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Abstract: A frequency response analysis (FRA) is a well-known technique for evaluating the mechan-
ical stability of a power transformer’s active part components. FRA’s measuring practices have been
industrialised and are codified in IEEE and IEC standards. However, because there is no valid coding
in the standard, the interpretation of FRA data is still far from being a widely acknowledged and
authoritative approach. This study proposes an innovative fault segmentation and localisation tech-
nique based on FRA data. The algorithm is based on regression analysis to estimate the repeatability
and relationship between the FRA fingerprint and the latest measured data. Initially, the measuring
frequency is discretised into three regions to narrow the location of the fault; the regression model of
the fingerprint and current FRA data are then evaluated. As a benchmark, two statistical indicators
are the employed benchmark against the proposed method. Finally, the proposed scheme identifies
and characterises various transformer conditions, such as healthy windings, axial and radial winding
deformations, core deformation and electrical faults. The database used in this study consists of FRA
measurements from 70 mineral-oil-immersed power transformers of different designs, ratings and
manufacturers that were physically inspected for various faults and comparable frequency regions.
The results achieved corroborate the efficacy of the proposed regression analysis fault recognition
algorithm (RAFRA) model for transformer fault diagnosis using FRA. Further recommendations are
made to address the reproducibility concerns induced by multiple FRA testing conditions.

Keywords: frequency response analysis (FRA); power transformer; regression analysis; numerical
indicators

1. Introduction

The massive amount of energy usage and power demand in South Africa has led
to power transformers operating under abnormal loading conditions. Therefore, the
transformer runs a risk of failure due to high-stress operating levels. Generally, this occurs
as a result of degradation in the insulation material, which weakens the clamping structure
holding the winding core and subjects the transformer to vibrations and short circuit
forces [1]. Studies in [2,3] reveal that approximately 70–80% of transformer failures occur
as a result of a short circuit. Therefore, early detection of winding faults would be of
great interest for power utilities for preventative maintenance management [4,5]. In a
survey conducted by CIGRE [6,7] covering 58 power utilities from 21 countries, different
transformers were collected and tested according to their standards for assessing the
components with a major contribution to transformer failures. The windings were found to
have a major contribution of 37.69%. The outcome of the survey is presented in Figure 1.
This raises a serious concern since most winding failures occur due to a short circuit. The
rate of failures in the survey was calculated according to Equation (1).

Energies 2022, 15, 2335. https://doi.org/10.3390/en15072335 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15072335
https://doi.org/10.3390/en15072335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3635-0988
https://orcid.org/0000-0002-9178-2700
https://doi.org/10.3390/en15072335
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15072335?type=check_update&version=1


Energies 2022, 15, 2335 2 of 22

Figure 1. Failure location of substation above 100 kV.

The rate of failure is calculated as:

λ =
n1 + n2 + n3 + · · · ni

(N1 + N2 + N3 + · · · Ni)× T
× 100% (1)

where:
ni = number of transformer failures in ith year
Ni = number of transformers operating in ith year
T = Reference period (ranging from 3 years to 11 years)
Apart from economic constraints caused by short circuit forces, the bumping of the

transformer during transportation from the factory to the site could also contribute to huge
losses. In order to reduce transformer failures, in-depth knowledge of the mechanical
integrity of the power transformer, mainly the windings, is advantageous for monitoring
the condition of the transformer and its reliability. The evaluation of the mechanical
condition of a transformer in good condition after manufacturing requires an extra cost.
If the transformer is required to be returned to the factory, there is also an additional
cost. Hence, the development of standard diagnostic tools for distinctive testing and
interpretation of the mechanical status of the winding and core is imperative [8,9] to make
an informed decision whether to return the transformer to the factory or not.

