3b) is used for precise measurement and for measuring
low electrical resistances. The four-terminal (four-wire) connection of both the measured
resistor and the standard resistor is the most accurate method when measuring circuits
below 10 ohms, as this method eliminates the influence of the terminal resistances and the
resistances of connecting wires.

If conditions (a) and (b) are met, but condition (c) is not, the internal resistance of the
RV voltmeter must be considered when determining the unknown resistance RX. Hence,
dividing (5) by (4) we obtain:

RX = RN
UX
UN
· RV

RV + RN

(
1− UX

UN

) =

[
UN
UX

(
1

RN
+

1
RV

)
− 1

RV

]−1
(8)

According to (8), the measurand (output quantity) RX is not measured directly, but it
is determined from four other quantities (input quantities), RN, RV, UN, and UX, through a
functional relationship f (·) (measurement model function):

RX = f (RN , RV , UN , UX) (9)

The complete model function (9) is an algorithm that must be evaluated numerically.
The input quantities RN, RV, UN, and UX upon which the output quantity RX depends

may be viewed as the measurands themselves and depend on other quantities, including
corrections and correction factors for systematic effects, thereby leading to a complicated
functional relationship f (·) that may never be explicitly noted. No further dependence of the
input quantities RN, RV, UN, and UX on other quantities will be considered in this paper.
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2.2. Evaluation of the Input Quantities and Their Standard Uncertainties

In order to obtain the numerical value of the unknown resistance RX, according to (8),
the measurements of voltage drops UN and UX are required, as well as the appropriate
value of standard resistor RN.

Each of the input quantities in the model function (9) indicates not only their estimated
value, but also their standard uncertainty. With the model function (9), both the output
estimated value and the standard uncertainty are then calculated considering the GUM
rules.

An estimate of the measurand RX, denoted by R1X, is obtained from (9) by using input
estimates R1N, R1V, U1N, and U1X for the values of the four input quantities RN, RV, UN,
and UX. Hence, the output estimate R1X, which is the numerical result of the measurement,
is given by

R1X = f (R1N , R1V , U1N , U1X) (10)

Since the input estimates R1N, R1V, U1N, and U1X in (10) refer to the measurement
results, each of them has an associated standard uncertainty u(R1N), u(R1V), u(U1N), and
u(U1X), which may contribute to the standard uncertainty of the final measurement result
R1X. The sets of input quantities R1N, R1V, U1N, and U1X are categorized as quantities
whose values and uncertainties are directly determined in the current measurement. These
values and uncertainties are obtained from a single observation, repeated observations, or
by other means, and may involve the determination of corrections of instrument readings
and corrections of influence quantities, such as ambient temperature, barometric pressure,
and humidity.

In general, the uncertainty of the measurement comprises many components. Some
of these components may be evaluated from the statistical distribution of the results of a
series of measurements and characterised by experimental standard deviations. The other
components, which can also be characterized by standard deviations, are evaluated from
the assumed probability distributions based on experience or other information.

In the following section, we will consider the evaluation of the input estimates U1N
and U1X and their associated standard uncertainties u(U1N) and u(U1X), which can be
obtained either from the statistical analysis of a series of individual measurements under
identical experimental conditions (repeatability conditions)—repeated observations, or
from a single observation.

The mean estimate of the supposed distribution of the values is taken as the value of
the input quantity, and the estimation of the standard deviation of the mean estimate is
taken as the standard uncertainty.

Hence, for the input quantity U1N that is estimated from n independent repeated
observations U1N,k (k = 1, . . . , n), the arithmetic mean U1N is obtained from equation

U1N = 1
n

n
∑

k=1
U1N,k (11)

is used as the input estimate U1N in (10) to determine the measurement result R1X; i.e.,

U1N = U1N (12)

Analogously, for the input quantity U1X that is estimated from n independent repeated
observations U1X,k (k = 1, . . . , n), the arithmetic mean U1X is obtained from equation:

U1X = 1
n

n
∑

k=1
U1X,k (13)

is used as the input estimate U1X in (10) to determine the measurement result R1X; i.e.,

