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Abstract: Power distribution networks at the distribution level are becoming more complex in their
behavior and more heavily stressed due to the growth of decentralized energy sources. Demand
response (DR) programs can increase the level of flexibility on the demand side by discriminating
the consumption patterns of end-users from their typical profiles in response to market signals. The
exploitation of artificial intelligence (AI) methods in demand response applications has attracted
increasing interest in recent years. Particle swarm optimization (PSO) is a computational intelligence
(CI) method that belongs to the field of AI and is widely used for resource scheduling, mainly due to
its relatively low complexity and computational requirements and its ability to identify near-optimal
solutions in a reasonable timeframe. The aim of this work is to evaluate different PSO methods in the
scheduling and control of different residential energy resources, such as smart appliances, electric
vehicles (EVs), heating/cooling devices, and energy storage. This review contributes to a more
holistic understanding of residential demand-side management when considering various methods,
models, and applications. This work also aims to identify future research areas and possible solutions
so that PSO can be widely deployed for scheduling and control of distributed energy resources in
real-life DR applications.

Keywords: artificial intelligence; computational intelligence; particle swarm optimization; demand-side
management; demand response; distributed energy resources; smart grid; electric vehicles; energy
storage; resource scheduling; load control

1. Introduction

The rapidly increasing integration of decentralized energy resources, such as solar
photovoltaic (PV) systems, energy storage, and electric vehicles (EVs), along with the use
of power-electronic-interfaced loads, such as heat pumps, have increased the complexity of
low-voltage (LV) grids. This new set of appliances and domestic loads can distort consumer
habits and thus impact typical consumption patterns. Therefore, the balance between
intermittent generation in almost real time and unpredictable demand, voltage control,
frequency regulation, and power quality monitoring have become more and more crucial
for maintaining power system stability and reliability. Traditionally, this burden would fall
under the responsibility of power system operators, who in turn should reinforce the grid to
tackle these challenges. However, in the smart grid era, power flows are bidirectional, and
consumers can actively contribute towards a more reliable, efficient, and flexible power grid.
One of the most promising solutions at the distribution level is demand-side management
(DSM). Reducing peak electricity demand, shifting the load from peak to off-peak hours,
and decreasing/increasing hourly electricity consumption are some of the benefits that
DSM can provide [1].
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DSM actions can be implemented through demand response (DR) programs. Currently,
DR programs can be classified into either price-based or incentive-based [2–4]. In the former,
customers can modify their electricity consumption based on the electricity tariff applied.
A time-of-use (ToU) tariff is the most common price-based DR program, where a fixed set
of electricity prices can vary within the hours of the day (e.g., day vs. night tariff) and
the days of the week (e.g., weekdays vs. weekend). Other programs include critical peak
pricing (higher tariffs applied during peak demand hours) and real-time pricing (tariffs
change dynamically within the day, usually on an hourly basis). Incentive-based programs
can be further split into voluntary, mandatory, and market-clearing programs [4]. The most
popular voluntary scheme in residential and commercial applications is direct load control
(DLC), where special incentives (bill credits, discounts, or rewards) are offered to end-
users so that they shift their demand during the day. In that case, consumers voluntarily
participate either directly, by turning on/off their loads, or indirectly, by collaborating with a
third-party (e.g., aggregator) who is responsible for automatically and remotely controlling
consumer assets to provide the requested services. Mandatory DR schemes are more
applicable to large industrial consumers. During critical hours, when the power network is
under stress, industrial consumers might be instructed by system operators to reduce their
consumption (load curtailment). Market-clearing programs offer the opportunity to large
consumers (industrial or aggregated) to bid and participate in the wholesale electricity
market when flexibility products, such as demand reduction, are needed.

This work is focused on residential demand response applications that have attracted
increasing interest in the literature in recent years. Using data gathered from smart meters
installed at each customer’s point of connection, consumers can keep track of their appli-
ances’ consumption and subsequently change their behavior directly or while collaborating
with a third-party service provider. The main benefits of residential demand response
applications are [5,6]:

• Economic benefits:

◦ DR can lead to dispatching fewer hours of uneconomical generation units when
the power system becomes tight, i.e., when generation cannot meet demand or
when the security of supply margins decreases;

◦ End-users profit by either consuming in low-tariff hours, selling power back to
the grid with the use of local storage, or other incentives (e.g., bill discount);

◦ DR can decrease distribution network stress and therefore reduce the need for
network investments.

• Power system operation:

◦ System reliability increases when providing frequency response, contingency
reserves, and flexibility services;

◦ Renewable energy source (RES) curtailment is reduced by modifying demand
to match green power generation.

• Reduction in greenhouse gas emissions:

◦ Utilization of distributed resources (EVs, PVs, and local storage) is higher;
◦ Energy efficiency is higher, and thus, energy consumption decreases.

Recent research has shown that computational intelligence (CI) and machine learning
(ML) methods can be computationally faster and more accurate than physical models
(white-box methods) and statistical methods in numerous residential demand response
applications [7,8]. For instance, when predicting energy consumption in buildings with
white-box methods, the physical properties of the energy systems need to be modeled
using a detailed set of input parameters [7]. These parameters are often hard to retrieve, the
mathematical formulation behind the optimization can be quite complex, and the model
outputs are highly case-dependent. In black-box models, there is little need for understand-
ing the physical mechanisms of the energy systems. However, there is a requirement for a
large set of historical data to train the models. Gray-box methods constitute a combination
of the above, where a rather small historical dataset is used to train statistical models
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that are based on a high-level knowledge of the physical energy systems. Advantages
over black-box methods are the need for less data for training the statistical models and
the better explainability of the modeling process and results since they are interpreted
in physical terms. However, these models are customized to specific applications, such
as modeling individual components in residential HVAC systems [9], and cannot easily
generalize over a diverse group of energy systems. Additionally, there is still a need to
retrieve the physical parameters of the energy systems, and this can increase the complexity
in specific applications.

For the above reasons, several AI algorithms, such as reinforcement learning (RL),
evolutionary algorithms, swarm AI, and artificial neural networks (ANN), have been
suggested for the control, optimization, and scheduling of distributed energy systems.
Furthermore, methods that are model-free and highly adaptable, such as particle swarm op-
timization (PSO), have been recommended when addressing the need for the maximization
of end-user comfort along with the minimization of energy consumption and costs [7,10].
Combining these criteria in residential demand response management systems could make
DR more appealing to consumers and, thus, increase its applicability in households and
commercial buildings.

To date, there have been a few review papers in the area of AI for residential demand
response applications. The review in [11] examines the use of reinforcement learning
(RL) for demand response applications in buildings covering a wide range of energy
systems, such as distributed generation, storage, and HVAC. The applicability of RL
to scheduling and control of residential loads was studied, taking into consideration
user comfort and satisfaction. However, other methods, such as ANN, swarm AI, and
evolutionary algorithms, have also been used in research to solve load scheduling and
control from the consumer side, as shown in [10]. On the other hand, [12] provides a
more holistic view of the use of deep reinforcement learning in power systems without
specifically focusing on demand response applications. The review in [7] focuses on air-
conditioning system control strategies, optimization techniques, and thermal modeling
(white-, black-, and gray-box methods). Similarly, [8] provides the first survey of ML
methods for electric water heater (EWH) optimization and scheduling. Another review
that focuses on a specific energy system is [13], which reviews techniques for HVAC
system control and optimization. An interesting review is [14], where the AI methods
analyzed consider both thermal comfort and energy savings. However, the limitation
of [14] is that it investigates only thermal energy systems for residential demand response.
In [15], the classification of AI methods was based on the optimization objective (energy,
comfort, safety, design, and maintenance). The aforementioned analysis revealed that
AI methods in demand response applications are a growing research area with room for
further investigation since every author categorizes them differently.