To evaluate the mechanical integrity of the transformer, sweep frequency response
analysis (SFRA) is widely accepted as the best approach [9]. This technique was first used
by Dick and Erven in 1978 in their paper published by the IEEE [10]. It is a non-destructive
test that measures the frequency response of the windings in the frequency range of 20 Hz
to 2 MHz. A comparison between two frequency characteristics (the fingerprint and the
latest test) is observed to detect discrepancies. If the resultant over-laying of the frequency
characteristics reveals any discrepancies, it is an indication that the winding is potentially
damaged. To investigate the severity of the fault, there is no definite answer unless the
transformer tank is dismantled. The SFRA has great potential to be widely accepted
and established as an interpretational scheme such as the dissolved gas analysis (DGA)
presented by the authors in [11–20] for transformer oil analysis. A few hurdles still require
investigation, but with the expanding demand for non-intrusive assessment techniques, it
has a great future use.

Studying the transformer winding deformation in a real transformer would be very
costly if attempted, as the winding would have to be deformed permanently to create
various deformations. Considering this rationale, the development of a winding model is
more accessible to explore the understanding of SFRA in winding deformations. Unlike
an actual transformer, a model can simulate various winding deformations, which is not
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possible on a real transformer. Simulation software such as MATLAB, ELECNET and
MAGNET can be used with reasonable accuracy in studying the frequency responses of
the winding. In [12], the IEEE makes recommendations about the use of computer models
and simulations in studying various transformer conditions.

In recent studies [15,16], machine learning has been proposed as a methodology to
evaluate transformer FRA data. By examining various winding failure modes, the winding
frequency response can be understood. Further, the severity of a fault can be established in
a model simulation to monitor the condition of a transformer and its reliability. Electrical
faults such as inter-turn faults and their severity can also be investigated using SFRA. In
general, every winding fault must be investigated to fully understand and interpret the use
of SFRA for accurate transformer monitoring.

This work provides a novel regression-analysis-based detection and categorisation
scheme using FRA data. The FRA fingerprint taken at the manufacturer’s plant and the
latest FRA data underpins the proposed technique. By discretising the measuring frequency
band, several numerical indicators are employed as a benchmark. To detect and classify
transformer winding abnormalities, regression analysis is used in conjunction with indices.

2. Materials and Methods

Figure 2 shows the stages involved in developing a regression analysis fault recogni-
tion algorithm (RAFRA) for a specific FRA data set. The process includes seven major steps,
i.e., FRA data preliminaries, measuring frequency discretisation, fingerprint extraction,
development of regression analysis model, numerical indicators benchmarking, perfor-
mance analysis and report findings. If the model’s performance is poor as a result of the
unavailability of the initial transformer fingerprint records, the RAFRA proposes using the
FRA dataset of a design with similar technical specifications to improve results.

Figure 2. Flowchart for regression analysis fault detection scheme, FRA—Fault Recognition Algorithm.

2.1. Fault Recognition Algorithm (FRA) Database

The database for this study is comprised 150 FRA results from 70 mineral-oil-immersed
power transformers with different designs, ratings and manufacturers that were physically
inspected for various faults and comparable frequency regions. Different types of trans-
formers are included in the database, including distribution, transmission and generator
step-up units. Thus, every FRA measurement in the database correlates with a certain
transformer condition. This study focuses on five transformer mechanical and electrical
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faults: healthy windings, axial and radial winding deformations, core deformation and
electrical faults.

2.2. Fault Recognition Algorithm (FRA) Data Preliminaries

Data labelling and de-noising are the two primary processes involved with FRA data
pre-processing. Individual latest FRA test measurements are allotted a label during FRA
data labelling. De-noising is performed to ensure that the diversity of noise interferences
that might affect SFRA tests, notably in substation surroundings, are eliminated. These
interferences may be segmented into narrow-band and broadband noise. The harmonic
current interference and its harmonics constitute a quintessential narrow-band noise. The
latter is a multiple of the general electric utility total power frequency. The FRA waveforms
in the lower-frequency region spanning 30 Hz and 100 Hz are considerably influenced
by narrow-band interference. The effects of narrow-band disturbance are relatively un-
common above 300 Hz. Narrow-band noise can also be discovered in power stations
with considerable harmonic contamination. In practice, it has also been found that the
disturbances may be due to the measurement system. In the frequency region about 3 Hz to
100 Hz, the impacts of disturbances are significant, even though at harmonic frequencies the
effects are less apparent but detectable. Interestingly, noise characteristics typically emerge
during measurements in an elevated electromagnetic field intensity setting, such as that
prevalent in power stations having rated voltages exceeding 380 kV. Typical narrow-band
noise interference is illustrated in Figure 3a.