U1X = U1X (14)
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If the input estimates U1N and U1X are obtained from the repeated observations, their
associated standard uncertainties are evaluated as Type A evaluation of standard uncer-
tainties uA(U1N) and uA(U1X), respectively. Standard uncertainty uA(U1N) is defined as an
estimate of the standard deviation of the distribution of values, termed the experimental
standard deviation s(U1N). The experimental standard deviation provided a quantitative
estimate of the dispersion of the possible measured values U1N,k (k = 1, . . . , n), about their
mean value U1N , and it is given by

uA(U1N) ≈ s(U1N) =

√
1

n− 1

n

∑
k=1

(
U1N,k −U1N

)2 (15)

Analogously, the standard uncertainty uA(U1X) is defined as an estimate of the stan-
dard deviation s(U1X) and is given by

uA(U1X) ≈ s(U1X) =

√
1

n− 1

n

∑
k=1

(
U1X,k −U1X

)2 (16)

The best estimate for the standard uncertainty uA(U1N) to be associated with U1N is
the experimental standard deviation of the mean and is given by

uA(U1N)= uA
(
U1N

)
= s
(
U1N

)
=

=

√
1

n(n−1)

n
∑

k=1

(
U1N,k −U1N

)2
(n ≥ 10)

(17)

The best estimate for the standard uncertainty uA(U1X) to be associated with U1X is
the experimental standard deviation of the mean and is given by

uA(U1X) = uA
(
U1X

)
= s
(
U1X

)
=

=

√
1

n(n−1)

n
∑

k=1

(
U1X,k −U1X

)2
(n ≥ 10)

(18)

Those input estimates which are not evaluated from the repeated observations must
be obtained by other methods, such as those that are indicated in the second category of
4.1.3 in [1].

If the input estimates U1N and U1X are obtained by means of the same voltmeter from
a single observation, their standard uncertainties are evaluated as Type B evaluation of
standard uncertainties. Presuming that the values of the input estimates U1N and U1X
are estimated from an assumed rectangular probability distribution of a lower limit a−
and an upper limit a+, the input estimate U1N is usually the expectation of the rectangular
probability distribution

U1N =
a+ + a−

2
(19)

while the standard uncertainty uB(U1N) to be associated with U1N is the positive square
root of the distribution variance

uB(U1N) =
a+ − a−

2
√

3
(V) (20)

If a+ = −a− = a then
U1N = a (21)

and
uB(U1N) = σ =

a√
3
(V) (22)
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The input estimate U1X can also be obtained by means of (19). Type B evaluation of
standard uncertainty uB(U1X) to be associated with U1X can also be derived from (22).

Let us also suppose that the manufacturer accuracy specifications are available for
the used voltmeter and that, for the considered range, they provide an interval of possible
values, whose half-amplitude a is provided for:

- an analogous voltmeter (such as PMMC voltmeter) by means of:

a =
C ·M
100

(V) (23)

where C refers to the accuracy class of the analogous voltmeter (%), and M to the maximum
value of the voltmeter (V) measuring range;

- a digital voltmeter by means of any combination of two or three terms on the right
side of the following expression:

a =
p1

100
XDV +

p2

100
MDV + ND (V) (24)

where
p1—percentage of the voltmeter reading (%),
p2—percentage of the voltmeter range (%),
XDV—reading value of the used digital voltmeter (V). In our proposed model XDV = U1N

or XDV = U1X,
MDV—selected measurement range of the digital voltmeter (V), and
ND—number of digits, where the lexeme digit, sometimes confused with the lexeme

count due to its similar meaning, indicates the value of the less significant digit for the range
in use. The number of digits represents the resolution of the instrument for that range.

Sometimes these combinations also include the absolute value of the measured quan-
tity (volt, ohms, ampere . . . ).

According to the manufacturer of the voltmeter, the interval U1N ± a encompasses
all the values that are reasonably attributable to the estimate U1N, hence its coverage
probability is, therefore, 100%. In addition, the interval U1X ± a encompasses all the values
that are reasonably attributable to the estimate U1X, hence its coverage probability is 100%.

Let us also suppose that the manufacturer’s specification is available for the used
standard resistor RN. The nominal value of standard resistor RN, that is selected from
the manufacturer’s specification, will be taken as the input estimate R1N. Usually, the
nominal values of standard resistors are given with the tolerance band ±∆RN,max or with
the standard resistor tolerance δRN,max (%).