The main attributes of each relevant review paper are summarized in Table 1. Most
of the review papers investigate various AI methods based on the optimization objective
(energy cost, user comfort, flexibility, and energy consumption). A few reviews have
thoroughly analyzed different DR-related energy sub-systems (EVs, energy storage, smart
appliances, distributed generation (DG), and HVAC), and [10,11] are currently the most
comprehensive works covering most of the selected categories. The review papers are
categorized based on the way that their authors classified state-of-the-art AI research for
energy applications. The following attribute categories were used to categorize the relevant
review papers:

• AI group:
Some review papers classify demand response applications and investigate only a
single group of AI methods. Other papers analyze more than one group of AI methods
and thus provide a more holistic review of the state-of-the-art from a computational
intelligence (CI) perspective.
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• Energy sub-systems:
This set of attributes refers to the different energy sub-systems reviewed in the lit-
erature for scheduling and control in DR applications. Distributed generation, heat-
ing/cooling devices, EVs, local energy storage, and residential appliances are the
different areas considered in this category.

• Energy management system (EMS) scheduling and control:
Load modeling, scheduling, and control methods in response to signals for DR are
reviewed. Additionally, the classification of methods based on demand-side strategies
is considered.

• Optimization objectives:
AI algorithms in demand response can be used for various optimization objectives,
such as the minimization of energy consumption with or without considering user
comfort, the minimization of energy cost, and the provision of load balancing.

The above literature review shows that there are no review papers focusing on the
classification of PSO methods for the scheduling and control of various residential energy
systems (EVs, energy storage, heating/cooling devices, distributed generation, and smart
appliances). Therefore, the authors believe that a review in that area could bridge this
research gap and be beneficial for future researchers without overlapping with existing
work. The reason why PSO was selected over other heuristic methods is, on the one hand,
that PSO is the most widely used heuristic algorithm for DR applications [10]. On the
other hand, there is an abundance of research publications that can support a review work
on PSO for residential demand response provision. A simple search with the use of the
well-established research database of SCOPUS led to more than 80 research papers, without
considering cross-references, when combining the following attributes:

• Text found in title, abstract, or keyword: “demand AND response” OR “demand AND
side AND management”;

• Text found in title, abstract, or keyword: “particle AND swarm”;
• Text found in title, abstract, or keyword: “residential OR household OR home”;
• Text found in title, abstract, or keyword: “controller OR scheduling OR control”.

The contributions of this review paper can be summarized as follows:

• This is the only review paper that classifies PSO methods used specifically for schedul-
ing and control based on the type of the residential energy sub-system (EVs, heat-
ing/cooling devices, local storage, residential appliances, and DG);

• It identifies different optimization objectives when using PSO methods, taking into
consideration user convenience (in the form of appliances’ operational time delay) but
also user thermal comfort (indoor ambient and hot water temperature);

• It discusses the limitations and challenges of PSO methods and models in residential
demand response management systems and suggests potential future research areas
for investigation.

The structure of this paper is organized as follows. In Section 2, an introduction
to the PSO technique is provided. Basic concepts of PSO, such as motivation, structure,
and mathematical formulation, as well as a brief description of the most commonly used
PSO variants, are presented. Section 3 critically reviews the models used in the selected
publications for residential resource scheduling and control using PSO. Research work is
classified based on the optimization objective(s) and modeling constraints, as well as the
different energy applications considered in the analysis. Section 4 presents the various PSO
methods that were used in the reviewed research works. Section 5 focuses on evaluating
the accuracy and complexity of the proposed model of each publication. Section 6 proposes
future research directions and areas of investigation. Section 7 summarizes the main
findings of this work and concludes the paper.
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Table 1. Categorization of the relevant review papers.

Ref.
AI Group Energy Sub-Systems

Scheduling
and Control

Optimization Objectives

PSO Other Single Multiple Heating/Cooling Devices EVs DG Local Energy Storage Residential Appliances Energy Consumption
and User Comfort Load Balancing Energy Cost

[7]
√ √ √ √ √

[8]
√ √ √ √ √ √ √

[10]
√ √ √ √ √ √ √ √ √

[11]
√ √ √ √ √ √ √ √

[12]
√ √ √ √ √ √ √

[13]
√ √ √ √ √

[14]
√ √ √ √ √ √

[15]
√ √ √ √ √ √ √

This paper
√ √ √ √ √ √ √ √ √ √
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2. Basic Principles of PSO

Particle swarm optimization is a nature-inspired computational intelligence (CI) tech-
nique and was first introduced by Kennedy and Eberhard in 1995 [16]. PSO belongs to the
wider group of swarm intelligence methods, which in turn is part of evolutionary computa-
tion, one of the three pillars of CI [17]. The inspiration behind the design of this algorithm
was to mimic the way that a school of fish or a flock of birds navigate or forage. The PSO
algorithm shares common principles with a search algorithm, since a large population of
individuals, called particles, aims to find the optimal solution in a given multi-dimensional
search space. Particles represent possible solutions, and their location is the value of the
objective function that needs to be optimized. To identify the optimal result, particles
continue searching through the hyperspace under the following guidelines [18–20]:

• Record the individual best location found so far with the help of a fitness function that
evaluates how close each particle is to the optimal solution;

• Record their current direction and intensity of movement (velocity);
• Be informed about which location is the global best, defined as the optimal location

among all particles.

Combining the above information, each particle moves towards a new location with
an updated velocity, as shown in Equation (1) [19]:

Xi(t + 1) = Xi(t) + Vi(t + 1) (1)

where Xi(t + 1) and Xi(t) are vectors describing the next and current positions of each
particle, respectively, and Vi(t + 1) is the velocity vector that shows the upcoming direction
and intensity of movement of each particle.

At each iteration, these velocities are stochastically updated based on the historical
optimal positions of individual particles but also based on the historical global best position
among all particles, as shown in Equation (2) [19]:

Vi(t + 1) = w·Vi(t) + ϕ1·r1·(Pi,best − Xi(t)) + ϕ2·r2·
(

Pglob,best − Xi(t)
)

(2)

where ϕ1 and ϕ2 are two positive numbers (acceleration constants), r1 and r2 are weight
factors in the range of [0, 1], and Pi,best and Pglob,best are the individual and global best
particle positions, respectively. When the weight factor w (inertia weight) equals one, we
refer to the original PSO algorithm; otherwise, we refer to the canonical PSO algorithm [20].
The above iterative process continues until either we find a particle location that is close
enough to the desired outcome or the threshold of allowed iterations is exceeded. The
aforementioned process is illustrated in Figure 1 [20].
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Figure 1. Simplified flowchart of PSO algorithm.

When analyzing Equation (2), it can be observed that there are three different compo-
nents being combined to update the distance that each particle moves at each iteration:

• The inertia component w Vi(t): this term tends to maintain the current movement
direction (velocity) of each particle;

• The cognitive/individual component ϕ1·r1·(Pi,best − Xi(t)): this component describes
the distance between each particle’s current position and the individual best location found;

• The social component ϕ2·r2·
(

Pglob,best − Xi(t)
)

: this component calculates the distance
between the particle’s current position and the best position found by the entire swarm.

