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Abstract: This paper proposes a rational approximation-based approach to find positive real param-
eters for the extended Debye model (EDM), aimed at condition assessment of insulation systems
of power transformers. The EDM can model the slow and fast polarization phenomenon, includ-
ing relaxation mechanisms with different relaxation times within a composite dielectric material.
In the proposed approach, the complex permittivity of the transformer’s composite insulation is
approximated via rational functions, as given by the vector fitting (VF) software tool, and the EDM
parameters are identified from the obtained poles/residues. To guarantee positive real parameters,
i.e., a physically realizable circuit, VF is internally modified to calculate the final residues of the
rational approximation via a constrained linear least-squares problem without resorting to further
post-processing algorithms, as in existing methods, hence without affecting fitting accuracy. The
effectiveness of the parametrized EDM is demonstrated in two ways: (a) by reconstructing frequency
domain spectroscopy (FDS) curves provided via measurements in new oil-immersed power trans-
formers and (b) by the comparison of the calculated polarization current given by EDM versus
real measurements in time domain. The achieved fitting accuracy in most of the cases is above
99 percent for the reconstructed FDS curves, while the polarization current waveform is reproduced
with good agreement.

Keywords: dielectric response; frequency domain spectroscopy; extended Debye model; transformer
insulation; vector fitting

1. Introduction

Power transformers play a key role in power grid resiliency, as they constitute one
of the grid’s most vulnerable components. Failure of a sole transformer can provoke at
least momentary service interruption and can lead to significant collateral damage that
might result in widespread cascading impacts with catastrophic consequences. To enhance
the power grid’s resiliency, transformers must be operationally safe and reliable even at
high operating temperatures due to overloads. Furthermore, they must endure electrical
stresses due to transient overvoltages, lightning strikes, or switching maneuvers. Due to
the abovementioned reasons, assessment of transformer condition and life management
has become increasingly important. In this tenor, the transformer’s insulation system is
a component that determines its life expectancy. In addition, it is its weakest component,
generally representing the root cause of most catastrophic faults.

A variety of techniques have been used for monitoring, testing, and diagnosing power
transformer insulation systems. A partial list is: insulation resistance (IR), polarization
index (PI), partial discharges (PD), dissolved gas analysis (DGA), and general oil quality.
More precise information on insulation health can also be obtained by using invasive
techniques such as the degree of polymerization and furan analysis. Over the last few
decades, attention has been directed toward modern techniques that measure changes in
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the dielectric properties of insulation. Those techniques are neither destructive nor invasive
and are reliable for determining moisture content, aging of the paper insulation, and in
general, for diagnosing power transformers [1]. The two leading modern techniques in
time domain are the return (or recovery) voltage measurement (RVM) and the polarization
and depolarization current (PDC) measurements, also known as dielectric spectroscopy
(DS) in time domain. As for frequency domain techniques, the dielectric frequency domain
spectroscopy (FDS) method measures the complex capacitance and the dissipation factor in
a typical wideband from 1 mHz to 1 kHz [1], and the frequency response analysis (FRA)
has been used as a diagnostic tool for assessing the mechanical integrity but has also been
recently used for insulation assessment. FRA obtains the voltage transfer function of the
transformer winding in a wideband from 20 Hz to 2 MHz [2].

The main challenge surrounding the aforementioned techniques is the interpretation
of results. For a better interpretation, equivalent RC circuits are used for modeling the
transformer insulation system. The frequency response of such RC circuits is used to
analyze the transformer’s physical behavior and dielectric patterns. Moreover, the circuit
parameters are strongly correlated to the transformer’s insulation condition, as they depend
on its actual physical properties, i.e., degree of aging and water content.

In this paper, the extended Debye model is used to evaluate the dielectric characteris-
tics of a power transformer. The values of the EDM parameter are identified via rational
fitting of FDS curves using an internally modified version of VF that guarantees positive
real RC parameters, i.e., a physically realizable circuit, maintaining the accuracy of the
fitting. It is mentioned that existing methods use a post-processing algorithm to enforce
parameters to be physically realizable, degrading at some extent fitting accuracy.