A noise floor will always emerge during FRA measurements, and this will distort
the FRA waveforms. The attached FRA test device is the source of this specific sort of
internal noise, which is classed as broadband interference. The dynamic range of the
FRA test device defines the extent of disturbance. The noise floor may be defined as the
measurement of the signal produced by adding all of the interferences and undesirable
signals in a measuring device. It is employed to evaluate the minimal signal intensity that
may be detected. The dynamic range of an FRA test device specifies its noise floor. The IEC
60076-18 standard specifies a dynamic range of −90 dB to +10 dB as a threshold. Typical
narrow-band noise interference is illustrated in Figure 3b. The measured transfer function
(output voltage/input voltage) in the FRA measurement is converted to decibels (dB) by
20 log×(Output voltage/input voltage) and presented as the magnitude (dB).

Several techniques may be incorporated in the measurement setup to minimise the
impact of external disturbances on FRA waveforms. Practically, external interference can be
curbed through the use of adequate connection procedures and available noise-suppressing
input filters.

2.3. Fault Recognition Algorithm (FRA) Measuring Frequency Discretisation

The frequency response of a transformer is intrinsically linked to the transformer’s ac-
tive parts components such as core clamps, core, windings, leads, etc. In distinct frequency
ranges, the active part components dominate the frequency response. As a result, different
faults in transformers may be categorised by distinguishing these ranges. The ranges of
these frequency regions are dependent on a variety of parameters, including application,
MVA rating, core steel grade and winding conductor configuration, and a generalised range
cannot be wholly determined. The segmentation and tracking of distinct FRA profiles is the
primary basis for developing a numerical frequency discretisation algorithm. The FRA data
from 70 transformers of various applications, MVA rating, and winding configurations are
examined in this study. The percentage breakdown of fault conditions of these transformers
is demonstrated in Figure 4. Based on these factors, seven transformer conditions identifiers
are recognised in various frequency sub-ranges. Table 1 shows the proposed segmentation
of FRA waveforms based on distinct features in different frequency sub-bands.
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Figure 3. (a) Typical narrow-band interference. (b) Typical broadband interference.

Table 1. Proposed numerical frequency response segmentation.

Frequency Region Transformer Component Influencing Elements

1–10 kHz Main core
Winding inductance

Core deformation, open circuits, shorted turns and residual
magnetism

10–100 kHz Bulk component
Main windings

Deformation within the main or tap windings
Bulk winding movement between windings and clamping structure

400 kHz–1 MHz
Main windings
Tap windings
Internal leads

Movement of the main and tap windings, ground impedance
variations
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Figure 4. Segmentation of FRA repository.

Categorising the frequency sub-bands according to influencing factors optimises the
probability of narrowing down the transformer component that is damaged. Moreover,
Table 1 provides a familiar idea of the frequency range. The frequency range for the
influenced components will vary in each frequency sub-band. The following assumptions
were made in an attempt to formulate the frequency sub-bands in Table 1 and to attempt
reproducibility of the latest FRA data:

• The FRA data of investigated transformers with known faults were compared with
previous FRA data of the same unit.

• In the case where the fingerprint of the same unit was not available, the latest FRA
data was compared with the same MVA unit designed according to the same technical
specification.

• The FRA data of one phase were compared with those of another phase of the same unit.

2.4. Development of Regression Analysis Model

After the FRA fingerprint and the latest FRA measurement has been extracted, re-
gression analysis in the application of FRA is proposed and employed. The modelling
of the relationship between the latest sweep frequency response data (LSD) and a trans-
former fingerprint (explanatory variables) is further proposed to contribute to existing
statistical indicators.