For the input estimate R1N, the standard uncertainty is also considered as Type B
evaluation of standard uncertainty. Type B evaluation is founded on the assumption of
rectangular (uniform) probability distribution and the manufacturer’s specification for the
selected standard resistor R1N. The standard uncertainty uB(R1N) to be associated with R1N
is given by

uB(R1N) = σ =
∆RN,max√

3
=

δRN,max/100√
3

· RN [Ω] (25)

where
RN—nominal value of standard resistor (Ω)
δRN,max—tolerance of the standard resistor RN (%).
Presuming that the manufacturer’s specification of the used voltmeter provides the

data for the internal resistance of the used voltmeter RV, the nominal value of the input
resistance RV will be taken as the input estimate R1V. Since the manufacturer does not
provide any additional information about the tolerance (%) of this resistance, apart from
the internal resistance of the voltmeter RV, we can ignore the standard uncertainty uB(R1V)
to be associated with R1V.

This is also permitted in [1], where it has been indicated that in some cases the
uncertainty of a correction of a systematic effect does not need to be included in the
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evaluation of the uncertainty of a measurement result. Although the uncertainty has been
evaluated, it may be ignored if its contribution to the combined standard uncertainty of the
measurement result is insignificant, since the internal resistance of the voltmeters is very
large in relation to the measured resistance.

2.3. Evaluation of Output Quantity and Its Uncertainty

In view of the above, the output estimate R1X is the numerical result of the measure-
ment, and it can be calculated by means of (10), which is obtained from (9) when the
unknown input quantities RN, RV, UN, and UX are replaced by the corresponding estimates
R1N, R1V, U1N, and U1X that are obtained from the measurements. According to [1], the
output estimate R1X may be obtained by means of the two following approaches:

The output estimate R1X is taken as the functional relationship f (·) from the arithmetic
means U1N and U1X , the nominal values of the standard resistor R1N and the internal
resistance of voltmeter R1V, i.e.,

R1X = f
(

R1N , R1V , U1N , U1X
)

(26)

where U1N and U1X are obtained by means of (11) and (13), respectively.
The output estimate R1X is taken as the arithmetic mean or average of n independent

determinations R1X,k (k = 1, . . . , n) of RX, each determination having the same uncertainty
and each being based on a complete set of observed values of the four input estimates R1N,
R1V, U1N, and U1X that are obtained simultaneously, i.e.,

R1X = RX =
1
n

n

∑
k=1

RX,k =
1
n

n

∑
k=1

f (RN,k, RV,k, UN,k, UX,k) (27)

The output estimate R1X is obtained by means of (27) may be preferable when the mea-
surement model function f (·) is a nonlinear function, but the two approaches are identical
if f (·) is a linear function of the input quantities (provided that the experimentally observed
correlation coefficients are taken into account when implementing the first approach). In
the measurement practice, the value of the uncertainty of the measurement is generally low
with respect to the measured value, hence it determines small variations of the measurand.
This means that the linearity condition of f (·) is almost always locally verified, near the
measurement point.

Presuming that the function f (·) in (10) is fairly linear, about the measured value R1X,
at least for small deviations of each of the four input quantities RN, RV, UN, and UX, about
their estimates R1N, R1V, U1N, and U1X, respectively. When the input quantities U1N,k and
U1X,k (k = 1, . . . , n) are correlated in the repeated observations assuming that that function
f (·) in (10) is fairly linear, about the measured value R1X, then the determination of the
output estimate R1X by means of (26) will be more convenient for further analysis.

The standard uncertainty of the result of the measurement R1X, which is obtained
from the values of the four input quantities RN, RV, UN, and UX, is termed a combined
standard uncertainty and denoted by uC(R1X). In the general case, with the correlated
estimates of the input values and assuming that the measurement model function f (·) is
a linear function, the combined standard uncertainty uC(R1X) of the measurement result
R1X is the estimated standard deviation that is associated with the result R1X and is equal
to the positive square root of the combined variance u2

C(R1X) that is obtained from the
following variance and covariance components
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u2
C(R1X) =