The paper is structured as follows. In Section 2, the paper describes a brief overview of
the dielectric response concept. The classical and extended Debye models are described in
Section 3, and parameter calculation methods are mentioned in Section 4. Section 5 explains
the main concepts of the FDS. The basics of VF and the proposed modification are explained
in Sections 6 and 7. The validation of the proposed approach is presented in Section 8. The
results are discussed in Section 9. Finally, the paper is concluded in Section 10.

2. Overview on Dielectric Response

The DS technique, either in time domain or frequency domain, permits the assessment
of insulation system properties based on its dielectric response under the application of an
electric field. The dielectric response is time dependent due to the polarization phenomenon
in which the buildup of steady-state polarization requires a finite time to reach its maximum
value. In the same way, when the electric field is suddenly removed, polarization will take
a finite time to decay to zero. This phenomenon is called dielectric relaxation. There are
essentially four types of polarization mechanisms: (i) electronic, (ii) ionic, (iii) dipole and
(iv) interfacial. Mechanisms (i) and (ii) are extremely fast while (iii) and (iv) represent a
slow phenomenon. Note that, in general, polarization is a time-varying phenomenon and
implies a flow of charges constituting an electrical current. Therefore, the most important
experimental procedure to determine polarization relies on the determination of the electric
current resulting from the rate of change of polarization with respect to time.

Besides the conduction current due to the conductivity of the imperfect dielectrics,
any insulation system will carry the so-called displacement current given by (1), where Q
is the total charge moving within the dielectric material due to an external electric field. Q
is the sum of the contribution of free space, which is instantaneous, and material medium
polarization, which is time delayed and depends on the dielectric material properties [3].

id(t) = dQ/dt (1)

The most dominant term of current arising in time-domain spectroscopy analysis is
characterized by the response function f (t) of an insulation material due to its different
polarization mechanisms. In the frequency domain, f (t) is related by the complex suscepti-
bility via (2), where F denotes the Fourier transform. χ(ω) provides information about the
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amplitude and phase of the polarization component, and it is a way to study the dielectric
material properties by its response to alternating electric fields. Although each dielectric
material has its own exclusive response, most of them show a typical response that can be
characterized by χ(ω), which allows for visualizing possible relaxation mechanisms.

χ(ω) = F [ f (t)] (2)

3. Classical and Extended Debye Models
3.1. Classical Debye Model

The dielectric response of a physically realistic dielectric can be represented by the
classical Debye model constructed with a simple RC branch and a further ideal parallel
capacitor C∞ that represents the free space capacitance (or permittivity) at high frequencies
where losses are not significant [3]. The equivalent circuit of the classical Debye model is
presented in Figure 1a; its corresponding complex permittivity is given by

ε(ω) = ε′(ω)− jε′′ (ω) = ε∞ +
εs − ε∞

1 + jωτr
, (3)

where
ε′(ω) = ε∞ +

εs − ε∞

1 + ω2τr2 , ε′′ (ω) = ωτr
εs − ε∞

1 + ω2τr2 . (4)

Energies 2022, 15, x FOR PEER REVIEW 3 of 14 
 

 

The most dominant term of current arising in time-domain spectroscopy analysis is 
characterized by the response function 𝑓(𝑡)  of an insulation material due to its different 
polarization mechanisms. In the frequency domain, 𝑓(𝑡)  is related by the complex sus-
ceptibility via (2), where ℱ denotes the Fourier transform. 𝜒(𝜔) provides information 
about the amplitude and phase of the polarization component, and it is a way to study the 
dielectric material properties by its response to alternating electric fields. Although each 
dielectric material has its own exclusive response, most of them show a typical response 
that can be characterized by 𝜒(𝜔), which allows for visualizing possible relaxation mech-
anisms. 𝜒(𝜔) = ℱሾ𝑓(𝑡)ሿ (2)