The impact of cognitive and social components on velocity in Equation (2) can be
modified by tuning factors r1 and r2. The same applies to the inertia weight w, which
impacts the balance between exploration and exploitation in PSO algorithms. Usually, this
factor decreases linearly across iterations. It starts from a high value (e.g., 0.9) in order
to let the swarm move freely and quickly when exploring the search space for the best
solution. As iterations progress, the exploration level of the swarm should decrease, and
focus should be placed on the exploitation of the neighborhoods around individual and
global optima. Except for the above parameters, which are initialized before running the
PSO algorithm, a set of limits need to be selected to ensure convergence of the swarm. The
maximum velocity (in absolute terms) needs to be defined, and the maximum aggregated
value of the acceleration constants is suggested to be below four [19].
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PSO is the most widely used method among heuristics for DR applications [10]. The
main advantages of PSO compared to other optimization methods can be summarized as
follows [10,19,20]:

• Simple and easy to use;
• Fast convergence and robustness, even in complex and highly constrained multi-

dimensional search spaces;
• High applicability since it can be used in various optimization problems;
• High adjustability since it can be easily hybridized and modified to fit the purpose of

each problem and improve its performance.

Some of the potential drawbacks that can be seen when using PSO are the following [10,19,20]:

• Risk of suboptimal solutions (local optima) due to either the problem formulation char-
acteristics or a lack of diversity in particle movement that leads to premature convergence;

• No guarantee that PSO will reach the global optimum solution since there is a risk of
premature convergence to local optima;

• Lack of interpretability/explainability given that the algorithm is not based on a strong
mathematical theoretical basis (lack of mathematical proof of convergence).

It is important to highlight that the poor performance of PSO might be related to the
above algorithmic drawbacks but can also be related to problem formulation, modeling
inputs, and system constraints. Therefore, better tuning of the method’s initialization and
modeling parameters cannot always lead to more optimal results.

3. Models for Residential Load Scheduling and Control Using PSO

Scheduling and control of decentralized energy resources, in practice, is a stochastic
mathematical problem, given the intermittency of renewable generation, the uncertainty
of users’ consumption patterns, and continuously changing electricity prices, which, in
most of the reviewed works, is a key driver. Additionally, the large number and diversity
of household appliances and the consideration of user thermal comfort and convenience
increase the complexity of optimization, where classical computational techniques such
as linear programming (LP), integer linear programming (ILP), and mixed-integer linear
programming (MILP) cannot provide feasible solutions within a reasonable timeframe [21].
On the contrary, heuristic optimization techniques, such as PSO, genetic algorithms (GA),
ant colony optimization (ACO), and wind-driven optimization (WDO), can support more
complex optimization problems with the identification of near-optimal solutions.

In this work, PSO-based resource scheduling models are reviewed given the research
“gap” identified in Section 1 but also due to the fact that it presents the following advantages
over similar nature-inspired optimization techniques [10,19–22]:

• It requires fewer parameters for tuning and adjustment;
• Easier implementation and less computational effort are usually needed to reach a

near-optimal solution compared to other heuristic algorithms;
• The histories of all particles contribute to the search, while in other methods (e.g., GA),

the algorithm’s memory capability is lower due to the replacement of the old popula-
tion with a new, more efficient one.

In the reviewed research works [21–84], different models were designed. They can
be classified based on the optimization objectives, the system constraints applied, or the
energy system applications. In the latter, the type of energy resources (EVs, distributed
generation, energy storage, or appliance type), the number of users (single or multiple),
and the type of control (local, decentralized, or centralized) are included.

3.1. Optimization Objectives

One of the main considerations of scheduling and control for demand-side manage-
ment is the formulation of the objective function that needs to be optimized. Additionally,
it is very important to define the system constraints and operational limits of key variables
that will collectively shape the boundaries of the optimization search space. Optimization
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objectives can be categorized into the following three groups based on the number of
objectives that are investigated.

1. Single objective:

In the majority of the reviewed works, the main objective was to optimally sched-
ule different energy resources in order to minimize electricity costs, with or without
taking into consideration user comfort, convenience, and peak-to-average (PAR) ratio.
Depending on the complexity of the problem, the cost minimization function consists
of components such as electricity imports (consumption) and exports back to the main
grid [24,30,33,35,42,43,59,66,72,81]. In the case of a microgrid (MG), total cost minimization,
investment, operation, and maintenance costs are considered. For instance, in [43,66], the
optimization goal was to optimally size microgrid components (DG and ES) by shifting the
load to the hours of maximum renewable penetration and therefore minimize total system
costs. Some of the reviewed works also present different electricity tariffs based on the
customer type (residential, commercial, or industrial).

2. Single objective with aggregated variables, weights, or penalties:

In this case, more than one objective is combined and aggregated as a single function.
In some works, weights are assigned to each optimization parameter, leading to a weighted
single-objective optimization problem. In most cases, minimization of electricity costs,
maximization of user convenience (appliance operational delay), and/or thermal comfort
are considered, as in [22,26,41,44–46,51,61,67,68]. In a few research publications, such as
in [46,68,83], three different objectives are weighted to form a single objective function. In
other research works, the authors do not specify a weight factor, as in [38,62,64,65,76], but
assign penalties to non-economic constraints in order to combine them into an aggregated
single-objective function.

3. Multiple objectives:

In [27,29,57,60,63,78], where objectives are conflicting, such as cost minimization and
user convenience maximization, the Pareto front, meaning a set of non-dominated solutions,
is calculated through the evaluation of different fitness functions that correspond to each
objective. The Pareto front consists of compromise solutions. Therefore, a second step,
in that case, would be the selection of the best solution from the Pareto set. Additionally,
in this review work, bi-level optimization problems are characterized as multi-objective
ones. In [48,49,53,69], there is a single “upper level” objective and a single “inner level”
objective that need to be optimized hierarchically. The single upper-level objective is
initially optimized, and then the output of the upper level is used as an input in the
inner-level optimization.

3.2. Constraints
3.2.1. System Constraints

Part of the problem formulation in every work reviewed was to define the system
constraints that should be considered in the optimization. The number of constraints
differs depending on the system complexity and the type of energy resources considered.
The main equality constraint, which can be identified in all works reviewed, is to main-
tain the energy balance between power supply and demand. The time period and the
system boundaries (household, microgrid, or utility level) of such constraints depend on
the problem formulation. The constraints that are identified in the reviewed works are
the following:

• Power grid thresholds (Egrid):
The minimum and/or maximum contracted power of end-users with utility at the
connection point. This increases the complexity of the optimization and potentially de-
creases the amount of energy savings that can be achieved since there is less flexibility
to shift more loads to off-peak hours due to constraint violation.
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• Storage-related constraints (Estorage):
Charging and discharging rates as well as the capacity of storage units are introduced
as inequality constraints in works with energy storage, either in the form of batteries
or in electric vehicles.

• RES generation capacity (ERES):
The maximum generation capacity of renewable sources is constrained, usually as a
share of total household demand (e.g., 30% of net demand is met by RES).

• User convenience:
Another important consideration is user convenience in the sense of minimizing the
operational delay (waiting time) of different household appliances or prioritizing the
operation of appliances over others based on consumer preferences. In some works,
such as [38], user convenience is introduced as the minimum amount of appliance
switching needed during a DR event.