Prediction requires a unit of association; there should be an entity that relates the two
FRA variables. To accommodate inevitable errors in the model, the prediction equation is
written as in Equation (2). A simple linear regression model is presented where β0 is the
y-intercept (expected response given x), β1 is the slope (or regression coefficient) and ε is
the error term.

y = β0 + β1x + ε (2)

The proposed FRA criterion for the proposed method is illustrated in Figure 5. The
criterion was segmented into four classes: healthy condition, slightly deformed, deformed
and totally deformed.

The criterion for these conditions is formulated based on the statistical evaluation
of FRA measurements from 70 mineral-oil-immersed power transformers of different
designs, ratings, and manufacturers that were physically inspected for various faults. The
correlation of coefficients is a key parameter in specifying the extent to which the latest
FRA profile varies from the fingerprint taken at the manufacturer premises during factory
acceptance testing.
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Figure 5. Proposed FRA regression analysis method.

In [21,22], regression analysis was employed to evaluate the relationship between
two or more variables in diagnosing the condition of electrical equipment. In [21], the
correlation between various transformer oil properties with water content was studied in a
transformer. The results yielded a correlation of more than 90%. In [22], the decomposition
of low voltage cables was studied by studying the relationship between the voltage response
and the ageing of the insulation material.

2.5. Numerical Indicators Benchmarking

Several statistical indices have been proposed in the standards and literature to analyse
deviations in various frequency sub-bands to classify the severity of the deformation. Gen-
erally used statistical techniques are cross-correlation (CC) and absolute sum of logarithmic
error (ASLE). When there is a perfect correlation between two frequency responses, the CC
and ASLE will be 1 and 0, respectively. The analysed response is divided into sub-bands
before the numerical techniques are applied to increase the chances of locating the location
of the fault, since frequency regions represent specific transformer parts, as presented
earlier. After segmenting the FRA measuring frequency into three frequency sub-bands,
two numerical indicators (CC and ASLE) are employed as given in Equations (3) and (4).
These numerical indicators are evaluated in three sub-bands using the FRA fingerprint
and latest FRA measurement. These indicators appraise the divergence patterns for var-
ious transformer fault conditions. This process is called benchmarking of the proposed
regression model.

CC =
∑N

i=1((xi − x)× (yi − y))

∑N
i=1(xi − x)2 × ∑N

i=1(yi − y)2 (3)

ASLE =
∑N

i=1(yi − xi)

N
(4)

Here,
xi Raw data of the transformer fingerprint
x The mean of the transformer fingerprint
yi The raw data from the latest measurement
y The mean for the latest measurement
N The total number of data points.
In [23–25], various statistical indicators were employed to interpret transformer FRA

results. It is impracticable to employ all of them as a benchmark in this work, and hence
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only CC and ASLE were chosen for comparison with the proposed methodology discussed
in the previous section, particularly as they give different results.

2.6. Performance Analysis

The performance analysis is then tabulated where the model’s goodness of fit coeffi-
cients are shown. The R2 (coefficient of determination) illustrates the % of the volatility
of the LSD variable which is explained by the FRA fingerprint profile. The stronger the
relationship, the closer the R2 is to 1. These data are further compared with two statistical
indicators as a benchmark to evaluate the performance of RAFRA.

3. Results

In this section, four case studies of field transformers, courtesy of a local transformer
manufacturer, power utility and local municipality, are presented. All the case studies
hold distinct failure modes and each is interpreted using the benchmarking numerical
indicators and the proposed RAFRA. The interpretational tool evaluates the FRA traces in
the case studies at the lower-, upper- and higher-frequency regions. The case studies under
investigation are presented in Table 2.

Table 2. Case studies under investigation.

Case # Location Power Rating Voltage Ratings

1 Gauteng 20 MVA 132/11 kV

2 Gauteng 50 MVA 66/11.66 kV

3 North West 40 MVA 132/11 kV

4 North West 10 MVA 66/11 kV

3.1. Measurement Setup

The frequency responses of the units were ascertained from measurements performed
personally and contributed by the relevant parties as mentioned above. In some cases, the
units were reported to have suspected faults and no internal inspection was performed.
Hence, the results of analyses of these units were not verified. Nonetheless, a cautious
evaluation of the condition of the transformer is presented using the available information.
The performance analysis incorporates the proposed RAFRA and benchmarking statistical
indicators. The measurement setup from one of the test cases is shown in Figure 6.

