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Abstract: Energy management strategies have a significant impact on the hydrogen economy of
fuel cell trucks and the lifetime of battery and fuel cell systems. This contribution presents the
design and optimal calibration of an energy management strategy that is adaptive to the battery
and ambient temperatures. Indeed, fuel cell trucks face critical operating conditions due to high
ambient temperatures or high loads on long uphill roads. However, the presented adaptive energy
management strategy shifts the electric loads to the fuel cell system to limit the battery usage,
avoiding accelerated degradation due to battery temperature peaks without hindering the hydrogen
economy. The strategy design and calibration involves a multi-objective optimization of performance
indicators related to hydrogen consumption, fuel cell degradation, battery thermal state, equivalent
charge/discharge cycles, and charge control. This work uses AVL CAMEO to systematically vary
the adaptive curve parameters to explore the trade-off between the key performance indicators.
The calibration considers real-world driving cycles of road freight vehicles, including measured
speed, road elevation, and variable vehicle mass. Moreover, the energy management design is robust
because the performance indicators are evaluated over 8935 km, covering an extensive range of
real-world driving scenarios. Eventually, the adaptive and predictive energy management strategy
proposed in this work can meet all the performance targets thanks to the optimal calibration, and it is
particularly effective in avoiding battery temperature peaks.

Keywords: energy management strategy; fuel cell truck; optimal calibration; adaptive control; battery
temperature; fuel cell degradation; battery thermal management

1. Introduction

Fuel cells are considered more appealing than batteries as the primary energy source
of heavy-duty electric vehicles due to the high power and range requirements [1–3]. In
particular, the most feasible and promising application is for fuel cell electric trucks for
road freight transports, which have sufficient space for hydrogen storage tanks under the
side rails, behind the cab, and under the chassis to cover their daily operation range [4].

Supervisory control is a critical function in heavy-duty fuel cell vehicles because it
highly affects their operating costs and powertrain components lifespan. In particular, the
energy management system operates the power-split of the electric load demand between
the fuel cell and battery systems with the targets of low hydrogen consumption, limited
fuel cell degradation, and suitable battery state-of-charge (SoC) control to avoid accelerated
degradation [5]. At the same time, the thermal management system ensures that the
powertrain components are operated in a suitable temperature range to avoid accelerated
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degradation. Therefore, developing optimal energy and thermal management strategies
can significantly contribute to the advancement of heavy-duty fuel cell vehicles.

Energy management strategies (EMSs) have been largely investigated for different
hybrid electric vehicle topologies and applications, considering various targets for the
definition of the control design criteria [6–9]. The design of EMSs for fuel cell battery
vehicles is described in [10–30]. The predictive energy management of heavy-duty fuel
cell vehicles for road freight transports has been investigated in [5,31,32] to find a suitable
trade-off between fuel consumption and powertrain components degradation. In particular,
it was shown that predictive EMSs are highly beneficial to control the SoC operating range
and depth-of-discharge for trucks driving in mountain routes. Some studies have been con-
ducted to investigate the interaction between energy and thermal management, including
the maximum battery temperature constraints within the power-split optimization prob-
lem [33,34]. Indeed, avoiding battery temperature peaks is essential to prevent accelerated
system degradation and thermal runaways that can cause fires or explosions [35–37].

This paper focuses on the optimal calibration of an adaptive and predictive energy
management strategy for fuel cell electric trucks using AVL CAMEO. The study adopts
the predictive energy management system described in [31], proposing an improved
formulation to avoid battery temperature peaks. In particular, the control strategy adapts
to the battery and ambient temperatures, shifting the electric loads to the fuel cell system
(FCS) to limit the battery usage in critical conditions and avoid temperature peaks. The
adaptive control is implemented using optimally calibrated maps to adjust the main
control parameters depending on the ambient and battery temperatures. The parameter
maps are calibrated using AVL CAMEO considering the trade-off between hydrogen
consumption, fuel cell voltage degradation, maximum battery temperature, equivalent
battery charge/discharge cycles, and SoC control. Realistic driving simulations show that
temperature peaks over 47 ◦C (considered the threshold for accelerated battery degradation)
are effectively avoided for 32 selected real-world driving cycles and ambient temperatures
between 5 ◦C and 35 ◦C. Eventually, the benefits of the adaptive and predictive EMS are
evaluated by comparing the performance with non-adaptive and non-predictive strategies.