3. Classical and Extended Debye Models 
3.1. Classical Debye Model 

The dielectric response of a physically realistic dielectric can be represented by the 
classical Debye model constructed with a simple RC branch and a further ideal parallel 
capacitor 𝐶ஶ that represents the free space capacitance (or permittivity) at high frequen-
cies where losses are not significant [3]. The equivalent circuit of the classical Debye model 
is presented in Figure 1a; its corresponding complex permittivity is given by 𝜀(𝜔) = 𝜀ᇱ(𝜔) −  𝑗𝜀ᇱᇱ(𝜔) = 𝜀ஶ + ఌೞିఌಮଵା௝ఠఛೝ, (3) 

where 𝜀ᇱ(𝜔) = 𝜀ஶ + ఌೞିఌಮଵାఠమఛೝమ ,   𝜀ᇱᇱ(𝜔) = 𝜔𝜏௥ ఌೞିఌಮଵାఠమఛೝమ. 
(4) 

Relations (3) and (4) are known as the Debye equations. They are used to describe a 
dielectric system and to determine if the Debye relaxation is a possible mechanism. In 
Equations (3) and (4), 𝜀௦ and 𝜀ஶ are the static and instantaneous (high frequency) rela-
tive permittivity, respectively, and 𝜏௥ is called the Debye dielectric relaxation time [4]. 

Rs

Cs

C∞ Cp C∞ Rp C∞ 

Rs

Cs

Rp

 
      (a)       (b)      (c) 

Figure 1. (a) Classical Debye model. (b) Equivalent circuit for conduction. (c) Equivalent circuit for 
conduction and relaxation. 

Debye’s model response is usually seen in simple dielectric liquids. A common die-
lectric response observed on many solid materials is based on power–law relaxation, also 
known as the Curie–von Schweidler model. According to this law, the current decays ac-
cording to a power law:  𝑖(𝑡) ∝ 𝑡ି௡ (5) 

where 𝑛 is the decay constant such that 0 < 𝑛 < 1 [1,5]. 
The circuit in Figure 1b, which corresponds to a parallel RC with a further capacitor 𝐶ஶ, is suitable to represent any material that exhibits conduction. The expression for its 

complex permittivity is given by 𝜀(𝜔) = 𝜀ᇱ(𝜔) − 𝑗𝜀ᇱᇱ(𝜔) = 𝜀଴ − 𝑗 ଵఠோ೛஼బ, (6) 

Figure 1. (a) Classical Debye model. (b) Equivalent circuit for conduction. (c) Equivalent circuit for
conduction and relaxation.

Relations (3) and (4) are known as the Debye equations. They are used to describe
a dielectric system and to determine if the Debye relaxation is a possible mechanism. In
Equations (3) and (4), εs and ε∞ are the static and instantaneous (high frequency) relative
permittivity, respectively, and τr is called the Debye dielectric relaxation time [4].

Debye’s model response is usually seen in simple dielectric liquids. A common
dielectric response observed on many solid materials is based on power–law relaxation,
also known as the Curie–von Schweidler model. According to this law, the current decays
according to a power law:

i(t) ∝ t−n (5)

where n is the decay constant such that 0 < n < 1 [1,5].
The circuit in Figure 1b, which corresponds to a parallel RC with a further capacitor

C∞, is suitable to represent any material that exhibits conduction. The expression for its
complex permittivity is given by

ε(ω) = ε′(ω)− jε′′ (ω) = ε0 − j
1

ωRpC0
, (6)

where C0 is the vacuum capacitance or geometrical capacitance and represents the ca-
pacitance that would be obtained on a capacitor if its dielectric material was replaced
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by a vacuum (free space) but kept the same geometry. In addition, in Equation (6),
ε0 = (Cp + C∞)/C0. Note that in Equation (6), ε′ is independent of frequency and ε′′

increases with decreasing frequency.
For a material that exhibits both relaxation and conduction behavior (see Figure 1c) Cp

has been replaced by a series RC arrange. Its complex permittivity is expressed now as

ε(ω) = ε∞ +
ε0 − ε∞

1 + jωτr
− j

ωRpC0
, (7)

where ε∞ = C∞/C0, ε0 − ε∞ = Cs/C0 and τr = RsCs. This representation is known also as
the Debye model for homogeneous lossy material.