Figure 6. M5400 FRA Measurement setup.
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3.2. Case Studies
3.2.1. Investigating Frequency Response of Transformers in Good Condition

To implement numerical indices on a real test unit, the sub-band frequency responses
which are affected by specific transformer parts are presented.

Case Study 1

For the first case, two SFRA traces measured during FAT in 2015 and again in routine
maintenance test in 2017 are available for comparison. In Figure 7, a frequency response
characteristic based on a fingerprint for the HV winding of Phase A is demonstrated.
Bushings with resin impregnated paper (RIP) insulation and lightning impulse withstand
voltages of 350 kV and 200 kV on the high-voltage and low-voltage sides were used
during the test. The capacitive values of the bushings have great values and have an
inconsequential effect on the interpretation of the FRA results.

Figure 7. Frequency response based on a fingerprint comparison.

The transformer had only three years in service and was still relatively new. An
analysis of the frequency response for this unit is presented in Table 3 for the chosen
numerical techniques after careful consideration in the previous section. Precautions were
taken during the measurements to ensure reproducibility of the results taken during FAT
in 2015.

Table 3. Numerical technique for healthy winding condition.

Technique Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

CC 1 1 1

ASLE 0 0 0
CC—cross-correlation; ASLE—absolute sum of logarithmic error.

The application of regression analysis on the frequency response is presented in Table 4
and Figure 8. The numerical and regression values appear to be in good agreement across
the entire measuring frequency range. There is no deviation identified by the proposed
techniques—the winding is indeed in a healthy condition.
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Table 4. Regression analysis for frequency regions in healthy winding conditions.

The Goodness of Fit Statistics Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

Std. deviation 0 0 0

R2 1 1 1

Adjusted R2 1 1 1

Figure 8. Regression for healthy winding conditions.

The goodness of fit statistics above shows an R2 of 1, which indicates that the LSD in
2017 perfectly correlates with the transformer fingerprint taken in 2015.

The regression characteristics show that the latest SFRA data has a perfect fit of the
fingerprint data across all the frequency regions.

3.2.2. Investigating Frequency Response for Transformers with Winding Damages
Case Study 2

In this case, a 50 MVA 66/11.66 kV, YNd1 transformer winding frequency response is
analysed. The transformer fingerprint is compared against the latest SFRA measurement of
the unit that is suspected of being faulty and is presented in Figure 9. Bushings with resin
impregnated paper (RIP) insulation and lightning impulse withstand voltages of 250 kV
and 200 kV on the high-voltage and low-voltage sides were used during the test. The
capacitive values of the bushings have large values and result in a negligible effect on the
interpretation of the FRA results; accurate analysis of the data can therefore be achieved.

There are obvious deviations from the frequency characteristics in the middle-frequency
region at about 10 to 100 kHz and again at higher frequencies above 1 MHz. The frequency
response analysis of the unit was divided into sub-bands to assess each frequency region
separately as shown in Table 5. The results are presented in Figures 10–12 and the severity
of the observed deviations in the frequencies are presented. The CC and ASLE results agree
at lower- and higher-frequency regions except for the middle-frequency region. The CC
and ASLE suggest a totally deformed and slightly deformed condition, respectively.
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Figure 9. Frequency responses for a transformer faulty winding based on fingerprint comparison.

Table 5. Numerical technique for fingerprint vs. after deformation.

Technique Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

CC 0.998 0.8909 0.9981

ASLE 0.02 0.3330 0.034

Figure 10. Regression analysis for fingerprint vs. after deformation (lower-frequency region).

To apply regression analysis in this case study, the frequency response data was again
divided into sub-bands and the regression for each region is presented in Table 6. The
regression analysis shows good agreement with CC and ASLE at the lower-, medium- and
higher-frequency regions with R2 = 0.997, R2 = 0.879 and R2 = 0.987, respectively. The
middle-frequency region is deformed. Based on the analysis, this unit is likely diagnosed
with a winding deformation.
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Figure 11. Regression analysis for fingerprint vs. after deformation (medium-frequency region).

