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Abstract: In recent years, big data and artificial intelligence technology have developed rapidly and
are now widely used in fields of geophysics, well logging, and well test analysis in the exploration
and development of oil and gas. The development of shale gas requires a large number of production
wells, so big data and artificial intelligence technology have inherent advantages for evaluating the
productivity of gas wells and analyzing the influencing factors for a whole development block. To
this end, this paper combines the BP neural network algorithm with random probability analysis
to establish a big data method for analyzing the influencing factors on the productivity of shale
gas wells, using artificial intelligence and in-depth extraction of relevant information to reduce the
unstable results from single-factor statistical analysis and the BP neural network. We have modeled
and analyzed our model with a large amount of data. Under standard well conditions, the influences
of geological and engineering factors on the productivity of a gas well can be converted to the same
scale for comparison. This can more intuitively and quantitatively reflect the influences of different
factors on gas well productivity. Taking 100 production wells in the Changning shale gas block
as a case, random BP neural network analysis shows that maximum EUR can be obtained when
a horizontal shale gas well has a fracture coefficient of 1.6, Type I reservoir of 18 m thick, optimal
horizontal section of 1600 m long, and 20 fractured sections.

Keywords: shale gas; random probability; BP neural network; gas well productivity; big data analysis

1. Introduction

After more than ten years of exploration and development, shale gas resources
have been effectively exploited in China [1]. With deepening development, more than
2000 shale gas wells have been constructed, and the scale of production data is increasing
in China [2,3]. Determining how to analyze the factors influencing the productivity of
gas wells is important for the development and optimization of production blocks. In
recent years, the application of big data and artificial intelligence in oil and gas fields has
accelerated and become a powerful driving force of the technological revolution in the
petroleum industry. Deng et al. (2000) took the peak value of the derivative curve and the
position of the horizontal line of the radial stream as the inputs of a three-layer feedforward
neural network to estimate well test parameters [4]. In 2011, Asadisaghandi et al. used a
neural network to predict the PVT relationship of oil products [5], and Memon predicted
bottom-hole flowing pressure based on neural network models [6]. Zhang used a recurrent
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neural network to study the generation and repair of synthetic well logs [7]. Li proposed
an automatic well test interpretation method for radial composite reservoirs based on a
convolutional neural network [8]. Big data and artificial intelligence technology have been
widely used in many fields, such as the evaluation of shale reservoir [9–12], productivity
analysis [13–16], and engineering technology [17–19]. Based on these technologies, the
impact of different practical factors on energy production can be fully exploited to lay the
foundation for the next evaluation and extraction work.

According to the published literature, for evaluating shale gas exploration and de-
velopment in China, artificial intelligence methods are mainly used in the fields of geo-
physics [20–22], well logging [23–25], and well test analysis [26–29]. Productivity evaluation
and analysis of influencing factors on shale gas wells in an entire development block are
weak. The productivity of a shale gas well is affected by many factors, such as geology
and engineering. The results of conventional statistical methods are not very regular; thus,
effective analysis cannot be realized. In particular, the shale gas industry has entered a rapid
and large-scale development stage. As the production scale expands, to achieve efficient
development, some urgent problems should be solved, such as the relationship between
geological engineering parameters and gas well productivity, and discovering optimal
parameters for gas well production based on the analysis of geological characteristics and
engineering parameters in many blocks.

Recently, with the development of deep learning, many machine learning and deep
learning methods have been used in gas well productivity. Huang et al. used a genetic
algorithm to optimize the kernel function type, kernel function parameters, and error
penalty factor of their model and established a GA-SVM model [30]. Li et al. developed
a deep learning approach based on a long short-term memory (LSTM) neural network
model to predict well performance considering manual operations [31]. Shi et al. proposed
a novel combined long short-term memory (LSTM) and multilayer perceptron (MLP)
neural network to efficiently predict geothermal productivity considering constraints [32].
However, these methods do not take into account the effects of random noise on the
model in practical applications, while failing to effectively model the potential relationships
between different input features.

To solve the above problems, based on the development characteristics of shale gas
wells in typical shale gas blocks, we take advantage of big data and artificial intelligence to
analyze the influences of different parameters on gas well productivity.

Our main contributions are summarized as follows:

(1) We are the first to analyze the impact of different address characteristics and en-
gineering parameters on gas well capacity by taking advantage of big data and
artificial intelligence.

(2) To better analyze the effect of different parameters on gas well capacity, we designed
a random BP neural network analysis method, which can effectively learn the effect
of different parameters on capacity.