3.2. Extdended Debye Model

For insulation systems made of mixtures of different dielectric materials, e.g., an
insulating liquid with ionic conduction mixed with a lower conduction solid, as in an oil–
paper insulation system, charge accumulation occurs at the interface due to the differences
between their conductivities σ and dielectric constants ε. This phenomenon is known as
interfacial polarization, or the Maxwell–Wagner effect. For such a mixture of different
dielectric materials, polarization cannot be accurately modeled via the RC circuits of
Figure 1, because in a composite insulation system, polarization is caused by different
mechanisms with different relaxation time constants. Moreover, polarization is affected by
moisture, aging, and temperature [3].

Although the Maxwell–Wagner model can be applied to a multilayer oil–paper insula-
tion system [6], prevalent algorithms for frequency response analysis and assessment of
oil–paper insulation systems are based on EDM or derived from an EDM approach.

The EDM (see Figure 2) is constructed by using a parallel arrangement of series-
connected RC branches involving a resistor Rn and a capacitor Cn [7]. Each of these series
connections provide a time constant given by τn = RnCn that represents the different
polarization processes randomly distributed within the insulation system. The conduction
current is represented by the insulation resistance R0, and the geometrical capacitance of
the insulation system is represented by a shunt capacitance Cg.
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Figure 2. Extended Debye model (EDM).

The identification of the EDM circuit parameters is usually performed through dielec-
tric response measurements either in time domain (PDC [7] and RVM [8,9] or in frequency
domain (FDS [10,11]). This identification process leads to a multivariable nonlinear problem
that is solved via mathematical techniques that involve numerical and iterative methods [8],
exponential curve fitting [7], nonlinear programming [12] nonlinear least-squares optimiza-
tion [11], and other combinations with heuristic optimization algorithms [10,13].

4. Calculation of EDM Parameters

Circuit parameters calculated from time-domain responses (RVM, PDC) exhibit an
accurate reconstruction of recorded traces either individually, between reciprocal transfor-
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mation RVM–PDC [7], or by transformations to frequency domain data (FDS) [14]. Hence,
under ideal conditions, both time and frequency domain methods are comparable, although
there are several disadvantages of the former when measurements are performed onsite.
The most notable disadvantage is its vulnerability to electromagnetic interference when
applying a DC voltage (PDC) that requires measurement of small currents [15].

Conversely, the main weakness of the FDS method is related to long measurement
times at low frequencies. For example, it takes nearly 17 min to complete one sinusoidal
cycle at 1.0 mHz. This low-frequency shortcoming is overcome with a recent approach that
uses a multi-frequency test signal instead of a single frequency [15]. Therefore, the FDS
method is now by far a better choice. Furthermore, the EDM identification directly using
FDS instead of PDC or RVM leads to a better characterization of the insulation system,
permitting a better interpretation and diagnosis of its condition [10].

Calculation of EDM parameters derived from FDS is a problem that has been ad-
dressed by other researchers; however, a few reports can be found in the specialized
literature. In [10], the EDM parameters are identified using a syncretic algorithm that inte-
grates a genetic algorithm and a Levenberg–Marquardt algorithm from FDS measurements
performed in an oil-impregnated condenser bushing. In [12], the equivalent circuit model
parameters for oil–paper insulation samples are obtained by a nonlinear optimization
procedure from the dissipation factor curves; in this work, only one parallel branch is
considered. In [13], the nonlinear problem of EDM parameters identification is solved by
the nonlinear square method and bacterial foraging algorithm applied on scaled down
transformer insulation models and with the data of FDS. In [11], a rational approximation
of the FDS curve is derived via the VF method; however, a post-processing algorithm of
least-squares optimization with constraint is required to enforce passivity; this technique is
applied to a condenser transformer bushing as well.