Figure 12. Regression for fingerprint vs. after deformation (high-frequency region).

Table 6. Regression analysis for fingerprint vs. after deformation.

The Goodness of Fit Statistics Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

Std. deviation 4.242 19.789 17.615

R2 0.997 0.879 0.987

Adjusted R2 0.997 0.878 0.987

Equation of the model: LSD = 12.745 + 0.854 × Fingerprint
Interpretation (74.76): Given the R2 value, 100% of the variability of the dependent

variable LSD is explained by the explanatory variable.
Equation of the model (61.405): LSD = 4.861 + 0.845 × Fingerprint
Interpretation (61.405): Given the R2 value, 88% of the variability of the dependent

variable LSD is explained by the explanatory variable.
Equation of the model: LSD = −1.052 + 1.014 × Fingerprint
Interpretation (102.894): Given the R2 value, 99% of the variability of the dependent

variable LSD is explained by the explanatory variable.
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In the case presented, it can be observed from the equation of the model at each
frequency region that in the range of the variable fingerprint that is taken into account here,
when the fingerprint increases by one hertz, the LSD increases by 0.854, 0.845 and 1.1013
at the lower-, medium- and high-frequency regions, respectively. With the support of the
R2 value obtained for each frequency region and the regression characteristics, the lower-
and high-frequency regions seem to indicate a good correlation between the fingerprint
and the LSD. However, the R2 value and the regression characteristic of the medium
frequency indicate that the LSD does not have a good fit of the fingerprint. In this regard,
the regression agrees with the results obtained for C and ASLE across all the frequency
regions. The overall deviations observed on the medium-frequency region indicate that
there is a deformation within the main or tap windings.

Case Study 3

In this case, a 40 MVA, 132/11 kV 3-Ph 2-Winding transformer is assessed on phase
C tap position 1, as shown in Figure 13. The transformer is tested against a fingerprint
that was obtained during a factory acceptance test in 2013. The FRA measurements were
performed at tap position 1 with bushings fitted. The bushing test tap was used to inject
the FRA signal and to alleviate the terminal voltage on account of capacitive dividers.

Figure 13. Comparison between fingerprint and regulator winding (Phase C).

The deviations at about 5.5 kHz and also at about 100 kHz are generally governed by
core and tap winding deformation, respectively. The numerical technique results for this
frequency response are given in Table 7. The CC shows deformed and slightly deformed
conditions at the lower- and middle-frequency regions, respectively. The ALSE shows
totally deformed and deformed conditions at the lower- and middle-frequency regions. In
this case, the CC and ASLE agree on the higher-frequency region with the ALSE, showing
high warning compared to the CC across all the frequency regions.

Table 7. Numerical technique results for regulator winding.

Technique Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

CC 0.5057 0.9121 0.9798

ASLE 1 0.1734 0.0475

The frequency response regression parameters and equations for this test case are
shown in Tables 8 and 9. Regression analysis shows R2 = 0.251, R2 = 0.935 and R2 = 0.838 at
the lower-, medium- and higher-frequency regions, respectively. The regression analysis
shows totally deformed, healthy and slightly deformed conditions at the lower-, middle-
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and high-frequency regions. Based on this result, the regression analysis is sensitive to the
deviations observed on the resonances at higher frequencies. A graphical representation of
the regression results is shown in Figures 14–16. This unit is likely to be diagnosed with
core deformation and shorted turns on the tap winding (Winding C or regulator) due to
the slight deviation observed at the lower-frequency region and 100 kHz.

Table 8. Regression analysis for frequency regions at tap position 1.

The Goodness of Fit Statistics Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

Std. deviation 26.858 3.12 1.351

R2 0.251 0.935 0.951

Adjusted R2 0.248 0.935 0.838

Table 9. Equation of the model for frequency regions at tap position 1.