The remainder of this paper is structured as follows. Section 2 outlines the simulation
framework for the performance evaluation of fuel cell electric trucks in realistic driving
scenarios. Section 3 describes the adaptive and predictive energy management system,
and the optimal calibration process using AVL CAMEO. Section 4 analyses the simulation
results of fuel cell truck performance and compares different strategies to highlight the
benefits of the proposed method.

2. Performance of Fuel Cell Electric Trucks in Realistic Driving Simulations

This study evaluates the performance of fuel cell electric trucks in realistic driving
scenarios adopting the simulation framework developed within the Austrian research
projects HyTruck [38] and FC4HD [39]. An overall description of the simulation model
structure and main components is presented below to provide a good understanding of the
key performance indicators under investigation for optimal energy management design.
On the other hand, detailed modeling of the individual vehicle components is beyond the
scope of the paper.

2.1. Fuel Cell Vehicle Modeling

The simulation model is developed in MATLAB/Simulink, and its overall structure
is depicted in Figure 1. A fixed-step solver is adopted with a sample time of 200 ms. The
modeling approach is forward-facing, meaning that there is a driver model that creates a
power demand to follow a specific driving cycle. If the fuel cell and battery systems do not
provide the load demand, the vehicle slows down. In particular, the driver model defines
desired electric load depending on the road slope and the deviation between actual and
desired speed:

Pel,des = f (α, v, vdes) . (1)
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The model consists of a PI controller that creates the load demand based on the devia-
tion between actual and desired speed, which is a classical approach in the literature [40].
Additionally, the road slope is used to create a feedforward term to improve the tracking of
the desired speed.
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Figure 1. Overview of the fuel cell vehicle model in MATLAB/Simulink. For readability, some signals
are hidden and exchanged directly between subsystems.

The energy management system performs the power-split by defining the fuel cell
setpoint using the adaptive and predictive strategy detailed in Section 3. On the other
hand, the battery setpoint is defined to buffer the fuel cell operation, compensating for the
remaining part of the desired load and the electric losses of the cooling systems. Eventually,
the electric power on the DC bus is calculated as the sum of fuel cell and battery power
minus the electric losses of the cooling systems:

Pel = Pfcs + Pbat − Pfcs,cool − Pbat,cool . (2)

The fuel cell and battery systems are subject to the power constraints expressed in
(3)–(5), which hinder the exact following of the setpoints defined by the EMS. In particular,
the battery power restrictions derive from the cell voltage and C-rate limits to avoid accel-
erated degradation. Since the battery characteristics change depending on the operating
conditions, these constraints depend on SoC and temperature.

0 ≤ Pfcs ≤ Pfcs,nom (3)

|Ṗfcs| ≤ 0.10 · Pfcs,nom (4)

Pbat,min(SoC, Tbat) ≤ Pbat ≤ Pbat,max(SoC, Tbat) (5)
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Using an equivalent circuit model of the battery system, the SoC rate of change is
calculated depending on the battery power as:

˙SoC = −Voc −
√

V 2
oc − 4 Pbat Rint

2 Qbat,nom Rint
(6)

where the open-circuit voltage Voc and internal resistance Rint depend on SoC and tempera-
ture, and the nominal charge Qbat,nom is constant.

The fuel cell cooling system includes an electric fan to dissipate the radiator heat. The
operation and energy consumption of the electric fan depend on the vehicle speed, ambient
temperature, and fuel cell heat generation:

Pfcs,cool = f (v, Tamb, Pfcs) . (7)

The battery cooling system consists of a chiller system, two cooling circuits (with oil
and coolant), and three heat exchangers (battery/oil, oil/coolant, and coolant/chiller). In
the primary circuit, the oil absorbs the battery pack heat through liquid cooling plates. Then,
the oil dissipates the heat with the coolant through a counterflow heat exchanger. Lastly,
in the secondary circuit, the coolant is cooled down by the chiller system. A hysteresis
controller regulates the chiller operation depending on the battery temperature, switching
the system on at 40 ◦C and off at 35 ◦C. The coefficient of performance (COP) of the cooling
system depends on the ambient temperature and chiller cooling power, including the losses
of its main components (i.e., compressor and coolant pump). Therefore, the electric losses
of the cooling system are expressed as:

Pbat,cool = Q̇chill/COP(Tamb, Q̇chill) . (8)

The electric motor power is calculated considering the auxiliary loads that are external
to the powertrain (e.g., cabin conditioning, power-steering pump) as follows:

Pm = Pel − Paux . (9)

The power at wheels is determined depending on the electric motor and mechanical
braking power as:

Pw = Pm η
sgn(Pm)
T − Pbr , (10)

where ηT is the total efficiency of electric motors, inverters, and drivetrain components.
The mechanical braking system absorbs the negative loads that cannot be regenerated by
the electric motor due to the battery power constraints. Eventually, the vehicle acceleration
is calculated as:

v̇ =
Pw/v− Fres(v, α)

mv
, (11)

where the resistant force consider the aerodynamic drag, the road slope, and the wheels
rolling friction, as in [32].

The simulation results of a real-world driving cycle are depicted in Figure 2 in terms
of speed, elevation, fuel cell power, battery power, electric power for fuel cell and battery
cooling, SoC, and battery, oil, and coolant temperatures. The results provide a general
overview of the main challenges that fuel cell electric trucks face in long uphills due to
the heavy vehicle weight (in this case, 42 tons). In particular, the battery degradation is
accelerated due to low SoC levels (at minute 155) and temperature peaks (at minute 110).
On the other hand, the fuel cell system operates at high power for a significant time causing
high voltage degradation and hydrogen consumption.
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Figure 2. Driving simulation of a fuel cell electric truck (42 tons) in a real-world driving cycle.
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2.2. Performance Indicators in Realistic Driving Scenarios

This study considers a multi-objective optimization of hydrogen consumption, fuel cell
degradation, battery thermal state, equivalent charge/discharge cycles, and SoC control for
the strategy design and calibration. The vehicle performances are evaluated over 8935 km to
cover an extensive range of driving scenarios and obtain a robust EMS design. In particular,
the simulations consider 32 real-world driving cycles based on speed and road elevation
measurements of road freight vehicles operating in Central Europe. Some key driving
cycle properties are shown in Figure 3, indicating a significant variety of scenarios. The
average speed and traveled distance indicate that the investigation focuses on motorway
or rural driving cycles. High relative positive accelerations (RPAs) represent sub-urban
driving with traffic and frequent turns, whereas low values represent stable motorway
cruising. The vehicle mass ranges between 16 and 42 tons. High total climb indicates long
steep roads or frequent ups-and-downs, whereas the difference between maximum and
minimum elevation indicates flat, hilly, or mountain roads. The driving cycle in Figure 2
corresponds to the sample number 32 of Figure 3. Moreover, the speed and elevation profile
of the driving cycles 1, 5, 9, 18, and 30 are shown in Figure 4.

The total hydrogen consumption is calculated by integrating the consumption rate
as follows:

mH2 =
∫

ṁH2 dt . (12)

Figure 3. Key properties of the real-world driving cycles under investigation in this work. The cycles
are sorted by vehicle mass, which ranges between 16 and 42 tons. In total, the traveled distance is
8935 km and the driving time 116 h.
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Figure 4. Speed and elevation profiles of five selected real-world driving cycles.

The voltage degradation of the fuel cell system is calculated in (13)–(17), considering
start-up/shut-down cycles, low-power operation, high-power operation, and dynamic load-
ing.

∆Vfcs = ∆Vfcs,ss + ∆Vfcs,lp + ∆Vfcs,hp + ∆Vfcs,dl (13)

∆Vfcs,ss = 0.00196 · Nfcs,starts (14)

∆Vfcs,lp = 0.00126 · tfcs,lp (15)

∆Vfcs,hp = 0.00147 · tfcs,hp (16)

∆Vfcs,dl = 0.0000593 ·
∫
|Ṗfcs/Pfcs,nom/2| dt (17)

This quick evaluation method derives from accelerated aging tests and offers adequate
precision for a system level analysis [41]. The number of fuel cell starts Nfcs,starts is always 1,
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assuming that the FCS only shuts down at the end of the driving cycle. The thresholds for
low and high-power operation to calculate the time intervals tfcs,lp and tfcs,hp are assumed as
10% and 80% of the fuel cell nominal power, as in [42]. Eventually, the fuel cell end-of-life
occurs when the voltage degradation is 10%.