(
∂ f

∂R1N

)2
u2

B(R1N) +

(
∂ f

∂R1V

)2
u2

B(R1V) +

(
∂ f

∂U1X

)2
u2(U1X

)
+

(
∂ f

∂U1N

)2
u2(U1N

)
+

+2
∂ f

∂U1N

∂ f
∂U1X

u
(
U1N , U1X

)
+ 2

∂ f
∂R1N

∂ f
∂R1V

u(R1N , R1V)+

+2
∂ f

∂U1N

∂ f
∂R1N

u
(
U1N , R1N

)
+ 2

∂ f
∂U1N

∂ f
∂R1V

u
(
U1N , R1V

)
+

+2
∂ f

∂U1X

∂ f
∂R1N

u
(
U1X , R1N

)
+ 2

∂ f
∂U1X

∂ f
∂R1V

u
(
U1X , R1V

)
(28)

where
uB(R1N)—Type B evaluation of standard uncertainty that is associated with the input

estimate R1N, which can be obtained by means of (22),
uB(R1V)—Type B evaluation of standard uncertainty that is associated with the input

estimate R1V, which can be obtained by means of (22),
u
(
U1N

)
—may be Type A or either Type B evaluation of standard uncertainty that is

associated with the input estimate U1N. Type A evaluation can be obtained by means of
(17) and Type B evaluation can be obtained by means of (22),

u
(
U1X

)
—may be Type A or either Type B evaluation of standard uncertainty that is

associated with the input estimate U1X. Type A evaluation can be obtained by means of
(18) and Type B evaluation can be obtained by means of (22),

u
(
U1N , U1X

)
—estimate of the covariance of input means U1N and U1X ,

u(R1N, R1V)—estimate of the covariance of input estimates R1N and R1V,
u
(
U1N , R1N

)
—estimate of the covariance of input mean U1N and input estimate R1N,

u
(
U1N , R1V

)
—estimate of the covariance of input mean U1N and input estimate R1V,

u
(
U1X , R1N

)
—estimate of the covariance of input mean U1X and input estimate R1N,

u
(
U1X , R1V

)
—estimate of the covariance of input mean U1X and input estimate R1V.

The partial derivatives ∂ f
∂R1N

, ∂ f
∂R1V

, ∂ f
∂U1N

and ∂ f
∂U1X

(often referred to as sensitivity coeffi-

cients) are equal to ∂ f
∂RN

, ∂ f
∂RV

, ∂ f
∂UN

and ∂ f
∂UX

evaluated at RN = R1N, RV = R1V, UN = U1N ,
and UX = U1X , respectively.

Equation (28) is based on the first-order Taylor series approximation of the model
function of the measurement RX = f (RN , RV , UN , UX) and it expresses what is termed in
the Guide [1] as the law of propagation of uncertainty.

It is noted in [1] that the covariance that is associated with the estimates of two input
quantities may be taken to be zero or treated as insignificant if

• these input quantities are uncorrelated,
• either of these two input quantities can be treated as a constant, or if
• there is insufficient information to evaluate the covariance that is associated with the

estimates of these two input quantities.

Hence, considering that the estimates R1N and R1V are constant during the measure-
ment by the proposed method, then the estimated covariances u(R1N, R1V), u

(
U1N , R1N

)
,

u
(
U1N , R1V

)
, u
(
U1X , R1N

)
, and u

(
U1X , R1V

)
may be ignored in (28). Since it frequently

occurs that no associated uncertainty uB(R1V) is stated in the manufacturer’s specification
of the voltmeter, it can also be ignored in (28).

In accordance with this explanation, Equation (28) is reduced and may be rendered
as follows

u2
C(R1X) =

(
∂ f

∂R1N

)2
u2

B(R1N) +

(
∂ f

∂U1X

)2
u2(U1X

)
+

+

(
∂ f

∂U1N

)2
u2(U1N

)
+ 2

∂ f
∂U1N

∂ f
∂U1X

u
(
U1N , U1X

) (29)
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The partial derivatives or sensitivity coefficients in (29) are evaluated by means of the
following expressions:

∂ f
∂R1N

=
U1N

U1X
· 1

R2
1N

[
U1N

U1X

(
1

R1N
+

1
R1V

)
− 1

R1V

]−2

(30)

∂ f
∂U1X

=
U1N

U2
1X

(
1

R1N
+

1
R1V

)[
U1N

U1X

(
1

R1N
+

1
R1V

)
− 1

R1V

]−2

(31)

and
∂ f

∂U1N
= − 1

U1X

(
1

R1N
+

1
R1V

)[
U1N

U1X

(
1

R1N
+

1
R1V

)
− 1

R1V

]−2

. (32)

where U1N and U1X are obtained by means of (11) and (13), respectively.
The terms u