Frequency Region Equation of the Model

Low (1–10 kHz) LSD = 147.0374 + 2.2869 × Fingerprint

Medium (10–100 kHz) LSD = −4.3357 + 0.9963 × Fingerprint

High (100 kHz–1 MHz) LSD = 3.3804 + 0.9187 × Fingerprint

Figure 14. Regression of Phase C, tap position 1 (lower-frequency region).

In Case III, it can be observed from the equation of the model in Table 9 for each
frequency region that in the range of the variable fingerprint that is considered here, when
the fingerprint increases by one hertz, the LSD increases by 2.286, 0.9963 and 0.9187 at
the lower-, medium- and high-frequency regions, respectively. When the fingerprint is
increased by one hertz, it increases by approximately two hertz, indicating an obvious
deformation at the lower-frequency regions. This is supported by the measured frequency
characteristic in Figure 16.
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Figure 15. Regression of Phase C, tap position 1 (medium-frequency region).

Figure 16. Regression of Phase C, tap position 1 (higher-frequency region).

Case Study 4

In this case, a transformer manufactured in 1983 and taken out of service in 2016 is
tested for frequency response analysis on the HV winding. The results of the SFRA measure-
ments are shown in Figure 17. Since there were no established SFRA measurements during
the manufacturing of the transformer, no fingerprint is available for comparison. Hence,
the SFRA measurements were performed by comparing different phases of the transformer.
Obvious deformations can be seen between H2-H1 and H3-H2 at the middle-frequency
region (10–100 kHz) and again at about 550 kHz. The magnitude of the responses also
decreases gradually at about 500 kHz compared to the deviations at 10–100 kHz. A good
correlation is maintained amongst the phases in the lower-frequency region (1–10 kHz)
and at about 100–500 kHz. The transformer was tested with the tank filled with oil and the
bushing test tap grounded. The bushings’ capacitive values are consistent throughout a
broad frequency range, and this alleviates the camouflaging of the actual transformer FRA
profile on account of the bushing’s frequency response.
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Figure 17. Frequency response of the HV winding for the transformer of steel mill 2.

The interpretation of the SFRA results using numerical techniques is presented in
Tables 10–12. To determine the winding to be used as a fingerprint in this case study, the
highest value of CC and lowest value of ASLE were chosen from the results since they
show great constancy in the previous cases. The comparison between H1-H3 vs. H2-H1,
H2-H1 vs. H3-H2 and H3-H2 vs. H1-H3 reveals that H3-H2 has the lowest deviations
compared with the other phases. It will thus be taken as the baseline (fingerprint) since it is
healthier than the other phases.

Table 10. Numerical technique for H1-H3 vs. H2-H1.

Technique Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

CC 0.999 0.9191 0.0921

ASLE 0.03 0.9632 0.125

Table 11. Numerical technique for H2-H1 vs. H3-H2.

Technique Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

CC 0.999 0.8804 0.9316

ASLE 0.0493 0.346 0.432

Table 12. Numerical technique for H3-H2 vs. H1-H3.

Technique Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

CC 1.000 0.9597 0.9865

ASLE 0.0225 0.9823 0.536

To apply the regression analysis, all the responses are presented by comparing different
phases, as shown in Tables 13–15. The comparison between H1-H3 vs. H2-H1 indicates
that there is a slight deformation in the middle- and higher-frequency regions, as shown in
Figures 18–20.
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Table 13. Regression analysis for H1-H3 vs. H2-H1.

The Goodness of Fit Statistics Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

Std. deviation 0.256 12.176 8.236

R2 0.999 0.834 0.840

Adjusted R2 0.999 0.833 0.839

Table 14. Regression analysis for H2-H1 vs. H3-H2.

The Goodness of Fit Statistics Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

Std. deviation 0.064 10.935 6.907

R2 0.999 0.761 0.861

Adjusted R2 0.999 0.760 0.860

Table 15. Regression analysis for H3-H2 vs. H1-H3.

The Goodness of Fit Statistics Frequency Region

Low
(1–10 kHz)

Medium
(10–100 kHz)

High
(100 kHz–1 MHz)

Std. deviation 0.280 12.744 8.457

R2 1.000 0.957 0.972

Adjusted R2 1.000 0.957 0.972

Figure 18. Regression for H2-H1 vs. H3-H2 (lower-frequency region).
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Figure 19. Regression for H2-H1 vs. H3-H2 (medium-frequency region).