The battery degradation phenomena are highly specific to the cell type. Thus, it is
difficult to generalize degradation models without experimental characterizations. Never-
theless, the number of equivalent charge/discharge cycles:

Nbat =

∫
|Ibat| dt

2 Qbat,nom
, (18)

is considered as a rough indicator of the battery degradation. Some studies show that
the battery life can reach up to 5000 equivalent cycles if the system is operated avoiding
high C-rates, temperature peaks, full discharging, and overcharging [43–46]. Therefore,
an important indicator is also the maximum battery temperature Tbat,max. Moreover, it is
critical to control the battery charge, keeping it within a safe operating range. An indicator
of the SoC control can be defined considering the deviation from a suitable reference as:

εSoC = SoCref − SoC . (19)

Therefore, the standard deviation of εSoC can represent a suitable metric for the battery
charge control, and it is denoted with σ(εSoC).

3. Adaptive and Predictive Energy Management System

Energy management refers to the control task of distributing the electric load de-
manded by the driver between the fuel cell and battery systems. This function is also
called power-split, and it is a challenging aspect of hybrid vehicles because it involves
multiple and contrasting targets, such as hydrogen consumption, fuel cell voltage degra-
dation, maximum battery temperature, equivalent battery charge/discharge cycles, and
SoC control.

This study adopts the energy management system developed in [31], which is divided
into two stages as shown in Figure 5. When a new destination is inserted in the navigation
system, the available route information is used for the optimal generation of predictive SoC
and FCS power references. Afterward, when the drive starts, the references are used for
the on-board power-split by an adaptive rule-based energy management strategy.

Navigation system Vehicle model
Predictive energy

management optimization

Predictive SoC and 
FCS power reference

for entire route

Forecast of route 
speed and elevation

Forecast of 
electric load

Pel , SoC, Tbat , Tamb

FCS and battery setpoints

Adaptive energy 
management strategy

Figure 5. Control architecture of the predictive energy management system.



Energies 2022, 15, 2394 9 of 20

3.1. Optimal Generation of Predictive SoC and FCS Power References for Entire Route

Modern navigation systems can provide basic driving information of the route to
the final destination, such as road elevation, curvature, speed limits, and traffic speed.
This information can be used to forecast the electric load demand, allowing for predictive
energy management optimization. For example, knowing that the fuel cell truck has to
overcome a mountain, a predictive energy management system can ensure that the battery
is sufficiently charged before the climb starts.

This work uses quadratic programming for the optimal generation of SoC and FCS
power references with the following targets:

• maximize the fuel cell system efficiency,
• keep the SoC within the range 50–80%,
• and avoid fuel cell operation at high power.

The optimization method was developed in [31] to optimize the predictive SoC ref-
erence for the on-board energy management. On the other hand, the present work also
uses the FCS power reference to increase the SoC control. Figure 6 shows the optimization
results for the reference generation considering a driving cycle segment in which the fuel
cell truck must overcome a hill. Before the climb starts at minute 20, the FCS is operated
at maximum power to recharge the battery so that the long uphill will not cause a battery
charge depletion beyond the defined constraint (i.e., 50%). Indeed, even if the FCS operates
at maximum power between minutes 20 and 30, the battery charge goes from 80% to 50%.
Therefore, the minimum SoC constraint would be violated if the battery was not fully
charged before the climb.

Figure 6. Optimal generation of predictive energy management references considering a driving
cycle segment in which the fuel cell truck must overcome a hill. The figure shows speed, elevation,
predictive FCS, and SoC references.

