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Abstract: With the increasing focus on renewable energy, there is a need to improve the efficiency
of vertical-axis wind turbines (VAWTs). The Ugrinsky wind turbine is a type of VAWT, but there
are few studies on this turbine. Previous studies have shown that the maximum power coefficient
of the Ugrinsky wind turbine reaches 0.170, which is 54.5% higher than that of the Savonius type
(0.110), and this turbine maintains a high power coefficient over a wide range of tip speed ratios
(TSR). In this study, the dimensions of the two semicircles of the Ugrinsky wind turbine were further
optimized to obtain a higher power coefficient. An analysis of the effect of the blade dimensions on
the performance was conducted. The flow around the turbine was simulated using the regularized
lattice Boltzmann method. The geometry of the turbine was simulated using the virtual flux method
for the Cartesian grid. The optimization was conducted in terms of the output power coefficient and
the average value of the power coefficient for neighboring TSR to consider the fluctuation of the TSR.
This study demonstrates that a closer vortex distance favored the growth of the vortex and improved
the power coefficient.

Keywords: vertical-axis wind turbine (VAWT); Ugrinsky wind turbine; Savonius wind turbine;
drag-type wind turbine

1. Introduction

Wind turbines can be classified into horizontal-axis wind turbines (HAWTs) and
vertical-axis wind turbines (VAWTs) depending on their rotational axis. They can also be
divided into drag-type and lift-type depending on the aerodynamic force that drives their
rotation [1]. Vertical-axis drag-type wind turbines, especially the Savonius wind turbines,
are often used for small-scale power generation [2]. In particular, these wind turbines can
be described as having high torque and high self-starting power, a low potential for noise
pollution, a simple and low-cost design, operatable in a wide range of wind conditions,
and omnidirectional (independent of the wind direction) [3–5]. In recent years, there has
been a growing focus on small-scale power generation in urban areas such as buildings
and roads [6–8]. Due to the characteristics described above, the vertical-axis drag type
wind turbine is the most suitable wind turbine for this application. In addition, refugee
settlements are in need of efficient, clean, affordable, and reliable renewable energy [9].
With their simple and low-cost design, the vertical-axis drag-type turbine can be an off-grid
renewable energy option.

Vertical-axis lift-type wind turbines, including Darrius and H-VAWT, have higher
performance than drag-type wind turbines and are also omnidirectional [4]. However,
because of the nature of the lift force, their torque is lower than that of drag-type turbines,
and their starting characteristics are also inferior to those of drag types [4,5]. Therefore,
drag types are more suitable for power generation in urban areas where the wind is not
always uniform. To improve their starting characteristics, previous studies have combined
a drag-type wind turbine with a lift-type one [10]. However, the tip speed ratio (TSR)
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to obtain the maximum output from the two types of wind turbines is different, and the
lift-type turbines peak at a higher TSR than the drag types. Therefore, to maximize the
performance of this combined wind turbine, the diameter of the lift-type wind turbine
must be around 6 to 7 times as large as that of the drag-type one and will not be suitable for
small-scale power generation [11]. Furthermore, the lift types consists of blades with precise
dimensions, such as NACA blades, and are more complex than the drag types, which can
be manufactured by combining arc-shaped plates, resulting in higher manufacturing costs.

However, a study suggested that the power coefficient of the Savonius turbine is
generally less than half of that of the HAWT [12]. This is explained by the characteristics of
the Savonius wind turbine, which consists of two blades. During a cycle, while one blade
generates a positive torque, the other blade generates a negative torque. Thus, the net torque
is always suppressed by the countering negative torque, resulting in a low power coefficient.
To avoid this, various studies have been conducted to find a better design for VAWTs.
One example is the installation of shield plates in front of the turbine [13,14]. However,
the installation of obstructions to improve efficiency results in the loss of wind direction
independence and requires additional land area. Therefore, modifying the blade shape is an
effective way to improve efficiency while maintaining wind direction independence. Zhang
et al. [5] used a quadratic polynomial curve for the blade shape of a conventional Savonius
turbine to improve the power coefficient by 6% while reducing the blade weight by 17.9%.
Roy et al. [15] developed a new two-bladed Savonius-type wind turbine, which showed
improved the power coefficient by 32.1% compared to the conventional Savonius-type
turbine. Matsui et al. [16] introduced sub-blades to the two-blade VAWT, which is similar
to the Bach-type wind turbine, and succeeded in increasing the power coefficient by 50.7%
over that of the conventional Savonius-type wind turbine by optimizing their positions.