• Thermal comfort:
In many works, not only appliance waiting time but also indoor temperature and
water heater temperature is considered when using thermostatically controlled loads.
To operate appliances within the preferred temperature range, smart sockets and
temperature sensors can be installed, as in [23].

• Voltage level:
In [38,40,66,76], bus or node voltage constraints are introduced when optimizing the
operation of microgrids connected to the main power network.

3.2.2. Electricity Costs and User Convenience/Comfort

From the taxonomy of research work, based on optimization objectives and system
constraints, it is clear that user convenience and thermal comfort are key considerations
when trying to schedule and control residential resources. Operating according to user
preferences will inevitably lead to higher electricity costs and vice versa. However, sig-
nificant energy savings can still be obtained. In [23], using binary PSO (BPSO), 20–25%
energy savings were achieved without jeopardizing user convenience. DR services were
provided only in a specific timeframe (4–11 p.m.) in a geographical location with a lack of
seasonality, so it would be worth testing the system under more challenging conditions.
In [22,26,41,44–46,51,61,67,68], user convenience and energy savings were combined in
the objective function, leading to a weighted single-objective optimization problem. User
convenience was modeled with the use of allowed time periods when appliance operation
should be completed. More specifically, in [22,26], GA and BPSO were compared, among
others, where GA outperformed BPSO in terms of both electricity costs and energy con-
sumption. In [28,32], the tradeoff between user convenience (appliance waiting time) and
energy cost was investigated. PSO has the tendency to heavily shift loads from peak to
off-peak hours with lower electricity tariffs in order to decrease electricity costs. However, a
greater degree of user convenience is sacrificed in that case. Therefore, it can be concluded
that the higher the electricity cost, the less the user discomfort, and vice versa in DR resi-
dential applications. While in [28], the single objective was to decrease consumer electricity
costs, in [32], a single-objective function was formulated with the aim of minimizing energy
costs and average-to-peak ratio. The feasible region of solutions was found, and boundaries
were set for the objective function. In [30,33,34,55,59,79–81], reducing electricity bills while
considering user convenience and thermal comfort was analyzed. The authors concluded
that overall costs can be decreased without sacrificing user comfort by setting the indoor
temperature at a higher level during low-tariff hours.

3.3. Applications

Each DSM model is characterized by the energy resources that can contribute to
demand-side management, the number of users (single or multiple), and the control level
(local, microgrid, or utility/aggregator). This review work focuses on residential users. The
taxonomy of research works based on the application is illustrated in Figure 2.
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3.3.1. Energy Systems

Scheduling and control of household appliances is the core focus in the majority of
research works. Depending on the flexibility that these appliances can offer for demand-
side management, they can be categorized as fixed, shiftable, elastic or interruptible, and
power-adjustable. Fixed appliances are characterized by fixed power consumption and a
length of operation that cannot be modified. Examples include lights, fans, clothing irons,
microwave ovens, toasters, TVs, etc. The operation of shiftable appliances, such as washing
machines, dishwashers, and clothes dryers, can be shifted in time but cannot be interrupted
while their power consumption is fixed and inelastic. Elastic or interruptible household
appliances, such as EVs, can not only be shifted in time but also be interrupted while in
operation. This group of appliances can offer flexibility services by shifting their operation
in periods of lower electricity tariffs. Last but not least, power-adjustable appliances are
interruptible appliances with adjustable power consumption. The majority of these are
thermostatically controlled loads (e.g., electric water heaters, ACs, or heat pumps). In
research, the above categorization might differ based on the authors’ problem formulation.
For instance, EVs can be treated as a shiftable but non-interruptible load in some works,
while lights can be considered controllable when using a smart plug. In any case, when
using interruptible and power-adjustable appliances for flexibility provision, it is important
to ensure that user convenience and thermal comfort are not sacrificed when trying to
schedule and control them for demand-side management.

In addition to residential appliances, decentralized energy resources such as EVs, dis-
tributed generation (mostly RES), and energy storage can contribute to domestic electricity
bill reduction, load balance, and peak shaving. Additionally, a better tradeoff between
user comfort and electricity cost reduction can be achieved, given that each household
can utilize local or decentralized (microgrid) energy resources instead of consuming from
the power grid. For instance, in [28], interruptible loads, including those of an EV and an
electric water heater, contributed to achieving a better compromise between user conve-
nience and energy costs. Although EVs are commonly treated as a highly flexible load,
their battery-related constraints, such as the charging and discharging rate and maximum
energy storage, can set limitations on its storage operation for demand-side management.
It can also be observed that renewable power generation is often coupled with local energy
storage, which aims at complementing the intermittency of renewable energy resources.
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3.3.2. DR Programs—Electricity Tariffs

In addition to the objective function formulation and the constraints introduced for
load scheduling, an important parameter is the type of DR program/mechanism that
consumers are enrolled in. Time-of-use (ToU) retail tariffs have been extensively used
in research, with prices usually ranging among high-, medium-, and low-price periods
during the day. In some of the works where ToU is selected, it is highlighted that load is
heavily shifted to off-peak hours. Therefore, the load tends to become unbalanced, with
spikes occurring after these hours, and the peak-to-average ratio (PAR) remains high. A
similar phenomenon can also be spotted when using day-ahead, real-time pricing (RTP)
tariffs, which typically fluctuate on an hourly basis. For that reason, tariffs with inclined
block rates (IBRs) were used in [22,32,39,44,48,51,84]. In this pricing scheme, when the load
surpasses a certain level, a monetary penalty is added to the end-user’s electricity bill. In
this way, load shifting from peak to off-peak hours is rather limited, PAR decreases, and
load spikes are avoided.

3.4. Taxonomies

In Table 2, the reviewed works are classified based on the optimization objectives
for residential load scheduling and control, together with modeling constraints. Table 3
presents the taxonomy of research work based on model applications, including DR programs.

Table 2. Taxonomy of the reviewed works based on the optimization objectives.

Refs Type of Constraints Objective Type Objectives

[21] Egrid + Estorage + User Convenience Single Electricity cost minimization

[22] Egrid + Estorage + ERES
+ User Convenience Single with weights Electricity cost minimization

+ user convenience maximization

[23] Thermal Comfort Single Energy consumption minimization

[24] Estorage Single Electricity cost minimization

[25,56] Estorage + User Convenience Single Electricity cost minimization

[26,44,67] User Convenience Single with weights Electricity cost minimization
+ user convenience maximization

[27] ERES Multiple (Pareto)
Electricity cost minimization, distributing load
across two energy sources (wind + solar) with

different fitness functions

[28] ERES + User Convenience Single Electricity cost minimization

[29] Egrid + Estorage + ERES Multiple (Pareto) Electricity cost minimization +
Environmental cost (emissions) minimization

[30,33] Egrid + Estorage + Thermal Comfort
+ User Convenience Single Electricity cost minimization

[31] Egrid + ERES Single Electricity cost minimization

[32] Egrid + Estorage + User Convenience Single (aggregated objectives) Electricity cost minimization
+ PAR minimization

[34] Egrid + Estorage + ERES
+ Thermal Comfort + User Convenience Single Electricity cost minimization

[35] Egrid + Estorage Single Electricity cost minimization

[36] Egrid + ERES Single Consumer profit maximization

[37] Thermal Comfort + User Convenience Single Energy consumption minimization

[38] Voltage levels + User Convenience Single with penalties Electricity cost minimization + power loss cost
minimization + constraints (penalties)

[39] Estorage + User Convenience Single (aggregated objectives) Electricity cost minimization
+ PAR minimization
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Table 2. Cont.