3.2. On-Board Adaptive Energy Management Strategy

The on-board energy management is performed by a rule-based control strategy, which
is adaptive to the battery and ambient temperatures. The underlying idea is that in critical
conditions, e.g., high temperatures, the battery usage is limited to allow its cooldown
and avoid the degradation associated with temperatures peaks. The adaptive EMS is
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implemented by properly adjusting the main control parameters to the current system state.
The fuel cell power setpoint is denoted with Pfcs,set and it is calculated as:

Pfcs,set = Pfcs,ref + r1 · (Pel,des − Pfcs,ref) + r2 · (SoCref − SoC) (20)

subject to: |Ṗfcs,set| < r3 (21)

with: r1 = r1(Tbat, Tamb), r2 = r2(Tbat, Tamb), r3 = r3(Tbat, Tamb) . (22)

The first term on the right-hand side of (20) is the FCS power reference. The second
one considers the deviation of the desired electric load Pel,des from Pfcs,ref, whereas the third
one the deviation of the SoC from the predictive reference. The rate of change of the setpoint
is limited in (21) to reduce the fuel cell transient operation. The EMS parameters r1, r2,
and r3 are defined in (22) as function of the battery and ambient temperatures, making the
strategy adaptive. On the other hand, the battery setpoint Pbat,set is calculated as:

Pbat,set = Pel,des − Pfcs + Pfcs,cool + Pbat,cool , (23)

compensating for the remaining part of the desired load and the electric losses of the
cooling systems.

3.3. Optimal Calibration of EMS Parameters Using AVL CAMEO

The EMS calibration considers the multi-objective optimization of hydrogen consump-
tion, fuel cell degradation, battery thermal state, equivalent charge/discharge cycles, and
SoC control. This work uses AVL CAMEO to systematically vary the adaptive curve pa-
rameters to explore the trade-off between the key performance indicators (KPIs). Moreover,
the Active DoE approach of CAMEO is adopted for optimal calibration, reducing process
time and increasing accuracy. With a standard DoE approach (i.e., a pre-defined variation
list), a lot of time and effort is wasted collecting data in areas out of interest while lacking
measurements close to the Pareto fronts, which are crucial for optimal calibration. On
the other hand, with Active DoE, CAMEO mainly focuses the experiments in the area of
interest defined by the calibration targets. Figure 7 schematizes the working principle of
the Active DoE approach. At every new measurement of vehicle performance, CAMEO
creates models of the KPIs and uses them to define the variation parameters of the next test
based on the optimization targets.

Measurements Modelling

KPIs = function(VP)

Variation 
parameters

(VP)

Key performance 
indicators (KPIs)

Active DoE

Optimization

Models

Figure 7. Representation of the Active DoE approach adopted by AVL CAMEO.
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Finding a trade-off between five KPIs is a quite challenging and not straightforward
task. Therefore, this work limits the trade-off analysis between the hydrogen consumption,
mH2 , and the fuel cell voltage degradation, ∆Vfcs. However, the following optimization
constraints are imposed to guarantee sufficient battery life and SoC control:

Nbat < 1000 cycles/100.000 km , (24)

Tbat,max < 47 ◦C , (25)

σ(εSoC) < 0.03 . (26)

4. Optimal Calibration Results

The optimal calibration process was ended after 700 evaluations of the KPIs over the
32 driving cycles, which required a relatively low simulation effort (i.e., 16 h using an office
laptop). Figure 8 shows all the measurements collected during the calibration process. The
blue markers indicate the measurements that meet all the calibration constraints (24)–(26),
whereas the others do not. The red markers exceed the battery temperature constraint, the
yellow ones the equivalent battery cycles constraint, and the green ones the SoC control
constraint. The hydrogen consumption in Figure 8 has a relatively large range because
related to different ambient temperatures, which affect the energy consumption of the fuel
cell and battery cooling systems. The figure already shows that fuel cell degradation and
battery equivalent cycles are contrasting targets, as the lowest degradation is obtained with
parametrizations that exceeded the equivalent cycles constraint (yellow markers).

Figure 8. Measurements collected during the optimal calibration of the EMS parameters.