The Ugrinsky wind turbine is a type of VAWT that has a pair of centrosymmetric blades
with two identical segments of arcs with different diameters [17]. The source documentation
claims that the Ugrinsky turbine performs better than the traditional Savonius wind turbine
and produces positive torque at all angles. Our study demonstrated and confirmed that
the turbine performs better than the traditional Savonius wind turbine by 54.5%; moreover,
it produces positive torque at all angles throughout a cycle at λ = 0.5 [18]. With its high
efficiency, this turbine can be a viable option for the future installation of VAWTs. In
previous research, the optimal dimensions were (S, L) = (0.35D, 1.3R) for maximum power
coefficient and (S, L) = (0.35D, 1.0R) for average power coefficient [19]. These parameters
improved the maximum power coefficient by 1.5% and the average value of the power
coefficient for neighboring tip speed ratios by 5.9%. However, not all parameters were
considered in this study, and it remains possibile to obtain better-performing parameters.
Moreover, further analysis of the effect of blade dimensions on performance and fluid
structure should be conducted for future improvements. In this paper, as an expansion of
the previous study, a wide combination of parameters was examined to further increase
the efficiency of the turbine, with a focus on the relationships between blade dimensions
and fluid structure in anticipation of further optimization and future employment of the
optimized turbine.

2. Numerical Methods

The regularized lattice Boltzmann method (RLBM) was used as a governing equation
in this paper for ease of implementation of parallel computing [20]. The virtual flux method
was used to describe the blades of the turbines on a Cartesian grid [21,22]. The multi-
block method was used for the locally fine grids around the turbines [23]. The simulation
was conducted in 2-D, which is known to give acceptable results and shares performance
characteristics with 3-D simulation [2,4].

2.1. Regularized Lattice Boltzmann Method

The RLBM is used as a governing equation of the 2D 9-velocity (D2Q9) model for
fluid analysis. This method is designed to reduce memory usage and simulate flow at high
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Reynolds numbers without compromising accuracy compared to the lattice Boltzmann
method [24].

The distribution function fα is expressed as

fα = wα

(
a0 + bieαi + cijeαieαj

)
, (1)

where wα is the weight coefficient defined by the lattice speed model (w0 = 4/9, w1–4 =
1/9, w5–9 = 1/36 for the D2Q9 model); a0, bi, and cij are determined to satisfy the following
relationships:

∑α
fα = ρ, (2)

∑α
eαi fα = ρui, (3)

∑α
eαieαj fα =

c2

3
ρδij + ρuiuj + Π

neq
ij , (4)

where ρ is the fluid density, u is the fluid velocity component, c is the lattice speed defined
as c = δx/δt, δij is the Kronecker delta, and Π

neq
ij is the non-equilibrium part of the stress

tensor. Then, the equilibrium distribution function f eq
α and the non-equilibrium part of the

distribution function f neq
α are expressed as follows:

f eq
α = wαρ

[
1 +

3(eαiui)

c2 +
9(eαiui)

2

2c4 − 3(uiui)

2c2

]
, (5)

f neq
α =

9wα

2c2

( eαieαj

c2 − 1
3

δij

)
Π

neq
ij , (6)

where the equilibrium distribution function f eq
α is expressed by approximating the Maxwell

equilibrium distribution function to the quadratic term. Lastly, the time evolution equation
in the regularized lattice Boltzmann equation is expressed as

fα(t + δt, x + eαδt) = f eq
α (t, x) +

(
1 − 1

τ

)
f neq
α , (7)

where τ is the relaxation time.

2.2. Virtual Flux Method

The virtual flux method [20,21] is used to describe the wind turbine shape in a Carte-
sian grid. This method was chosen due to its simplicity in the algorism with no iterative
calculations and easy incorporation into RLBM. Moreover, for the same grid resolution,
this method can describe the pressure field around an object more accurately compared
to other immersed boundary methods [20,21]. Figure 1 shows a schematic view of the
virtual boundary points on the turbine. With the RLBM using the D2Q9 model, virtual
boundary points were set at the intersections of discrete velocities in eight directions and
the object surface.