(3) With extensive experiments on real data, our method can effectively and intuitively re-
flect the influence of different factors on capacity and calculate the optimal parameters.

2. Materials and Methods
2.1. Limitations of Conventional Methods
2.1.1. Statistical Method

Due to the differences in geological and engineering conditions of shale gas wells,
the statistical method is used for single-factor analysis. However, due to interference
among parameters, the statistical data are scattered and the relationships are not obvious.
This paper takes 100 horizontal shale gas wells, which have been producing for more
than 1 year in the Changning block as a case and adopts the Duong method to fit the gas
production curve [29] to obtain the 20-year EUR (estimated ultimate recovery) of the gas
wells. The statistical relationship between the parameters and EUR shows that the data
in each graph are scattered. The parameters include the thickness of the Type I reservoir,
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pressure coefficient, burial depth, number of fracturing sections, sand volume, and liquid
volume, etc. Although there is some relationship between the parameters and EUR, the
statistical correlation coefficient is only 0.0051–0.0357, and the correlation is not obvious
(Figure 1).
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Figure 1. Statistical relationships between parameters and EUR of a well in the production block.
(a) Relationship between EUR and reservoir thickness; (b) relationship between EUR and pressure
coefficient; (c) relationship between EUR and depth; (d) relationship between EUR and number of
fracturing sections; (e) relationship between EUR and liquid volume; (f) relationship between EUR
and sand volume.
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2.1.2. BP Neural Network Analysis

The BP neural network model is one of the most widely used neural network models
proposed by Rumelhart and McCelland. It is characterized by a network model that is
trained and learns according to an error backpropagation algorithm. This method includes
two processes.

First, information is forward propagated in computer hardware, and large calculation
workload is no longer a problem. However, network stability still exists due to the different
quantities of machine learning samples for specific cases.

Taking 100 shale gas wells with a long production history in the Changning block as a
case, we input five different combinations of the same samples to analyze the relationship
between the parameters and the EUR. The parameters include the thickness of Type I
reservoirs, pressure coefficient, burial depth, number of fracturing sections, sand volume,
and liquid volume, etc. The analysis results show that the influence of each factor on
EUR is quite different, and the analysis results of different combinations are quite different
(Figure 2).

2.2. Random BP Neural Network Analysis
2.2.1. Basic Ideas

We combined random probability analysis with a BP neural network to solve the
problem in three steps. First, we solved the problem of different results from different
sample combinations and different input orders by generalizing the input parameters of
the samples through multiple random sampling. Second, we input the multiple randomly
selected sample sets into the BP neural network and established multiple post-learning
network models to realize the generalization of the simulation process of the BP neural net-
work and improve the stability of the model. Third, we established a set of parameters for
the fitted well by changing the parameters to analyze the sensitivity of specific parameters
of productivity under uniform parameter conditions (Figure 3). In the training process, we
used random sampling to analyze and model the big data. Thanks to the big data support,
our method has a high level of correctness and robustness in practical applications.

2.2.2. Analysis Method

In the specific calculation process, the random BP neural network analysis method
mainly includes two parts: random BP network modeling and data prediction analysis.

Random BP Network Modeling

(1) Establishing the input sample sets IRandum. We selected N samples to form the
sample data pool A, with each sample in A a vector composed of samples which contain k
feature parameters p. We randomly selected n samples, n ≤ N, as the input Bi sample set
for neural network learning. Then, after repeating the above process M times, we obtained
M neural network learning input sample sets IRandum. The details are as follows:

a = [p1, p2,..., pK] (1)

A = {a1, a2,..., aN} (2)

O = {o1, o2,..., oN} (3)

We randomly took n samples in the sample pool A to form a new sample set Yi,
and repeated random sampling multiple times to form M input sample sets InRandum,
where n ≤ N.

Bi = {ai1, ai2,..., ain} (4)

The output results corresponding to the selected sample are as follows:

Oi = {oi1, oi2,..., oin} (5)
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IRandum = {B1, B2,..., BM} (6)
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fracturing sections; (e) relationship between EUR and liquid volume; (f) relationship between EUR
and sand volume; (g) relationship between EUR and liquid volume; (h) relationship between EUR
and sand volume.

(2) Establishing the BP network collection NetRandum. We input each new sample set
Yi, which is randomly selected in the sample data pool A, into the BP neural network and
formed the learned network model Neti through continuous recurrent comparison and
machine learning with Oi. We input the sample sets of M random selection into the BP
neural network, respectively, and formed the BP neural network set NetRandum, composed
of post-learning M network models.