It is convenient to consider only the results related to a given ambient temperature
to analyze the trade-offs between the performance indicators. Therefore, Figure 9 shows
the valid measurements collected at Tamb = 20 ◦C, comparing hydrogen consumption,
fuel cell degradation, and battery equivalent cycles. Here, the blue line delineates the
Pareto front between the hydrogen consumption and voltage degradation. The green
diamond marker identifies the optimal tuning of the EMS parameters, which is selected
to find a good trade-off between the two targets based on the driving range and vehicle
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lifetime requirements. Additionally, the figure shows an evident contrast between battery
equivalent cycles and fuel cell degradation because if one power source is used less, the
other needs to operate more to provide the electric load demand.

Figure 9. Trade-off between hydrogen consumption, fuel cell voltage degradation, and equivalent
battery cycles. The figure shows only the valid measurements at Tamb = 20 ◦C. The green marker
corresponds to the selected optimal tuning.

Figure 10 shows the maps of the three EMS parameters resulting from the optimal
calibration. It is evident that the battery temperature has a more dominant impact on the
EMS parameters than the ambient one. In particular, the parameter r1 increases with the
battery temperature to limit its usage and allow the system to cool down. Indeed, if r1 = 1,
the EMS operates the FCS in load-follower mode resulting in limited battery usage. The
power rate limit defined by r3 increases at high temperatures to allow the FCS to follow the
load demand.

Comparison with Non-Adaptive and Non-Predictive Strategies

The simulation results obtained with the optimized adaptive and predictive EMS are
compared with those of non-adaptive and non-predictive strategies. For a fair comparison,
the non-adaptive parameters are obtained from the optimal maps of Figure 10 at Tbat = 35 ◦C
and Tamb = 20 ◦C. The non-predictive strategy considers a constant SoC reference at 65%
and a constant FCS power reference at its most efficient operating point (i.e., 55 kW).
First, Figure 11 shows the comparison between adaptive and non-adaptive strategies,
highlighting the evident benefits of avoiding temperature peaks. In normal conditions,
the vehicle operation is identical. However, the adaptive EMS reduces the battery usage
at minute 110 to cool down the system, avoiding the temperature peak. The impact on
the maximum battery temperature is significant (45 ◦C versus 50 ◦C), even though the
power-split only presents small differences. On the other hand, the impact on hydrogen
consumption is negligible, but the fuel cell voltage degradation is slightly increased. It
should be noted that the speed profiles in both simulations are the same because the EMS
ensures that the load demand is always provided by the fuel cell and battery systems.
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Figure 10. Adaptive EMS parameters resulting from the optimal calibration process. Each parameter
is mapped against ambient and battery temperature.
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Figure 11. Simulation results comparison between adaptive and non-adaptive EMSs in terms of
speed, elevation, fuel cell system power, state of charge, battery temperature, hydrogen consumption,
and fuel cell voltage degradation. The ambient temperature is 20 ◦C.

Figure 12 shows the benefits of using a predictive EMS compared to a non-predictive
one. In this case, the two strategies determine a significant difference in the vehicle
operation. In particular, the predictive EMS reduces the fuel cell operation at high power
to increase the fuel cell efficiency and reduce fuel cell degradation. Moreover, the SoC is
significantly closer to the reference, meaning that a better control of the battery charge is
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achieved. Indeed, in this driving cycle, the predictive EMS yields a depth of discharge of
34%, whereas the non-predictive yields one of 59%. Therefore, it can be expected that there
is a substantial benefit in limiting accelerated degradation by operating the battery with
the desired depth of discharge avoiding critical discharges.

Figure 12. Simulation results comparison between predictive and non-predictive EMSs at ambient
temperature of 20 ◦C.

Table 1 lists the KPIs related to the simulation results of Figures 11 and 12 to provide
a quantitative understanding in relation to the signals depicted in the figures.

Table 1. Comparison of KPIs for the specific driving cycle under investigation at Tamb = 20 ◦C.