First, the physical quantity on the virtual boundary qvb was considered. The no-slip
boundary condition (uvb = uwall) was applied for the velocity of the virtual boundary uvb,
where uwall is the velocity on the wall surface of the turbine blade. The Neumann boundary
condition (∂pvb/∂n = 0) was applied for the pressure of the virtual boundary pvb, where
n is the normal vector on the virtual boundary wall, providing the approximate pressure
condition on the surface.
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Figure 1. Schematic view of the turbine blade boundary on a Cartesian grid.

As shown in Figure 1, the case where the distribution function at point “C” moved to
point “B” was considered; however, this movement was obstructed by the virtual boundary.
Therefore, the virtual distribution function fα,vb was calculated at point “vb” from the
distribution function f α,B and the equilibrium distribution function f eq

α,B as follows:

fα,vb = f eq
α,vb(uvb, pvb) +

(
fα,B − f eq

α,B

)
. (8)

Then, the virtual distribution function f ∗
α,C and the virtual equilibrium distribution

function f eq∗
α,C at point “C” were calculated by extrapolation using internal division ratios a

and b.
f ∗α,C =

a + b
a

fα,vb −
b
a

fα,B, (9)

f eq∗
α,C =

a + b
a

f eq
α,vb −

b
a

f eq
α,B. (10)

Finally, the distribution function at point “B” for the next time step fα,B was obtained
from f ∗

α,C and f eq∗
α,C as follows:

fα,B = fα,C +
1
τ

(
f eq
α,C − f ∗α,C

)
. (11)

2.3. Computational Models

The torque and power coefficients for various wind turbine dimensions through
numerical fluid dynamics analysis were used for discussion and to determine the optimal
dimensions. The original dimensions of the Ugrinsky wind turbine are shown in Figure 2a.
The diameter of the semicircular part (Segment 1) was 0.4 with respect to the wind turbine
diameter (D), and the radius of the arc part (Segment 2) was equal to the wind turbine
radius R (=D/2). The wind turbine diameter is shown as a dashed line in Figure 2. Figure 2b
shows the Savonius wind turbine used for the verification, where e and l are the blade
diameter and overlap and were set as e = 0.2l, a value considered to provide the highest
performance in the previous study [12]. Figure 2c shows a schematic diagram of the
multi-block method. The overall computational domain was set to be 30D × 30D with
respect to the wind turbine diameter D, and the coordinates of the turbine center were set to
(x,y) = (10D,15D). The inflow from the left side had a constant flow velocity, and the velocity
and pressure gradients were set to zero at the upper and lower boundaries. The convective
outflow condition was set for the outflow on the right side [25]. Finally, the Reyolds number
was set to 1000 with respect to the turbine diameter D, and the turbine rotated 0.00557 [◦]
per timestep for λ = 0.6.
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Figure 2. Top view of (a) the Ugrinsky wind turbine at 0 [◦] and (b) the Savonius wind turbine at
0 [◦] and (c) schematic view of the multi-block model used in the simulation.

Normally, when evaluating wind turbines in fixed rotation, multiple TSRs are eval-
uated individually. In such cases, the turbine was rotated several times for the flow field
development in the calculation domain, and then evaluation was performed for each TSR.
In this study, information regarding the calculation domain from the previous TSR was
imported into the calculation of the next TSR in order to reduce the number of revolutions
required for flow field development and to shorten the calculation time. For example, when
calculating from λ = 0.7 to 0.5 with an interval of 0.1, λ = 0.7 was set as the initial TSR, and
a total of 9 cycles were calculated, with the last 3 cycles set as an evaluation period. The
blade rotation speed was then gradually decreased using one cycle to satisfy λ = 0.6 at
the beginning of the 10th cycle. Then, six cycles were calculated, including three cycles of
evaluation. After that, the TSR was reduced to λ = 0.5, and the calculations and evaluations
were performed in the same manner as for λ = 0.6. The output and torque coefficients
obtained from the evaluation cycles were averaged over the last three cycles.