(
U1N , U1X

)
in (28) represent the estimate of the covariance of input means

U1N and U1X , determined from n independent pairs of repeated simultaneous obser-
vations U1N,k and U1X,k (k = 1, . . . ., n) of the estimates U1N and U1X. If there are n pairs of
measured results of independent repeated measurements of the estimates U1N and U1X,
then the covariance u

(
U1N , U1X

)
as a statistical measurement of the strength of the correla-

tion between these n pairs of the estimates can be calculated by the following equation:

u
(
U1N , U1X

)
= u

(
U1X , U1N

)
=

1
N(N − 1)

N

∑
k=1

(
U1N,k −U1N

)(
U1X,k −U1X

)
(33)

The degree of correlation between u
(
U1N

)
and u

(
U1X

)
is characterized by the esti-

mated correlation coefficient of input means U1N and U1X , defined as

r
(
U1N , U1X

)
= r
(
U1X , U1N

)
=

u
(
U1N , U1X

)
u
(
U1N

)
u
(
U1X

) − 1 ≤ r
(
U1N , U1X

)
≤ 1 (34)

In terms of the correlation coefficients, which are more readily interpreted than covari-
ances, and by using (34), Equation (29) may be written as

u2
C(R1X) =

(
∂ f

∂R1N

)2
u2

B(R1N) +

(
∂ f

∂U1X

)2
u2(U1X

)
+

(
∂ f

∂U1N

)2
u2(U1N

)
+

+2
∂ f

∂U1N

∂ f
∂U1X

u
(
U1N

)
u
(
U1X

)
r
(
U1N , U1X

) (35)

which is also known as the general formulation of the law of propagation of uncertainty [1].
With the uncorrelated estimates of the input values, r

(
U1N , U1X

)
= 0, and consequently

u2
C(R1X) =

(
∂ f

∂R1N

)2
u2

B(R1N) +

(
∂ f

∂U1X

)2
u2(U1X

)
+

(
∂ f

∂U1N

)2
u2(U1N

)
(36)

The uncertainty propagation law (35) (or its simplified version (36) in case of the
uncorrelated input quantities) can be used to evaluate the combined standard uncertainty
uC(R1X) of the result of the unknown resistance measurement when the measurand RX is
not measured directly, but is determined from the four input quantities RN, RV, UN, and
UX according to (8), while the standard uncertainties of their estimates are known. The
combined standard uncertainty uC(R1X) is an estimated standard deviation and it indicates
the dispersion of the values that are reasonably attributable to the measurand RX. The
resulting combined standard uncertainty can be used to obtain an expanded uncertainty
with a provided coverage probability.
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2.4. Evaluation of Output Quantity and Its Uncertainty Considering Thermo-Electrical Voltages

Thermoelectric voltages can seriously affect the low resistance measurement accuracy.
The current reversal method, the delta method, and the offset-compensated ohms method
are three common ways to overcome these unwanted offsets. When the thermoelectric
voltages are constant with respect to the measurement cycle, the current-reversal method
will successfully compensate for these offsets. However, if the changing thermoelectric
voltages are causing inaccurate results, then the delta method should be used. The delta
method is similar to the current reversal method in terms of alternating the current source
polarity, but it differs in using three voltage measurements to perform each resistance
calculation. The current reversal method provides a twice better signal-to-noise ratio and,
therefore, better accuracy than the offset-compensated ohms method. Hence, in this paper
we will use the current reversal method to cancel the thermoelectric voltage, which is also
used in [19].

Thermoelectric voltages can be cancelled by making two measurements with the
currents of opposite polarity, as shown in Figure 3b. This can be achieved by measuring the
voltages UN and UX for both polarities of the power supply (measuring first the voltage
UN for both polarities, and afterwards the voltage UX for both polarities). The averaging of
the voltage measurement results by both polarities of the power supply, i.e.,

U1N =
U1N+ −U1N−

2
(37)

and
U1X =

U1X+ −U1X−
2

, (38)

allows the elimination of the influence of thermo-electrical voltages. In the case of several
repeated voltage measurements, substituting the voltage results from (37) and (38) into (11)
and (13), and then into (8), will provide an estimation of the unknown resistance R1X. In
the case of a single observation of the voltages UN and UX, the results from (37) and (38) are
immediately substituted in (8). It is noted that the thermoelectric voltages are completely
cancelled out by this approach.