Refs Type of Constraints Objective Type Objectives

[40] Egrid + Estorage + ERES + Voltage levels Single Distribution power loss minimization

[41] User Convenience Single with weights Electricity cost minimization + discomfort
index minimization

[42] Egrid + Estorage Single Utility electricity cost minimization (DA,
imbalance costs, and battery cycling cost)

[43] Estorage Single Total system cost minimization (incl.
investments) to optimize minigrid components

[45] Egrid + User Convenience Single with weights Electricity cost minimization
+ user convenience maximization

[46] Egrid + Estorage + Thermal Comfort
+ User Convenience Single with weights

Electricity cost minimization
+ user convenience maximization + grid load

variance minimization (peak caused by
DR actions)

[47] Estorage + Thermal Comfort Single Consumer profit maximization

[48] User Convenience Multiple (bi-level)
Consumer profit maximization, after scheduling

manually operated appliances with the worst
impact on electricity payments

[49] Egrid + User Convenience Multiple (bi-level) Retailer profit maximization, after consumer
electricity cost minimization

[50,82] - Single Electricity cost minimization

[51] Estorage + User Convenience Single with weights Electricity cost minimization
+ user convenience maximization

[52] Egrid + User Convenience Single Electricity cost minimization

[53] Estorage Multiple (bi-level) System cost minimization (NPC) + power
shortage minimization

[54] Egrid + User Convenience Single (aggregated objectives) Electricity cost minimization + PAR
minimization + user convenience maximization

[55] Egrid + Thermal Comfort
+ User Convenience Single Electricity cost minimization

[57] Estorage + ERES Multiple (Pareto) Electricity cost minimization + environmental
cost/emission minimization

[58] Estorage + Thermal Comfort Single Flexibility potential estimation

[59,81] Estorage + Thermal Comfort
+ User Convenience Single Electricity cost minimization

[60] User Convenience Multiple (Pareto) Electricity cost minimization + load deviation
minimization + user convenience maximization

[61] Estorage + Thermal Comfort
+ User Convenience Single with weights

Electricity cost minimization (incl. battery
degradation costs) + user comfort (incl. thermal

and convenience)

[62] Egrid + Estorage Single with penalties Electricity cost minimization + DR curtailment
minimization + Pmax violation (penalty)

[63] Egrid + User Convenience Multiple (Pareto) Electricity cost minimization + PAR
minimization + CO2 minimization

[64] Estorage + Thermal Comfort Single with penalties Electricity cost minimization +
User comfort (penalties)

[65] User Convenience Single with penalties Utility electricity cost minimization for DR +
consumer load interruptions (penalties)

[66] Egrid + Voltage levels + Estorage
+ User Convenience Single Total system cost minimization
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Table 2. Cont.

Refs Type of Constraints Objective Type Objectives

[68] Estorage + User Convenience Single with weights Electricity cost minimization + user convenience
maximization + CO2 minimization

[69] Egrid Multiple (bi-level) DNO operational cost minimization after MG
operational cost minimization

[70,73] User Convenience Single Electricity cost minimization

[71] Thermal Comfort Single Electricity cost minimization

[72] Estorage + Thermal Comfort
+ User Convenience Single User comfort maximization

[74] Egrid + Estorage + ERES
+ Thermal Comfort + User Convenience Single (aggregated objectives)

Electricity cost minimization + PAR
minimization + user convenience maximization

+ CO2 minimization

[75] Egrid + User Convenience Single with weights Load deviation minimization + MG profit
maximization

[76] Egrid + Voltage levels + Estorage Single with penalties Total system cost minimization + network loss
minimization + constraints (penalty)

[77] Egrid + Estorage + Thermal Comfort Single Electricity cost minimization

[78] Egrid + Estorage + Thermal Comfort Multiple (Pareto) System cost minimization +
Environmental cost minimization

[79] Egrid + Estorage + Thermal Comfort
+ User Convenience Single Energy bill (electricity and gas) minimization

[80] Thermal Comfort + User Convenience Single Electricity cost minimization

[83] Estorage + ERES Single with weights Total system cost minimization + CO2
minimization + curtailed RES minimization

[84] User Convenience Single Electricity cost minimization
(per appliance cluster)

Table 3. Taxonomy of the reviewed works based on the application.

Ref. No. Users Control Level Electricity Tariffs Energy Resources

[21,25,35] Single Local—Household ToU DG + energy storage +
household appliances (excl. heating/cooling)

[22] Multiple Local—Household ToU + IBR
Heating/cooling + DG + energy storage +

Household appliances
(excl. heating/cooling)

[23] Single Local—Household DLC Heating/cooling + household appliances
(excl. heating/cooling)

[24] Multiple Decentralized—Microgrid RTP DG + energy storage

[26] Multiple Local—Household RTP Heating/cooling + household appliances (excl.
heating/cooling)

[27] Single Local—Household - Heating/cooling + DG + household appliances
(excl. heating/cooling)

[28] Single Local—Household ToU Heating/cooling + EV + DG + energy storage +
Household appliances (excl. heating/cooling)

[29,57] Multiple Decentralized—Microgrid Price-offer packages
(incentive-based) DG + energy storage

[30,72] Single Local—Household RTP Heating/cooling + DG + energy storage +
household appliances (excl. heating/cooling)

[31] Single Local—Household ToU EV + DG + energy storage +
household appliances (excl. heating/cooling)



Energies 2022, 15, 2211 15 of 26

Table 3. Cont.

Ref. No. Users Control Level Electricity Tariffs Energy Resources

[32] Multiple Local—Household +
Decentralized—Microgrid RTP + IBR Heating/cooling + DG + energy storage +

household appliances (excl. heating/cooling)

[33] Single Local—Household ToU Heating/cooling + EV + DG +
Household appliances (excl. Heating/cooling)

[34,59,79] Single Local—Household RTP Heating/cooling + energy storage +
household appliances (excl. heating/cooling)

[36] Multiple Decentralized—Microgrid Dynamic pricing based on
RES generation DG

[37] Single Local—Household - Heating/cooling + household appliances (excl.
heating/cooling)

[38] Multiple Centralized—
Utility or Aggregator Consumer bidding prices Power transformers + EV + household appliances

(excl. heating/cooling)

[39,51] Single Local—Household RTP + IBR Heating/cooling + DG + energy storage +
Household appliances (excl. heating/cooling)

[40] Multiple Centralized—
Utility or Aggregator - Power transformers + DG + energy storage

[41,54,60,71] Single Local—Household ToU Heating/cooling +
household appliances (excl. heating/cooling)

[41,54,55,60,73] Single Local—Household RTP Heating/cooling +
household appliances (excl. heating/cooling)

[42] Multiple Decentralized—Microgrid - Heating/cooling + DG + energy storage

[43] Multiple Decentralized—
Standalone Microgrid - EV + DG + energy storage +

Household appliances (excl. heating/cooling)

[44] Single Local—Household RTP + IBR Heating/cooling + DG +
household appliances (excl. heating/cooling)

[45] Multiple Local—Household CPP, RTP Household appliances (excl. heating/cooling)

[46] Multiple Decentralized—Microgrid RTP Heating/cooling +
household appliances (excl. heating/cooling)