The torque coefficient CQ, the power coefficient CP, and the TSR λ are defined as

CQ =
T

1
2 ρU2RA

, (12)

CP =
T·ω

1
2 ρU3RA

= CQ·λ, (13)

λ =
Rω

U
(14)

where T is the torque, U is the characteristic velocity, ω is the angular velocity, and A is the
swept area. The optimal shape is selected by the maximum power coefficient value and
the average value of the power coefficient for neighboring TSRs. For example, the average
value of the power coefficient for neighboring TSRs at λ = 0.6 is the average value of the
power coefficient at λ = 0.5, 0.6, and 0.7. In this way, the TSR fluctuation of the turbine
due to non-uniform flow and angle-dependent torque values that occurred during the
experiment could be taken into account in the fixed speed simulation.

2.4. Validation

A flow analysis around a 2-D fixed cylinder was performed as a validation of the
simulation code. The computational model used in this analysis is shown in Figure 3. The
diameter of the cylinder was set to a characteristic length D, the computational domain was
set to 30D × 30D in the x and y directions, and the cylinder was placed at (x,y) = (10D,15D).
A uniform flow with characteristic velocity U flowed in from the left and out from the
upper, lower, and right boundaries. The convective outflow condition was given at the
right end, and the other outflow conditions were given a gradient of 0 for both pressure
and velocity. Block A, Block B, Block C, and Block D, from the highest to the lowest
resolution, were the 4-step multi-blocks, and the lattice widths of each block were δxA = 1.0,
δxB = 2.0δxA, δxC = 4.0δxA, and δxD = 8.0δxA, respectively. The Reynolds number was
Re = 1000, and the resolutions for the characteristic length D were 128, 184, 256 cells.
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Figure 3. Schematic view of the flow around a cylinder.

Figure 4 shows the pressure coefficient diagram on the surface of the cylinder, the
distribution diagram of the normal direction component of shear stress, and the distribution
diagram of the tangential direction component of shear stress when the absolute value of
the lift coefficient CL was at minimum. It can be seen that the pressure coefficient values,
Cτn values, and Cτt values around the cylinder converged by increasing the grid resolution.
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The time variation of the drag coefficient CD and the lift coefficient CL in the non-
dimensional time 450–500 are shown in Figure 5, and the Strouhal number St is shown in
Table 1. In Figure 5, it can be seen that the drag coefficient CD and the lift coefficient CL
oscillated periodically, and in Table 1, it was confirmed that St was quantitatively valid in
comparison with others.
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Figure 5. Time history of drag and lift coefficients for Re = 1000.

Table 1. Maximum power coefficient values and average value of the power coefficient for neighbor-
ing TSRs of different diameters L for Segment 2.

Data Provenance St

Present (256 cells/D) 0.240
Lei [26] 0.240

Matsumia [27] 0.220
Mittai [28] 0.250
Stinger [29] 0.227

2.5. Verification

A verification study was conducted on the Savonius turbine shown in Figure 2b for
Reynolds number Re = 500 at λ = 0.8. The test was conducted with four different grids for
the characteristic length (D = 256, 360, 512, 724 cells). The torque coefficient value for the 6th
rotation showed the same trend as in other studies [4,5,19]. The number of grids required
for the characteristic length is proportional to Re1/2 times according to the boundary layer
thickness theory [30]. The average torque coefficient for D = 256 cells showed less than a
3% error compared to that for D = 724 cells at Re = 500 [19]; therefore, D = 360 cells was
selected for Re = 1000 condition.

3. Results and Discussion for the Optimization of S = 0.30D and 0.40D Models

In this section, the effects of optimization on Segment 1 and Segment 2 are discussed.
The performance of the turbines is described in torque and power coefficients, and the
pressure coefficient is used in the pressure contour diagram for visualization.

In the optimization conducted in the previous study, the radius (L) of Segment 2 was
fixed for Segment 1 optimization, and there remains possibile to identify a combination
with even better performance among the combinations that had not been examined. There-
fore, we calculated S = 0.30D and S = 0.40D with various radii L, which were the two
combinations with the best performance in the previous study [19].