Figure 20. Regression for H2-H1 vs. H3-H2 (high-frequency region).

Equation of the model: LSD = 0.465 + 1.021 × Fingerprint
Equation of the model: LSD = −5.834 × 10−2 + 1.017 × Fingerprint
Equation of the model: LSD = 0.281 + 1.093 × Fingerprint
The regression for comparing H2-H1 vs. H3-H2 is represented in Figures 21–23 for the

low-, middle- and higher-frequency regions. The middle- and higher-frequency regions
reveal deformed and slightly deformed conditions, respectively.

Equation of the model: LSD = −0.560 + 0.976 × Fingerprint
Equation of the model: LSD = −9.952 + 0.748 × Fingerprint
Equation of the model: LSD = −4.460 + 0.758 × Fingerprint
The regression comparison between H3-H2 vs. H1-H3 is represented in Figures 24–26.

The middle-frequency region reveals a slight winding deformation.
Equation of the model: LSD = 7.653 × 10−2 + 1.003 × Fingerprint
Equation of the model: LSD = 0.809 + 1.024 × Fingerprint
Equation of the model: LSD = 0.457 + 1.0123 × Fingerprint
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Figure 21. Regression for H2-H1 vs. H3-H2 (lower-frequency region).

Figure 22. Regression for H2-H1 vs. H3-H2 (medium-frequency region).

For Case IV, the equation of the model at each frequency region for all the compared
phases indicates that when the fingerprint increases by one hertz, the LSD increases by
1.021, 1.017 and 1.0929 at lower-, medium- and high-frequency regions, respectively, in the
range of variable fingerprint that is taken into account here, when the phases H1H3 and
H2H1 are compared. A similar observation is made when comparing the H2H1 vs. H3H2
phases as well as the H3H2 vs. H1H3 phases, where the LSD increases by 0.976, 0.748 and
0.758 and 1.003, 1.024 and 1.1022, respectively. Here the obvious deformation is observed
when comparing H2H1 vs. H3H2 phases. The CC and ASLE appear to agree with this
assessment. Upon internal inspection, the winding was found to have a buckled winding
deformation on H2-H1.
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Figure 23. Regression for H2-H1 vs. H3-H2 (high-frequency region).

Figure 24. Regression for H3-H2 vs. H1-H3 (lower-frequency region).

Figure 25. Regression for H3-H2 vs. H1-H3 (medium-frequency region).
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Figure 26. Regression for H3-H2 vs. H1-H3 (High-frequency region).

4. Conclusions

In this work, a novel regression analysis fault recognition algorithm (RAFRA) for
computerised transformer winding condition monitoring is proposed. The algorithm
is based on developing a regression model between the fingerprint and the latest FRA
measurement data and numerical indicators for benchmarking.

The database was formulated in this work to discretise the measuring frequency into
three sub-bands (low-, medium- and high-frequency sub-bands) to narrow the potential
faults. It was done in this way since different frequency regions can be intrinsically linked
to a physical fault consisting of FRA measurements from 70 mineral-oil-immersed power
transformers of different designs, ratings and manufacturers that were physically inspected
for various faults.

The validity of the numerical frequency segmentation algorithm was conclusively
demonstrated by reviewing four practical case studies. Two key statistical indicators,
viz., CC and ASLE, were used to assess the FRA data. It was realised that RAFRA had
the highest overall precision, with most of the case studies properly diagnosed using the
supplied database numerical frequency sub-bands, while CC and ASLE had satisfactory
performance, with some of the case studies not correctly diagnosed.

The case studies comprised transformers with a range of winding faults as well as
one with a healthy condition. The suggested method was shown to be sensitive enough
to recognise and identify a wide range of winding faults. The results demonstrate that
the proposed regression analysis algorithm can accurately assess the transformer winding
condition and identify the fault type, thus also addressing the big hurdle of the FRA for
commercial application, i.e., the reliable numerical evaluation of FRA results.
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