In this paper, the complex capacitance curve, measured from a broadband FDS, is
approximated by using rational functions via a modified version of VF. This modification
permits the direct calculation of the EDM parameters, which guarantees the realizability of
the circuit without any post-processing routine.

5. Frequency Domain Spectroscopy

FDS, also known as dielectric frequency response (DFR), is a dielectric analysis
technique based on the same principle of the well-known capacitance and power fac-
tor/dissipation factor measured at one specific frequency value (close to line frequency
50/60 Hz). The DFR technique involves measurements over a wide frequency range,
typically from an upper limit of 1 kHz down to a lower limit that ranges between 10 and
0.1 mHz. Traditional measurements at a single frequency are usually at 10 kV or at a voltage
not greater than the rated voltage of the specimen under test, while DFR measurements
are performed using low voltage (i.e., 140 V RMS) to avoid voltage-dependent effects at
low frequencies, although higher voltages may be used in environments with high interfer-
ence [16]. In a practical setup, DFR consists in both the application of a sinusoidal voltage
across the terminals of the test object and the measurement of the amplitude and phase of
the response current flowing through the insulation system.

When an electrical field E is applied to an imperfect dielectric, the current can be
defined based on its DC electrical conductivity σDC and its dielectric displacement D.
To perform the dielectric response analysis in the frequency domain, this current can be
expressed in terms of a current density J(ω) as follows [3]:

J(ω) = σDCE(ω) + jωD(ω) =
[
σDC + ωε0ε

′′
R(ω) + jωε0ε′R(ω)

]
E(ω), (8)

For a better physical interpretation, in Equation (8), J(ω) is expressed in terms of the
complex permittivity where

ε′R(ω) = ε∞ + χ′(ω), ε
′′
R(ω) =

σDC
ε0ω

+ χ′′ (ω). (9)
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The ratio E(ω)/J(ω) can physically be better understood in terms of the ratio between
a voltage and a current V(ω)/I(ω), characterized by an impedance function Z(ω) or by
an admittance Y(ω). For insulation diagnostic and/or analysis, the complex capacitance
C∗(ω) model is more commonly used since it can describe either the insulation impedance
or the insulation admittance.

The general definition of steady-state capacitance is applicable for C∗(ω), where
instead of a constant voltage, an alternating voltage with frequency ω is employed. When
this voltage is applied to a capacitive circuit, the resulting current can be expressed in terms
of C∗(ω) as

I(ω) = jωC∗(ω)V(ω), (10)

where

C∗(ω) = C′(ω)− jC′′ (ω) =
Y(ω)

jω
=

1
jωZ(ω)

, (11)

and

C′(ω) = Re
(

Y(ω)

jω

)
, C′′ (ω) = −Im

(
Y(ω)

jω

)
. (12)

In practice, it is common to apply a voltage across the sample and to measure the
current flow; hence, the impedance is easily calculated using Ohm’s law Z = V/I. The
insulation impedance Z = Z′(ω) − jZ′′ (ω) in the complex capacitance model is often
described as a capacitance combined with a dissipation factor (tan δ) [10] or with a power
factor (cos θ), where

tan δ =
Z′(ω)

Z′′ (ω)
=

C′′ (ω)

C′(ω)
, cosθ =

Z′(ω)

|Z(ω)| =
C′′ (ω)

|C∗(ω)| . (13)

In some cases, it is more convenient to express C∗(ω) in terms of the complex permit-
tivity as

C∗(ω) = C0εR(ω) = C0
(
εR
′(ω)− jεR

′′ (ω)
)
, (14)

where the dielectric constant εR(ω) is given by the ratio of the complex permittivity to the
permittivity of free space ε(ω)/ε0. The abovementioned reasoning establishes the basis to
determine the effective permittivity of a dielectric system with a homogeneous material
from the measurement of the impedance or the admittance.

6. Vector Fitting Basic Equations

For completeness of the paper, the VF basics are described in this Section. VF is a nu-
merical algorithm to approximate frequency domain responses via rational functions [17].
Recently, VF has been extended to consider time-domain, z-domain, and scattering re-
sponses [18,19]. Note that only the basic VF algorithm is briefly described in the following,
as it is sufficient for the identification of EDM.