Figure 6 shows the average power coefficients for different tip speed ratios while
Segment 1 was fixed at S = 0.30D. The average value of the power coefficient for neighboring
tip speed ratios is shown in Table 2. In Figure 6, except for L = 0.9R, it can be seen that
peaks of average power coefficients could be observed at λ = 0.5 and 0.7, similar to L = 1.1R
and 1.2R models for S = 0.35D [19]. While the L = 0.9R model reached a low average power
coefficient at all calculated tip speed ratios, the L = 1.2R model reached the highest tip
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speed ratio out among all calculated models at both λ = 0.5 and λ = 0.7. From the stability
point of view, while the Ave. CP of L = 1.2R was the highest of the calculated models, the
L = 1.3R model showed less fluctuation and a stable average power coefficient, from λ = 0.5
to λ = 0.7, as shown in Figure 6.
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Table 2. Maximum power coefficient values and average value of the power coefficient for neighbor-
ing TSRs of different diameters L for Segment 2.

Segment 2 Max. CP Ave. CP

0.9L 0.164 (λ = 0.7) 0.158 (λ = 0.5–0.7)
1.0L 0.173 (λ = 0.7) 0.167 (λ = 0.5–0.7)
1.1L 0.167 (λ = 0.5) 0.165 (λ = 0.5–0.7)
1.2L 0.175 (λ = 0.7) 0.171 (λ = 0.5–0.7)
1.3L 0.174 (λ = 0.7) 0.170 (λ = 0.5–0.7)

Figure 7 shows the average power coefficients for different tip speed ratios while
Segment 1 was fixed at S = 0.40D. The average power coefficients and the average value of
the power coefficient for neighboring tip speed ratios are shown in Table 3. In particular,
the characteristics of the average power coefficient against tip speed ratio of S = 0.40D was
different from S = 0.30D and 0.35D [19]. While the peak was at λ = 0.7 for L = 1.3R, the
peaks for the other L were at low tip speed ratios (λ = 0.4 or 0.5). In addition, L = 1.2R and
1.3R had low maximum average power coefficient values, unlike the other S values. The
peculiar point at λ = 0.4 for L = 1.1R indicates that the evaluation method employed in this
study was inadequate. Normally, lower TSRs require a greater number of rotations than
higher TSRs to exhibit periodicity, and six cycles are not sufficient; therefore, satisfactory
convergence was not seen, resulting in an abnormal value in this case.

Table 3. Maximum power coefficient values and average value of the power coefficient for neighbor-
ing TSRs of different diameters L for Segment 2.

Segment 2 Max. CP Ave. CP

0.9L 0.176 (λ = 0.5) 0.166 (λ = 0.4–0.6)
1.0L 0.181 (λ = 0.5) 0.174 (λ = 0.4–0.6)
1.1L 0.182 (λ = 0.5) 0.171 (λ = 0.5–0.7)
1.2L 0.174 (λ = 0.4) 0.166 (λ = 0.4–0.5)
1.3L 0.165 (λ = 0.7) 0.161 (λ = 0.6–0.8)
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Figure 8 shows the torque coefficient throughout a cycle for different diameters S at
λ = 0.5, and Figure 9 shows the pressure distribution at 40, 90, 130, and 190 [◦] and the
velocity contour at 130 [◦]. For 0–70 [◦]. As Segment 1 diameter S increased, an increase
of the torque coefficient could be observed. It can be seen in Figure 9 that the increase in
torque was due to the increase in the wind-receiving area (swept area), thus suggesting the
dominance of the geometrical shape in this advancing blade region for λ = 0.5. Similarly, at
the same angle, the negative torque increased in Segment 2 due to the increase in the length
of the torque arm at the tip of Segment 2 with the increase in S. Furthermore, at 130 [◦], the
edge vortex in Segment 1 also grew with the increase in S, and the detached vortex became
the negative pressure in the wake area and pulled the blade in the direction of rotation.
The detachment of the vortex of Segment 1 for S = 0.40D was delayed compared to that for
S = 0.30D due to the increase in vortex growth as noted above, and this further increased
the pull. Likewise, at 190 [◦], the edge vortex also grew at the tip of Segment 2, and the
growth of the vortex increased as S increased. From the velocity contour diagram at 130 [◦],
focusing on the velocity between Blade A and Blade B, it can be seen that the model with a
larger S had a higher velocity. This is because the model with a large S created a nozzle-like
structure with a small distance between blades A and B, increasing the velocity of the
inflow from the left side. Furthermore, some of the fluid that passed between the blades
flew into the edge vortex of Blade B Segment 2 and BladeA Segment1, and this contributed
to the growth of the vortex for models with large S.