[47] Single Local—Household ToU, CPP Heating/cooling + EV + DG

[48] Single Local—Household RTP + IBR heating/cooling +
household appliances (excl. heating/cooling)

[49] Multiple Decentralized—Microgrid RTP Heating/cooling + EV +
household appliances (excl. heating/cooling)

[50,63,82] Multiple Centralized—
Utility or Aggregator RTP Household appliances (excl. heating/cooling)

[51] Single Local—Household ToU, CPP, RTP + IBR Heating/cooling + DG + energy storage +
household appliances (excl. heating/cooling)

[52] Single Local—Household RTP Household appliances (excl. heating/cooling)

[53] Multiple Decentralized—
Standalone Microgrid - heating/cooling + DG + energy storage +

household appliances (excl. heating/cooling)

[56,61,74] Single Local—Household RTP Heating/cooling + EV + DG + energy storage +
household appliances (excl. heating/cooling)

[58] Single Local—Household - Heating/cooling + DG + energy storage

[62] Multiple Centralized—
Utility or Aggregator ToU Heating/cooling + DG + energy storage +

household appliances (excl. heating/cooling)

[63] Multiple Centralized—
Utility or Aggregator ToU, CPP, RTP Household appliances (excl. heating/cooling)

[64] Multiple Local—Household RTP Heating/cooling + EV + energy storage
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Table 3. Cont.

Ref. No. Users Control Level Electricity Tariffs Energy Resources

[65] Multiple Centralized—
Utility or Aggregator

Load curtailment
(incentive-based) Household appliances (excl. heating/cooling)

[66] Multiple Centralized—
Utility or Aggregator

Trip-reducing and
trip-shifting schemes

(incentive-based)
Power transformers + EV + DG

[67] Single Local—Household RTP, ToU, load curtailment
(incentive-based)

Heating/cooling + EV +
household appliances (excl. heating/cooling)

[68] Single Local—Household RTP Heating/cooling + EV + DG +
household appliances (excl. heating/cooling)

[69] Multiple Decentralized—-
Microgrid RTP DG

[70] Single Local—Household ToU Household appliances (excl. heating/cooling)

[75] Multiple Decentralized—Microgrid - DG +
Household appliances (excl. heating/cooling)

[76] Multiple Decentralized—Microgrid - DG + energy storage +
household appliances (excl. heating/cooling)

[67,77] Single Local—Household ToU Heating/cooling + EV +
household appliances (excl. heating/cooling)

[78] Single Decentralized—Microgrid RTP Heating/cooling + DG + energy storage +
household appliances (excl. heating/cooling)

[80] Multiple Local—Household RTP Heating/cooling + DG +
household appliances (excl. heating/cooling)

[81] Multiple Decentralized—Microgrid RTP Heating/cooling + EV + DG + energy storage +
household appliances (excl. heating/cooling)

[82] Multiple Centralized—
Utility or Aggregator RTP Household appliances (excl. heating/cooling)

[83] Multiple Decentralized—
Standalone Microgrid - DG + energy storage +

household appliances (excl. heating/cooling)

[84] Multiple Decentralized—Microgrid RTP + IBR Household appliances (excl. heating/cooling)

4. PSO Methods

Controlling a large number of household appliances with unpredictable usage patterns
and operational constraints constitutes a non-convex optimization problem. PSO is selected
over other methods due to its low computational needs, near-optimal solution identification,
the small number of initialization parameters, and the lack of model training prior to
implementation. Therefore, this review paper focuses on the computational method of PSO
used for scheduling residential resources to provide demand-side management.

In the reviewed research works, not only original/canonical PSO algorithms (pre-
sented in Section 2 but also other PSO variants were utilized to attempt to overcome the
disadvantages of premature convergence and local optima in both continuous and binary
optimization problems. Additionally, hybrid algorithmic methods, where PSO is combined
with other computational intelligence methods, were investigated. Other heuristic and
metaheuristic methods such as GA, ACO, WDO, bacterial foraging optimization (BFO), and
binary backtracking search algorithm (BBSA) were compared in research with PSO-based
methods, but analyzing these methods is outside the scope of this review paper. The PSO
variants found in the research are the following:

• Canonical/traditional PSO [24,25,35,36,40,42–44,48,50,51,64,66,67,70,72,77,82–84];
• Multi-objective PSO [29,57,60,78];
• Bi-level PSO (BLPSO) [49,53,69];
• Binary PSO [21–23,25–28,31,32,34,39,41,45,52,54,56,63,65,73,74,76,81];
• Gradient-based PSO [30,33,54,63];
• Hybrid methods:
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◦ BPSO–GA [21,45,48,56,74];
◦ PSO–ANN [37];
◦ BPSO–integer linear programming [55];
◦ PSO–evolutionary algorithm [58];
◦ PSO–sequential quadratic programming optimizer (SQP) [59];
◦ PSO–local vortex search [62];
◦ PSO–bacterial foraging (BF) [63];
◦ PSO–fuzzy logic [71];
◦ PSO–sinusoidal and cosine acceleration (SCAC) [75];
◦ BSPO–chaos optimization [76];
◦ PSO–harmony search (HS) [77];
◦ BPSO–gradient-based NLP solver [79];
◦ BPSO–fuzzy Mamdani and fuzzy Sugeno [80].

• Modified PSO [38,61,67,68];
• Quadratic BPSO [41];
• Cooperative PSO:

◦ Stochastic attraction–repulsion of diversity (SARD) [46];
◦ Stochastic repulsion (R) [47].

Binary particle swarm optimization (BPSO) is the most popular PSO variant for energy
scheduling optimization problems. BPSO is a PSO variant that is applicable to binary
problem spaces, where particle positions can take the discrete values of “0” and “1” instead
of continuous values as in the canonical PSO algorithm. Particle velocities are still expressed
as continuous values, as shown in Equation (2). Using the sigmoid function, the velocity
of each particle is transformed into the probability that this particle’s position will change
(“1” or “0”). Equations (3) and (4) describe the way that the position of each particle i in the
population is updated:

sig(Vi(t + 1)) =
1

1 + e−Vi(t+1)
(3)

Xi(t + 1) =
{

1, sig(Vi(t + 1)) < rand (0 to 1)
0, otherwise

(4)

In the problem of appliance scheduling, BPSO is preferable over canonical PSO
since the method aims at determining whether each appliance will be operational or
not (ON/OFF) in a given timeframe. Each particle consists of a binary set of values, where
each bit represents a household appliance. Therefore, when using BPSO, the possibility of
turning the load ON/OFF in a period t can be obtained. From the aforementioned transfer
function, it can be seen that in zero velocity of a decision vector (bit), the probability is 50%
that the bit will be 0 or 1. When velocities are positive, then the probability that the value
will be 1 is higher, while the opposite applies to negative velocities.

Canonical/traditional PSO has been used extensively in RES management problems
with the use of local energy storage (batteries). In these problems, the challenge is to
optimally schedule the charging and discharging periods of energy storage in order to meet
demand with the lowest cost possible.

Gradient-based PSO (GPSO) is often proposed for solving mixed discrete–continuous
scheduling problems. GPSO shows improved convergence speed when compared to the
canonical PSO algorithm, especially when there are many inequality constraints in the
problem. Instead of using a penalty function when constraints are violated, GPSO uses a
gradient-based repair method to adjust particle positions. Therefore, faster convergence
from infeasible to feasible solutions and lower computational cost can be achieved.