Neti = F(Bi,Oi) (7)

{Net1, Net2,..., NetM} (8)

Data Prediction Analysis

(1) Data fitting. The vector Xi composed of K parameters was input into the BP network
set NetRandum, and after the operation by M network models, M prediction results yi were
obtained. The M prediction results formed the set Yi. Under the same conditions of the
other parameters, the value of a parameter vector in X was changed in an orderly manner (f
times) to form the prediction data set Input and the corresponding output prediction result
set Output so as to analyze the sensitivity of the parameter change to the prediction result.

Xi = [xi1, xi2,..., xiK] (9)

Yi = {yi1, yi2,..., yiM} (10)

Yi = F(Xi, Neti) (11)

Input = {X1, X2,..., Xf} (12)

Output = {Y1, Y2,..., Yf} (13)

(2) Probability analysis. Because each Yi in the prediction result set Output is a
prediction result composed of M data, probability and statistical methods were used to
analyze its statistical laws, which generally conforms to the normal distribution. Then, we
obtained the expected probability ei of Yi and the data width of a specific confidence curve.
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3. Results and Discussion
3.1. Network Modeling with Big Data

Taking the Changning block as a case, we selected the data of 100 production wells
with a production history of more than 1 year as the sample data pool. The input vector of
each sample includes eight parameters: pressure coefficient, buried depth, the thickness of
Type I reservoir, well spacing, length of fracturing horizontal section, number of fracturing
sections, fluid volume, and sand volume. The output results are the 20-year estimated
ultimate recovery (EUR) obtained by the Duong method. We randomly selected 80 samples
as a new sample set each time and repeated this 100 times, forming 100 randomly selected
new sample sets. The 100 new sample sets were input into a BP neural network model
with 10 hidden layers, and the random BP neural network model was completed after
machine learning.

3.2. Analysis of Factors Affecting Well Productivity

In order to analyze the influence of different parameters on the 20-year EUR of a gas
well under the same conditions, we set a standard well with reservoir pressure coefficient of
1.8, buried depth of 2700 m, the thickness of Type I reservoir of 19 m, well spacing of 400 m,
horizontal section length of 1400 m, number of fracturing sections of 33, liquid volume of
42,000 m3, and sand volume of 2300 tons. On the basis of a random BP neural network
constructed with samples of 100 production wells in the Changning block, we established a
predictive input data set, Input, by changing one of the parameters. The output result after
input into the network is shown in Figure 4, that is, the 20-year EUR of the gas well under
different parameter values. Then, we performed a probability analysis of the input results
to obtain the probability expectation value and the interval of 50% confidence coefficient
(Figure 5). Taking the 20-year EUR as the optimization goal, the fracturing coefficient of the
horizontal well for the development of the shale gas in the Changning block is 1.6, and the
single-well EUR shows a downward trend as the buried depth increases, which is consistent
with the great difficulty of engineering technology with the increase in burial depth. The
single-well EUR generally changed little after the thickness of the Type I reservoir exceeded
18 m, indicating that the vertical spread of induced fractures in a horizontal well was
limited. The lateral well spacing and the EUR change are generally positively correlated
in this study. The optimal length of the horizontal section of a horizontal well is 1600 m,
and the optimal number of fracturing sections is 20, which are consistent with the result
that the increase in the horizontal section length and the number of fracturing sections will
increase the fracturing difficulty and result in an unsatisfactory fracturing effect.

The ablation experiments with different parameters revealed (shown in Figure 5) that
the pressure coefficient, reservoir thickness, length of fracturing sections, and number of
fracturing sections are nonlinearly related to EUR, so in practice, the parameters need to be
selected according to the discriminatory situation of the model. Meanwhile, using Figure 5,
we can find that the length of fracturing sections has the greatest effect on EUR.

Table 1 and Figure 6 show the results of capacity prediction by our method compared
with the ground truth, and the comparison shows that our method can predict the capacity
effectively. However, the results are not satisfactory on the prediction of well 16, which we
believe is due to some error in the actual data measurement, and if the error is ignored,
better results will be obtained.

We selected the following models for comparison, including machine learning models:
Logistic Regression (LR) [33] and Support Vector Regression (SVR) [34], and deep learning
models: Long Short-Term Memory (LSTM) [35] and Convolutional Neural Networks
(CNN) [36]. In order to verify the superiority of the models, Mean Absolute Error (MAE)
was used as the evaluation metric, and the results are shown in Table 2.