The main objective of VF is to fit (approximate) a system transfer function H(s) via
rational functions, as in Equation (15), where s = jω. The approximation in Equation (15) is
represented as a summation of partial fractions composed of residues, rn, first-order poles,
pn, and two optional terms, d and e.

H(s) = ∑N
n=1

rn

s− pn
+ d + se. (15)

The (unknown) terms rn and pn can be real or come in complex conjugate pairs, while
d and e are real.

Since pn appears in the denominator of Equation (15), the identification problem
becomes nonlinear. Hence, to overcome the nonlinearity problem, N starting (known) poles
qn are proposed in a first step. Usually, the N proposed poles are assumed either linearly
or logarithmically spaced along with the frequency band of the frequency response under
interest [17].
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As the second step, an unknown rational scaling function σ(s) is introduced as

σ(s) = ∑N
n=1

r̃n

s− qn
+ 1, (16)

In such a way that the rational approximation of σ(s)H(s) has the same known poles
qn. In the third step, Equation (17) is formulated.

∑N
n=1

(
rn

s− qn
+ d + se

)
=

(
∑N

n=1
r̃n

s− qn
+ 1
)

H(s). (17)

To calculate the unknown variables (rn, d, and e), Equation (17) is evaluated at m
points of the frequency bandwidth, resulting in the system of linear Equation (18).

Ax = b. (18)

The fact that m > 2N + 2 leads to the overdetermined linear system (18), which can be
solved, for example, by using the MATLAB backslash operator “\”, which indicates matrix
inversion computed in the least-squares sense. Once system (18) is solved for the unknown
parameters, Equation (19) is readily obtained from

H(s) ∼=
∏N+1

n=1
(s−zn)
(s−qn)

∏N
n=1

(s−z̃n)
(s−qn)

=
∏N+1

n=1 (s− zn)

∏N
n=1(s− z̃n)

. (19)

From Equation (19), the poles of H(s) correspond to the zeros of σ(s). Hence, the
fourth step involves the calculation of the zeros of σ(s) (poles of H(s)), which can be readily
achieved from the partial fraction representation, as in Equation (16). It is mentioned
that VF can enforce stability by keeping all the poles in the left-half plane; that is, for any
iteration that results in positives (unstable) poles, VF inverts the sign of their real parts.

Once the poles of H(s) are calculated, the residues rn and terms d and e in H(s) are
computed in the fifth step by building and solving a linear overdetermined system Ax = b,
obtained from the evaluation of Equation (15).

The above-mentioned steps are implemented in an iterative fashion by using the new
poles of H(s) as starting poles. The process ends when convergence is achieved.

7. Modified VF and FDS Algorithm for EDM Identification

Based on FDS measurements, the insulation system can be characterized via its
complex capacitance, as defined in Equation (14), where C0 can be obtained either by
measurements or estimated by calculations. Moreover, the EDM in Figure 2, based on
Equations (10) and (11), can be synthesized as the admittance given by Equation (20).

Y(s) = sC∗(s) = C0

(
∑N

n=1
rns

s− pn
+ ds + e

)
. (20)

Comparing the EDM and Equation (20), each element of the model can easily be
identified as

R0 = 1
C0e , C∞ = C0d, Rn =

1
C0rn

, Cn = −C0rn

pn
, (21)

where Cg is represented by the high-frequency capacitance C∞ = C0ε∞ [20].
The only constraint for Equation (20) to be physically realizable with an RC admittance

is that residues must be real and positive, without affecting fitting accuracy. Positive
real RC elements are also important to obtain realistic time constants of the polarization
phenomenon. This realizability is addressed in this paper.

The DFR of dielectric materials and composite insulation systems are characterized
by smooth curves (without resonance peaks), which can be fitted by low-order approxi-
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mations using real poles in VF [17]. However, in some cases, the optimal (i.e., smallest
approximation error) VF approximation leads to negative residues that make the function
unphysically realizable. To address this problem, a second adjustment in the original
formulation of VF is proposed in this paper as described next.