Hybrid and modified PSO methods have been used in research to solve the problems
of premature convergence and near-optimal solution identification since PSO is prone
to be “trapped” in local optima. For instance, CPSO-SARD and CPSO-R methods were
used in [46,47] to increase particles’ exploration capability and thus decrease the chances
of premature convergence. In both methods, particles move depending on the phase: in
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the attraction phase, particles move as in the canonical PSO, but in the repulsion phase,
they move in the opposite direction from their previous global best solution, avoiding
premature convergence to local optima. Another implementation that aims at increasing
the exploration capability of particles was used in [76]. CBPSO increases the exploration
of particles at an early stage of the PSO algorithm by applying chaotic motion to particles
that are close to the global best. Modified PSO algorithms, such as the improved hybrid
discrete PSO developed in [61], introduce methods to identify the particles that fall into
local optima based on the frequency of their updated best positions. Hybrid methods
have also been developed to combine the advantages of different heuristic algorithms
and therefore increase the overall efficiency. For instance, in [21], the authors combined
BPSO, which is effective in electricity bill reduction, with GA, which performs better in
PAR minimization. It is shown in [63] that BFOA performs better in electricity cost and
carbon footprint minimization due to its high exploration capability. On the contrary, BPSO
performs better in terms of PAR minimization and user convenience maximization.

5. Evaluation

Various models have been introduced in research for residential load scheduling and
control. Different PSO and other heuristic methods have been suggested based on the
problem formulation and the level of complexity in the optimization. The accuracy of
PSO in load scheduling problems can vary, mostly depending on the design variables, the
optimization objectives, and the input data.

5.1. Problem Design

Several features need to be considered when designing the system model and formu-
lating the scheduling problem for residential DR provision. These features can be classified
into the following categories based on the reviewed works [21–84]:

1. System architecture—HEMS design. As the first step, it is important to define the en-
ergy system resources and the way that they are connected with other users and
the main power grid. It is also useful to describe the flow of data information
and the point of control where scheduling will take place: local control, decentral-
ized control of grid-connected or standalone microgrids, or centralized control on a
utility/aggregator level.

2. Appliance classification and user categorization. Residential household appliances
can be characterized as fixed, flexible, interruptible, and power-adjustable. In a
microgrid, users can be passive (unidirectional power flow without self-consumption),
semi-active (unidirectional power flow with self-consumption and storage), or active
(bidirectional power flow with self-consumption and storage).

3. Energy consumption. Equality constraints that ensure load balance at each time inter-
val are introduced. In some works, a maximum and/or minimum grid consumption
constraint is defined so that load shift to off-peak hours will not lead to demand spikes.
Additionally, grid exchange capabilities (selling back to the grid) might increase the
problem complexity even further but provide a more realistic modeling approach.

4. Local RES generation and energy storage. In some works, local RES generation with
coupled energy storage is considered. A set of constraints (charge/discharge rates
and maximum energy stored) is essential to properly model local energy storage.
Depending on the problem design, either RES production follows a predefined profile
or a RES forecasting model is utilized.

5. DR program and electricity tariffs. The DR program that each user follows is a crucial
feature of the problem design, since in the majority of problems, cost minimization is
the main objective. In research, inclined block rates (IBRs) can ensure a smoother load
shift from peak to off-peak hours.
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6. Other considerations. PAR can be introduced as a minimization objective or can
be investigated when modeling results are obtained. In other works, a set of con-
straints is introduced to ensure that model results respect users’ thermal comfort and
convenience preferences (appliance operational delay).

7. Objectives. The most common objective, as shown in Section 3, is electricity cost
minimization. User convenience, thermal comfort, PAR, and emission reduction can
also be considered as optimization objectives.

5.2. Complexity

In this review work, the complexity of the proposed models is evaluated based only
on the DR scheduling task and does not take into account other modeling blocks, such as
price and load forecasting, that authors might have introduced in their works. The time of
convergence and the accuracy of modeling results are directly linked to the complexity of
the optimization process. A heavily constrained optimization problem, as in [22,32,62,81],
with multiple households, local energy storage, RES penetration, and consideration of
end-user preferences, increases the modeling complexity and the risk of infeasibilities
or slow convergence. High complexity can also be seen in multi-objective optimization
problems, as in [29,49,57,78]. Some objectives, such as electricity cost minimization and
user comfort maximization, might conflict, and in that case, the Pareto front of acceptable
solutions is calculated. Moderate complexity can be seen when energy system participants
are interconnected. For instance, in [75], a large number of customers and households
are controlled in a microgrid system. Power grid exchange is allowed, and two-stage
optimization of consumption and production in an MG is investigated. In [24], grid
exchange capability is modeled with the use of three different electricity tariffs, namely,
an RTP for the power purchased from the grid, a resell electricity price when excess
solar energy is sold to the grid, and a penalty price that represents the avoidable cost
when energy storage meets demand. However, in that case, household appliances are not
optimally scheduled, since the load is treated in an aggregated way; therefore, the total
model complexity decreases. It is clear, though, that the higher the number of parameters
involved in the analysis, the more computationally complex the optimization becomes.

Tables 2 and 3 can help the reader identify the problems with the highest complexity
based on the number of parameters considered, the system architecture, and the optimiza-
tion objectives and constraints.

• High complexity. The problems in [22,28,29,32,46,49,51,57,61,62,66,68,74,78–81] can
be characterized as highly complex, since they have a complex energy system ar-
chitecture (high number of users); they consider many energy resources, including
interruptible and power-adjustable household appliances; they are heavily constrained;
and in most cases, the optimization functions involve multiple objectives.

• Moderate complexity. The problems in [21,24,26,27,30,31,33,34,37–42,44,45,48,53–56,
59,60,63,64,69,72,75–77,82–84] show moderate complexity either due to a single objec-
tive combined with a large number of constraints and energy resources or due to a
combination of more objectives with fewer resources and constraints applied.

• Lower complexity. The problems in [23,25,35,36,43,47,50,52,58,65,67,70,71,73] present
lower complexity compared to the research works mentioned above. The smaller
number of system constraints, the simpler energy system architecture (small number
of users), the lack of power-adjustable and/or interruptible appliances, and the single-
objective optimization are the main reasons for this categorization.

5.3. Accuracy

The accuracy of results when using PSO for residential resource scheduling depends
on the system design parameters as well as on the actual data used in the model simulations.
In many research works, authors tend to compare the simulation results of PSO with other
heuristic methods and nature-inspired algorithms, such as GA, WDO, ACO, and others.
PSO, or its most common variant, BPSO, leads to electricity bill savings, typically around 20–
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30%, depending on the electricity tariffs applied. However, even higher savings have been
found when RES and energy storage are introduced. When compared to other heuristic
methods, such as GA, PSO can either outperform or underperform, depending on the
design variables. For instance, in [22], GA shows better PAR, higher cost reduction, and
faster convergence when compared to BPSO. On the contrary, in [21], the execution of BPSO
is faster than in [22] and results in lower electricity costs but higher PAR. Given that energy
resources (DG and storage) are introduced in all of the above problems, the difference
lies in the electricity tariffs and in the number of households and resources controlled.
The use of BPSO with ToU tariffs leads to a major shift of loads to off-peak hours, where
tariffs are lower. Therefore, PAR remains high when compared to an implementation with
the use of GA. However, electricity cost reduction is higher in the case of BPSO. When
using RTP combined with IBR tariffs, as in [32,39], BPSO can outperform GA in both
PAR and electricity costs. In terms of the number of households, [21,26,32] show that
BPSO can be computationally faster and perform better for single household modeling.
The previous analysis shows that residential scheduling for DR provision is a complex
and challenging problem since model performance is affected by numerous parameters
and features. Therefore, selecting PSO over other heuristic methods or vice versa cannot
be treated as a predefined option. However, PSO can be considered a highly accurate
and robust method for such problems, as shown in [35], where results were found to be
marginally different when compared to the commercial CPLEX MILP solver from IBM.