By comparison, we find that our model can achieve optimal results. We believe this is
for the following reasons: (1) the traditional machine learning model has a small number
of parameters and cannot learn the implicit relationship between different variables well.
(2) LSTM is more suitable for temporal tasks, whereas CNN works bet-ter for image-like
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tasks, but it is not as good as the BP neural network for learning the implicit relationship
between different variables. (3) Our random BP approach can ef-fectively increase the
robustness of the model, making it applicable to different data features
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Figure 4. Fitted results of 200 times of random BP neural network for a standard well in Changning
block. (a) Relationship between EUR and pressure coefficient; (b) relationship between EUR and
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between EUR and number of fracturing sections; (g) relationship between EUR and liquid volume;
(h) relationship between EUR and sand volume.
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Table 1. The Results of Horizontal Shale Gas Well Capacity Prediction.

Ground Truth Prediction Lower Limit of 50% Confidence Upper Limit of 50% Confidence

Well 1 14,372 13,783 13,644 13,923

Well 2 14,399 12,910 12,672 13,148

Well 3 16,863 13,267 13,078 13,456

Well 4 16,423 13,574 13,371 13,777

Well 5 15,588 14,268 14,113 14,422

Well 6 17,338 15,883 15,732 16,035

Well 7 18,247 15,625 15,473 15,777

Well 8 17,218 15,269 15,116 15,421

Well 9 12,201 13,100 12,938 13,263

Well 10 19,293 15,865 15,688 16,042

Well 11 4517 8215 7882 8548

Well 12 6866 10,557 10,218 10,897

Well 13 15,983 14,074 13,904 14,243

Well 14 11,378 12,066 11,903 12,228

Well 15 3412 10,894 10,465 11,323

Well 16 27,089 12,950 12,482 13,418

Well 17 7424 11,417 11,202 11,632

Well 18 4255 10,381 10,128 10,633

Well 19 13,830 11,341 11,113 11,569

Well 20 11,428 11,575 11,341 11,808

Figure 6. Horizontal Shale Gas Well Capacity Prediction vs. Ground Truth.
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Table 2. Comparison of our model with other models in terms of MAE; lower MAE values indicate
better results.

Models MAE

LR 6823

SVR 6507

LSTM 3612

CNN 4526

Our method 3228

3.3. Advantages of the Method Proposed in the Paper

(1) Conventional statistical analysis is interfered with by multiple factors and conceals
the internal information of the data, particularly the correlation between a single factor, and
the EUR of the gas well is poor. The method proposed in the paper analyzes the influence
of each parameter under multi-scale conditions. We obtained the maximum expected
value of EUR and an interval of 50% confidence coefficient through random probability
generalization processing, which better shows the influence of a factor on EUR.

(2) It removes human interference in data analysis and has good fault tolerance for
data. The errors of individual data are effectively suppressed by machine learning from the
neural network model established by big data and reducing the weight of the fault value in
the network. Eventually, the analysis result will fall within the high probability interval of
normal distribution.

4. Conclusions

By combining a BP neural network algorithm with random probability analysis, we
established a productivity analysis method for analyzing the influencing factors on the
productivity of shale gas wells based on random BP neural network. This method can make
full use of effective information through artificial intelligence learning from big data and
solve problems such as unstable results from single-factor statistical methods and BP neural
network methods. For a standard well, the influence of every geological/engineering factor
on the well productivity can be converted to the same scale for comparison. The results
can more intuitively and quantitatively reflect the influences of different geological and
engineering factors on gas well productivity. Through extensive experimental analysis, this
model outperforms other machine learning models and deep learning models and has a
higher degree of robustness.

5. Parameter Description

A is the sample data pool composed of all N samples;
B is the new sample set composed of n samples randomly selected from A;
Bi is the ith sample;
Input is the predictive input data set composed of f Xi;
InRandum is the set of new samples B after randomly selecting M times;
K is the number of parameters in a;
M is the times of random selection;
N is the number of samples in the sample data pool A;
Net is the post-learning BP neural network model;
Neti is the model established for the i-th time;
NetRandum is the neural network set established after M times of machine learning;
O is the set composed of n output results o;
Oi is the set of output results corresponding to Bi;
Output is the prediction result set composed of f Xi;
X is a vector that needs to be predicted, composed of K parameters;
Xi is the i-th vector that needs to be predicted;
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Y is a set composed of M prediction results;
Yi is Xi’s prediction result set by NetRandum;
a is a specific sample in A, ai is the i-th sample;
ei is the expected probability value of Yi;
o is the output result corresponding to sample a;
p is a specific parameter in a;
pi is the i-th parameter;
x is a parameter value in vector X;
xi is the i-th parameter value;
y is the prediction result after inputting x into Net;
yi is the prediction result after inputting xi into Neti.
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