To understand the relationship between the edge vortex and the torque generation,
the distance between Blade A Segment 1 vortex and Blade B Segment 2 vortex at 90 [◦] is
shown in Table 4. When S increased, Blade A Segment 1 and Blade B Segment 2 became
geometrically closer. At the same time, the vortex–vortex distances generated at each end
became shorter, as shown in Table 4. Focusing on the pressure distribution between the
two vortices during the vortex growth phase, the pressure of the edge vortex of S = 0.30D
was higher than that of 0.40D. Therefore, it can be said that for S = 0.30D, the vortex–vortex
distance was great, and a high-pressure region developed between the vortices, which
inhibited the formation and growth of the vortex.
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Table 4. Distance between Blade A Segment 1 vortex and Blade B Segment 2 vortex at 90 [◦].

Segment 1 Vortex-Vortex Distance [D]

S = 0.30D 1.02
S = 0.35D 0.86
S = 0.40D 0.76

As in the case of λ = 0.5, Figure 10 shows the torque coefficient throughout a cycle
for different diameter S at λ = 0.6, and Figure 11 shows the pressure distribution at 40, 90,
and 160 [◦]. At 40 [◦], Segment 1 did not have the maximum power at S = 0.40D, unlike
the case of λ = 0.5. This phenomenon was also observed in the case of λ = 0.6 comparisons
of Segment 1 optimization [19]. For Segment 2 at 40 [◦], similarly to λ= 0.5, the larger S
was, the longer the torque arm length became, and the more the negative torque increased.
At 90 [◦] for Segment 1 and 160 [◦] for Segment 2, similarly to λ = 0.5, the larger S was,
the larger the size of the edge vortex and the larger the positive torque. For te S = 0.40D
model chosen in this comparison, the diameter of Segment 1 was increased, but the radius
of Segment 2 was decreased; therefore, the return torque produced was smaller than that in
the other models.
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4. Conclusions

In this paper, the flow around the Ugrinsky wind turbine with various blade dimen-
sions was simulated using the regularized lattice Boltzmann method coupled with the
virtual flux method. The remaining parameters from the previous research were calculated
to ensure the optimization [19]. In the optimization, the maximum power coefficient values
and the average value of the power coefficient for neighboring TSRs were employed for
evaluating the optimal dimensions. The latter evaluation method was used to include the
fluctuation of the blade speed that occurs in real-life conditions.

The dimension of Segment 1 was fixed to S = 0.30D and 0.40D, while various Segment
2 dimensions were considered, from L = 0.9R to 1.3R, to investigate the effects of each
dimension S and L and of TSR on the torque coefficient CQ and the power coefficient CP.
The results suggested that, in general, CQ and CP peaked at λ = 0.5–0.6, and their values
were correlated with S, torque arm length, and vortex distance. However, in some cases,
such as (S, L, λ) = (0.40D, 1.1R, 0.4), the influence of the L value was not determined.
To determine the general principle of the turbine and further improve its performance,
optimization focusing on blade shapes, overlap ratio, blade length, blockage ratio, etc.
was suggested.

This study suggests some principles regarding the Ugrinsky wind turbine:

• The geometrical properties are dominant in the returning blade period of Segment 2
regardless of the TSR, and an increase in torque arm length may increase the negative
torque.
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• The geometrical properties are dominant in the advancing blade period of Segment
1 at λ = 0.5; however, the increase in the wind-receiving area (swept area) may not
benefit at λ = 0.6.

• The distance between edge vortices created on each segment may affect the growth of
those vortices. This study demonstrates that a shorter distance benefits the growth of
the vortex and lowers the central pressure of the vortex.
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