6. Future Research

During the last decade, significant work has been carried out in the field of residential
scheduling and control algorithms for demand response provision [21–84]. However, there
are still many areas that need to be investigated so that PSO can be established in real-life
DSM applications and end-users can become more engaged with DR programs.

6.1. Advanced and Explainable Methods

From the reviewed research works, it can be noticed that most recent research focuses
on the improvement of existing PSO algorithms or the design of new variants to avoid
the problem of premature convergence in local optima and increase convergence speed,
such as in [85,86], where the hybrid PSO methods of comprehensive learning (CLPSO)
PSO, unified PSO (UPSO), and self-regulation PSO (SRPSO) were used to accelerate the
exploration of the particles while maintaining strong exploitation capabilities. However,
the fact that PSO-related methods generate near-optimal schedules cannot be acceptable
on its own in competitive electricity markets, where transparency in dispatching is also
required. This creates the need to develop more advanced hybrid methods that can fully
justify the dispatching of DR capacities over conventional generation.

In addition, the high autonomy of AI in decision making and EU GDPR’s Article 12,
which allows end-users to enquire about AI decisions, make responsible and explainable
algorithms not only a research challenge but also a practical necessity. Therefore, increasing
the explainability and transparency of scheduling methods can increase consumer under-
standing and engagement, contributing significantly to the establishment of such methods
in real-life applications.

6.2. Consideration of Uncertainties

Models for scheduling and control of residential resources consider various uncertain-
ties in inputs that are being used for the estimation of available flexibility, such as must-run
load, electricity price signals, and renewable power generation. From a utility point of
view, the difference between realized and scheduled load needs to be defined in order
to better estimate the level of DR needed. From the end-user point of view, DR actions
are planned based on forecasted electricity tariffs and estimated RES generation. Monte
Carlo simulation, chance-constraint, or stochastic optimization can be used to solve such
uncertainties. However, in most of the reviewed works, more practical implementations
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were considered, such as near real-time rescheduling in case of an error in forecasting [33]
or the manual addition of a contingency on the expected RES output (e.g., −10%) [21]. In
order to assess the value of uncertainty in the optimization results, sensitivity analysis is
needed so that end-users or utilities can better estimate the potential range of their savings.

6.3. End-Users as Price Makers

In most of the reviewed works, end-users act as price takers receiving electricity tariffs
(ToU, RTP, and CPP) provided by the grid operator in order to optimally schedule their
appliances and resources. Only in [38] end-users were modeled as price makers and were
provided with the opportunity to tender their participation in a DR event. Assuming
that DR is expected to play a role in the emerging energy flexibility markets, it is worth
researching how market players can profit by tendering their own distributed energy
resources.

6.4. Fully Utilize EV Potential

In the majority of the reviewed works where EVs were considered, they were treated
either as interruptible loads or as a source of local energy storage. Only in [66] did the
authors model EVs both as a load and as a generator that can sell its energy back to the grid
(V2G), unlocking the full potential of EVs. In a smart grid, where peer-to-peer trading will
be allowed among prosumers, EVs are a flexible asset that can lead to high energy savings;
therefore, it is suggested that V2G be more comprehensively considered in future research.

6.5. Energy Model Scalability

In the most recent publications, the efficiency and applicability of PSO in scheduling
were tested in energy models with a large number of households and/or resources, as
in [84], where 1000 customers were divided into four clusters based on their load profiles,
or in [66], where 2000 vehicles were modeled. The next step would be to increase the
penetration of other resources, such as RES, DG, and ES, in order to test the performance of
PSO in larger-scale energy models.

6.6. Comprehensive Metrics for DSM Evaluation

The development of comprehensive metrics and indexes that evaluate not only cost
savings but also environmental benefits and user satisfaction is a key factor that can con-
tribute towards the wide deployment of DSM schemes in energy markets. Users’ thermal
comfort and convenience are extensively addressed in research. However, considering
other social aspects, such as user experience during a DR event, social comfort, and method
explainability, can improve user satisfaction and consequently increase their engagement
and participation in DSM programs.

In addition, it is important to consider the cost of equipment degradation when per-
forming DR actions. As seen in [42], if battery cycling cost is ignored in the optimization
model, batteries will undergo unconstrained charge/discharge. This can result in sub-
optimal operating points for the aggregator. Therefore, the storage cycling cost can be
introduced as a metric at any cost-saving estimate when energy storage or EVs are being
used to provide DR services.

7. Conclusions

This review paper provides a comprehensive description of models, energy appli-
cations, and PSO methods used in residential resource scheduling and control for DR
provision. The currently available research is evaluated and classified based on the above
criteria, and future research directions in this field are suggested. Research has shown that
PSO is a relatively simple computational method that can accurately schedule residential
resources for DR provision, even in complex and constrained energy system models, within
a reasonable timeframe. In the majority of research works, electricity bill reduction is the
main optimization objective, accompanied by user-related considerations (convenience
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and thermal comfort). Scheduling and control of household appliances under an RTP
scheme has been the most preferable energy system model, especially when supported
by IBR to avoid high PAR. Although canonical/traditional PSO and BPSO are the most
deployed PSO methods, hybrid PSO algorithms have been extensively developed in recent
years to suggest solutions to PSO’s main drawback of premature convergence in local
optima. Future research areas include the development of more advanced and explain-
able algorithmic methods, the consideration of load and price forecasting uncertainties
in the problem formulation, a more dynamic system approach with end-users as price
makers, V2G consideration, and the modeling of more resources, as well as the definition
of comprehensive metrics to evaluate the performance of DR scheduling methods.
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Abbreviations
The following abbreviations are used in this manuscript:

AC Air conditioning
ACO Ant colony optimization
AI Artificial intelligence
ANN Artificial neural network
BBSA Binary backtracking search algorithm
BFOA Bacterial foraging optimization algorithm
BPSO Binary particle swarm optimization
CI Computational intelligence
CBPSO Chaotic binary particle swarm optimization
CLPSO Comprehensive learning particle swarm optimization
CPSO-R Cooperative particle swarm optimization with stochastic repulsion
CPSO-SARD Cooperative particle swarm optimization with stochastic

attraction–repulsion of diversity
DG Distributed generation
DLC Direct load control
DNO Distribution network operator
DR Demand response
DSM Demand-side management
EV Electric vehicle
ES Energy storage
GA Genetic algorithm
HVAC Heating, ventilation, and air conditioning
IBR Inclined block rates
ILP Integer linear programming
LP Linear programming
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LS Local search
MG Microgrid
ML Machine learning
MILP Mixed-integer linear programming
PAR Peak-to-average ratio
PSO Particle swarm optimization
PV Photovoltaic
RES Renewable energy resources
RL Reinforcement learning
RTP Real-time pricing
SRPSO Self-regulated particle swarm optimization
ToU Time of use
UPSO Unified particle swarm optimization
V2G Vehicle-to-grid
WDO Wind-driven optimization
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