Type A evaluation of standard uncertainty u
(
U1N

)
can be obtained by means of (17),

and Type A evaluation of standard uncertainty u
(
U1X

)
can be obtained by means of (18).

In the case of a single observation of the voltages UN and UX and according to [19], it
can be assumed that there is uC(R1X+)

.
= uC(R1X−), and it, therefore, suffices to estimate

only one of these uncertainties, i.e., the uncertainty of the measured resistance R1X for one
power supply polarity only. The resulting combined standard uncertainty of the averaged
value R1X = (R1X+ + R1X−)/2 can be derived from the equation

uC(R1X) =

√(
uC(R1X+)

2

)2
+

(
uC(R1X−)

2

)2
=

√
2u2

C(R1X+)

4
=

uC(R1X+)√
2

(39)

where uC(R1X+) and uC(R1X−) can be obtained by means of (36).

2.5. Determining Expanded Uncertainty

The combined standard uncertainty of the measurement result uC(R1X) defines an
interval R1X − uC(R1X) to R1X + uC(R1X) about the measurement result R1X within which
the value of the measurand RX estimated by R1X can be confidently asserted to lie to
the extent of 68% for the normal (Gaussian) probability distribution or to the extent of
approximately 57.7% for the rectangular probability distribution. That is, it is confidently
believed that

R1X − uC(R1X) ≤ RX ≤ R1X + uC(R1X) which is commonly written as
RX = R1X ± uC(R1X).

In many areas of the industrial measuring practice, a coverage probability of p = 68.3%
is found to be too low. It is the intention of this paper to provide an interval about the
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result of a measurement R1X that may be expected to encompass a large fraction of the
distribution of values that could reasonably be attributed to the measurand RX. Hence, the
expanded uncertainty is introduced in this analysis and its value is given by

U = k · uC(R1X) (40)

where k is a coverage factor. In terms of the rectangular distribution, the value of the factor
k usually ranges from 1.5 to 1.73 and it is based on the coverage probability, or the level
of confidence that is required from the interval, Table 1. The relationship between the
coverage factor k and the coverage probability p for the rectangular distribution is given by

k = p
√

3 (41)

Table 1. Values of the coverage factor k that produces an interval with the coverage probability
p assuming a rectangular distribution.

Coverage Probability p Coverage Factor k

0.90 1.559
0.95 1.645
0.99 1.715
1.00 1.732

For the normal (Gaussian) probability distribution, the value of the factor k is usually
in the range from one to three and it is based on the coverage probability, or the level of
confidence required for the interval, Table 2.

Table 2. Values of the coverage factor k that produces an interval with the coverage probability p
assuming a normal distribution.

Coverage Probability p Coverage Factor k

0.6827 1
0.90 1.645
0.95 1.96

0.9545 2
0.99 2.576

0.9973 3

Finally, the value of the measured unknown resistance can be expressed by using the
expanded uncertainty by means of the following expression

RX = R1X ± k · uC(R1X) = R1X ±U (42)

3. Practical Example

This practical example demonstrates both approaches for determining the value of the
unknown electrical resistance by applying the direct comparison method using a standard
resistor and voltmeter and by evaluating its combined standard uncertainty. The unknown
resistor RX, the standard resistor RN and the current source are connected in a series, as
shown in Figure 1, and a voltmeter (DMM) is used to measure the voltage drop across each
resistor. All the connections according to Figure 1 are made by the same type of conductor
and thus the amount of thermoelectric EMF that was added to the voltage measurement
will be negligible.

Measuring instruments and devices with the following data were used:

1. Single-channel laboratory linear DC power supply, Model GPS-3030DD
(30 V/3 A single output, 90 W), GW Instek,

2. Variable resistor PRN 533 (as the unknown resistor RX) with the rated resistance
ranging from 0 to1 kΩ and the continuous permitted current 0.57 A. Resistance
tolerance was +10%,
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3. Resistance decade MA 2125 (as the standard resistor RN) with the standard resistance
ranging from 0 to 9,999999 MΩ. The accuracy class of this resistance decade was
±1% + 0.08 Ω. The maximum current rating ranging from 0 to 999 Ω was 25 mA,

4. TRMS multi-meter, Model EX542, EXTECH (as the voltmeter) with 40,000 count LCD
display and input impedance >10 MΩ VDC. The accuracy of this multi-meter for DC
voltage was ±(0.06% reading + 4 digits) with resolution of 0.0001 V.