EMS mH2 ∆Vf cs Nbat Tbat,max σ(εSoC)Adap. Pred. (kg/100 km) (%/100.000 km) (−/100.000 km) (◦C)

Yes Yes 11.06 1.77 965 44.1 0.0181
No Yes 11.12 1.52 1040 49.8 0.0105
No No 11.34 1.77 1130 50.6 0.1220

Lastly, Figure 13 shows the global KPIs calculated for the sequence of 32 cycles at
different ambient temperatures. In general, the hydrogen consumption increases with
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the ambient temperature due to the higher energy consumption of the cooling systems.
As expected, the adaptive EMS results in higher fuel cell voltage degradation because it
shifts the transients loads to the FCS, allowing the battery to cool down. Consequently, the
equivalent battery cycles are reduced compared to the other strategies. Eventually, only the
adaptive EMS can meet all the constraints assigned for equivalent battery cycles, maximum
battery temperature, and SoC control for all ambient temperatures.

Figure 13. Comparison of KPIs between the adaptive and predictive EMS versus the non-adaptive
and non-predictive strategies at different ambient temperatures.

5. Conclusions

This paper proposed an adaptive and predictive energy management strategy for fuel
cell electric trucks to exploit the interaction between energy and thermal management.
In particular, the control strategy is adaptive to the battery and ambient temperatures to
ensure that, in critical conditions, the battery usage is limited to avoid temperature peaks.
The maps of the adaptive EMS parameters were designed and optimally tuned using AVL
CAMEO considering hydrogen consumption, fuel cell degradation, battery thermal state,
equivalent charge/discharge cycles, and SoC control.

The simulations show that using the adaptive EMS determines small changes in
the power-split but significantly impacts the battery temperature peaks. Moreover, the
strategies comparison highlights the benefits of predictive energy management for SoC
control and hydrogen consumption for fuel cell trucks driving mountain/hilly routes.
Eventually, the optimal calibration using AVL CAMEO yield a robust EMS design, meeting
all the optimization targets and constraints.
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Future investigations can consider the design of energy management strategies that
are adaptive to additional parameters, such as vehicle weight, state-of-health of the fuel
cell, and battery systems. The complexity of the design and calibration of the adaptive EMS
parameters maps would significantly increase. However, using AVL CAMEO would be a
solution to systematically and efficiently (using Active DoE) explore the design space of
the control parameters.
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Nomenclature
The following nomenclature is used in the paper:

Pel,des Desired electric load
α Road slope
v Vehicle speed
vdes Desired vehicle speed
Pel Electric load
Pfcs Fuel cell power
Pbat Battery power
Pfcs,cool Electric losses of fuel cell cooling system
Pbat,cool Electric losses of battery cooling system
Pfcs,nom Nominal fuel cell power
Ṗfcs Rate of change of fuel cell power
Pbat,min Minimum battery power
Pbat,max Maximum battery power
SoC Battery state of charge
Tbat Battery temperature

˙SoC Rate of change of battery state of charge
Voc Battery open circuit voltage
Rint Battery internal resistance
Qbat,nom Nominal battery charge
Tamb Ambient temperature
Q̇chill Cooling power of chiller system
COP Coefficient of performance of battery cooling system
Pm Electric motor power
Paux Electric power of external auxiliary systems
Pw Mechanical power at wheels
Pbr Mechanical braking power
Fres Resistant force to vehicle motion
mv Vehicle mass
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mH2 Hydrogen consumption
ṁH2 Hydrogen consumption rate
∆Vfcs Fuel cell voltage degradation
∆Vfcs,ss Share of fuel cell voltage degradation caused by start-up/shut-down cycles
∆Vfcs,lp Share of fuel cell voltage degradation caused by low-power operation
∆Vfcs,hp Share of fuel cell voltage degradation caused by high-power operation
∆Vfcs,dl Share of fuel cell voltage degradation caused by dynamic loading
Nfcs,starts Number of fuel cell starts
tfcs,lp Time at low-power operation
tfcs,hp Time at high-power operation
Nbat Number of equivalent charge/discharge cycles
Ibat Battery current
εSoC Deviation from SoC reference
SoCref Predictive SoC reference
σ(εSoC) Standard deviation of εSoC
Pfcs,set Fuel cell power setpoint
Pfcs,ref Predictive fuel cell power reference
Ṗfcs,set Rate of change of fuel cell power setpoint
r1 EMS parameter 1
r2 EMS parameter 2
r3 EMS parameter 3
Pbat,set Battery power setpoint
Tbat,max Maximum battery temperature
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