During the measurement that was performed in line with the proposed model, the
slider of the variable resistor PRN 533 was set to an arbitrary position. The desired value
of the resistance decade MA 2125 was predicted and set to 240 Ω. The current intensity
through the resistors RX and RN during the measurement was constantly maintained at
10 mA, which is considerably less than the continuous permissible currents through these
resistors, and at the same time this amount of current intensity will not cause a noticeable
temperature rise of these resistors, hence their electrical resistances can be considered
constant during the measurement.

Since the internal resistance of the voltmeters is very large (>10 MΩ VDC) in relation
to the measured electrical resistance, and the conditions (a) and (b) of Chapter 2.1 are also
fulfilled, then the measurand (output quantity) RX may be determined from the three input
quantities RN, UN, and UX through the functional relationship f (·) that is given by means
of (7). Hence, the combined standard uncertainty uC(R1X) can be obtained in the case of
correlated input quantities by means of (35).

Since the conditions (a), (b), and (c) of Chapter 2.1 are fulfilled in this measure-
ment, then the output estimate R1X is calculated by means of (2) according to both
proposed approaches.

In this example, we considered eleven independent sets of simultaneous observations
of two input quantities UN and UX that were obtained under similar conditions, resulting
in the data that is provided in Table 3. The arithmetic means of the observations and the
experimental standard deviations of those means that were calculated from Equations (11),
(13), (17) and (18) are also given.

According to the first approach, the means are taken as the optimum estimates of the
expected input quantity values, and the experimental standard deviations represent the
standard uncertainties of those means.

Table 4 shows the measured input data and the analysis results in accordance with
the second approach. By comparing the results of the calculations from Tables 3 and 4, it is
noted that the same values for resistance R1X were obtained by using both approaches and
that the combined standard uncertainty uC(R1X) that was obtained from the first approach
was less than 1.39% compared to the amount of uC(R1X) that was obtained in the second
approach. These results justify the introduction of the assumption into the proposed model
that the function f (·) given by (7) or by (10) is a linear function.
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Table 3. Value of the output quantity RX and its combined uncertainty uC that were obtained
according to the first approach from eleven sets of simultaneous observations.

Set Number
k

Input Quantities Output Quantity
R1X (Ω)

Combined Standard
Uncertainty uC(R1X ) [Ω]U1X (V) U1N (V) R1N (Ω)

1 1.1418 4.636 240

2 1.1418 4.635 240
3 1.1313 4.594 240
4 1.1315 4.594 240
5 1.133 4.601 240
6 1.1331 4.601 240
7 1.1332 4.601 240
8 1.1325 4.598 240
9 1.1325 4.598 240
10 1.1355 4.611 240
11 1.1356 4.611 240

Arithmetic mean 1.134709 4.6072727 240

Experimental
standard deviation

of mean
0.001134 0.0045369

uB(R1N) 1.431828668

R1X =
R1N ·U1X/U1N

59.10876085

u
(
U1N , U1X

)
5.14248 × 10−6

∂ f
∂R1N

= U1X
U1N

0.246286504

∂ f
∂U1X

= R1N
U1N

52.09155485

∂ f
∂U1N

= −R1N ·U1X

U2
1N

−12.82944691

uC(R1X)[Ω] 0.352645412

Table 4. Value of the output quantity RX and the associated combined uncertainty uC that was
obtained according to the 2nd approach from eleven sets of simultaneous observations.

Set Number
k Input Quantities Output

Quantity
R1X (Ω)

ua(U1X )
[V]

uB(U1X)
[V]

ua(U1N )
[V]

uB(U1N )
[V]

uC(R1X)
[Ω]

U1X (V) U1N (V) R1N (Ω)

1 1.1418 4.636 240 59.10957722 0.0010851 0.000626471 0.0067816 0.003915359 0.357691535
2 1.1418 4.635 240 59.1223301 0.0010851 0.000626471 0.006781 0.003915012 0.357690911
3 1.1313 4.594 240 59.10143666 0.0010788 0.000622834 0.0067564 0.003900809 0.357648132
4 1.1315 4.594 240 59.11188507 0.0010789 0.000622903 0.0067564 0.003900809 0.357648459
5 1.133 4.601 240 59.10019561 0.0010798 0.000623423 0.0067606 0.003903234 0.357655271
6 1.1331 4.601 240 59.10541187 0.0010799 0.000623457 0.0067606 0.003903234 0.357655434
7 1.1332 4.601 240 59.11062812 0.0010799 0.000623492 0.0067606 0.003903234 0.357655598
8 1.1325 4.598 240 59.11265768 0.0010795 0.00062325 0.0067588 0.003902195 0.357652585
9 1.1325 4.598 240 59.11265768 0.0010795 0.00062325 0.0067588 0.003902195 0.357652585

10 1.1355 4.611 240 59.10214704 0.0010813 0.000624289 0.0067666 0.003906698 0.357665595
11 1.1356 4.611 240 59.10735198 0.0010814 0.000624323 0.0067666 0.003906698 0.357665759

Arithmetic mean 1.13471 4.60727 240 59.10875264 0.357661988

Both approaches for calculating the output estimate R1X and its associated combined
standard uncertainty uC(R1X) are carried out by means of the Microsoft Excel software,
while Tables 3 and 4 represent parts of the corresponding Microsoft Excel worksheet.

Figure 4 presents the results of the analysis that were carried out by means of the
GUM Workbench Edu software [20] using the same input data.
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Figure 4. Value of the output quantity RX and its combined uncertainty uC that was obtained by
using the GUM Workbench Edu from eleven sets of simultaneous observations.

Table 5 gives a comparative presentation of the results for R1X and uC(R1X) from
Tables 3 and 4, and from Table in Figure 4.

Table 5. Comparative presentation of the results for R1X and uC(R1X).

Table 3 Table 4 Figure 4

R1X (Ω) 59.10876085 59.10875264 59.11
uC(R1X) (Ω) 0.352645412 0.357661988 0.361

Table 5 shows good congruence results for R1X and uC(R1X) from Table in Figure 4
with corresponding results given in Tables 3 and 4.

The uncertainty budget from Figure 4 shows that the standard uncertainty uB(R1N)
contributes the most (95.2%) to the combined standard uC(R1X). Hence, it can be concluded
that the combined standard uncertainty uC(R1X) is limited by the precision and accuracy of
the standard resistor R1N.

It is very important to note that additional measurements were conducted with set
values 140 Ω and 940 Ω of the resistance decade MA 2125 and that very similar results
were obtained to abovementioned results.

4. Conclusions

In this paper, the mathematical expression (8) consists of the old expression which
is modified to represent the new and the original form for the calculation of unknown
electrical resistance. This new form is extremely suitable for conducting a partial derivation
which can be of great importance if one assumes that the model of measurement functions
has a nonlinear character. This paper sets out three conditions that must be met in order
to minimize and ignore the systematic measurement deviations. The fulfilment of these
three conditions allows the use of the theoretical expression (2) for the calculation of
unknown electrical resistance. The complete model function of the measurement that is
given by (10), or a simplified model function given by (7) are assumed to have functional
linear dependence. The results that were obtained from the illustrative example justify the
introduction of such assumption.

In this paper, two approaches for the estimation of unknown resistance RX and its
combined standard uncertainty are analyzed. The set of input quantities RN, RV, UN, and
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UX is categorized in this paper as the quantities whose estimated values and uncertainties
are obtained from manufacturer’s specification (RN and RV) and from a single observation
or from repeated observations (UN and UX). The results that were obtained in the illustra-
tive example indicate that it is not necessary to perform repeated voltage measurements,
i.e., only one measurement suffices because the standard uncertainty uB(R1N) that is asso-
ciated with the standard resistor contributes the most (95.2%) to the combined standard
uC(R1X). It is very important to note that the combined standard uncertainty is limited by
the precision and the accuracy of the standard resistance RN. The mathematical apparatus
for the statistical analysis of this indirect measurement has been substantially elaborated.

The method that is proposed in this paper allows the elimination of the influence of
thermo-electrical voltages, if any.

For many purposes, the unknown resistors are compared to standard resistors by
a comparison circuit (comparators). In this method, it is possible to use the proposed
approach for the estimation of the combined standard uncertainty that is associated with
the measurand too. Analogously, it is also possible to determine the unknown electrical
resistance and its associated combined standard uncertainty by the measurement method
that is referred to as the direct comparison method using a standard resistor and poten-
tiometer [21].

This paper has practical application and can be used for educational purposes.
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