To enforce realizability, the linear system Ax = b, formulated in the fifth step of the VF
algorithm described in Section 6, is solved in the (internally) modified VF as the constrained
linear least-squares problem:

min
x
||Ax− ||b2

2 such that lb ≤ x ≤ ub, (22)

where lb and ub are real vectors containing the lower and upper bounds, respectively.
The solution of (22) is performed in this paper by the trust–region–reflective algo-

rithm, which is a subspace trust–region method based on the interior-reflective Newton
method [21,22]. For such a solution, the MATLAB built-in function lsqlin is utilized. As an
alternative, a nonnegative least-squares optimization can be used via the MATLAB built-in
function lsqnonneg, which returns a vector x that minimizes ||Ax− b||22 subject to x ≥ 0.
Although both functions work properly and converge to the same results for most of the
cases, in this paper, the lsqlin function is utilized for the presented cases.

The following steps for the identification of the EDM realizable parameters are imple-
mented in the MATLAB environment.

Step 1. The FDS data are exported from the measurement instrument and transformed
into a complex capacitance form.

Step 2. The geometrical capacitance C0 is calculated and used to generate frequency
domain responses for the relative dielectric permittivity εR(s).

Step 3. The proposed modified version of VF is employed to find a rational approxima-
tion of εR(s) using, as starting poles, real poles logarithmically spaced within the considered
frequency wideband. The proposed algorithm chooses the order (number of branches) by
sweeping from one to ten the order of approximation and keeping as a final approximation
the order with the smallest rms error.

Step 4. Once the best fitting (lowest rms error) of εR(s) is found, the parameter identi-
fication of EDM in an admittance form is performed, as given by Equations (20) and (21).

The flowchart describing the proposed approach is presented in Figure 3. Note that
the flowchart also includes as application the calculation of polarization current. Numerical
results for both EDM and polarization current are presented in Section 8.
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8. Validation

The dielectric frequency responses of six new power transformers between 25 and
115 kV class are obtained via an IDAX 300. The IDAX 300 is a MEGGER instrument that can
measure the capacitance and dissipation factor (DF), or power factor (PF), of the insulation
between power transformer windings at multiple frequencies, e.g., 1 mHz–1 kHz [23].

The parameters of the tested transformers are listed in Table 1. The dissipation factor
percent (%DF), capacitance (C), moisture percent, and oil conductivity are the calculated
values from the measurement instrument during FDS.

Table 1. Parameters of six new transformers under test.

XFMR 1 2 3 4 5 6

MVA 10 12.5 2.5 2 3.75 7.5
KV Class 27.6 34.5 38 46 69 115
Fluid Type FR3 FR3 Mineral FR3 Mineral Mineral
%DF at 60 Hz and 20 ◦C 0.35 0.37 0.32 0.41 0.32 0.29
C at 60 Hz (pF) 7457 9301 4185 4427 2686 2719
Moisture (%) 1.4 1.3 0.5 1.9 1.1 1.4
Oil Cond (pS/m) 9.98 7.67 0.872 13.2 2.05 0.844

The DFR measurements are performed at the major barrier insulation between the high-
voltage (HV) and low-voltage (LV) windings since this interwinding insulation contains
most of the solid insulation in the overall transformer dielectric system.

The ungrounded specimen test configuration is used with the same setup and execu-
tion as the traditional power frequency capacitance and PF measurements [16]. The fitted
and measured responses corresponding to DF and complex capacitance are presented in
Figures 4 and 5, respectively. The fitted curves are obtained by using the optimal quantity,
i.e., with the lowest rms error, of RC-paralleled branches of the EDM, according to the
modified VF, as described in Section 7.
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The resultant EDM parameters for all transformers are listed in Table 2, where the
time constant τ of each polarization branch can be calculated by τn = Rn Cn. Note that all
EDM-identified values are real and positive, which guarantee realizability. The accuracy of
the fitting (AF) for the complex capacitances is calculated by using the normalized rms error
expressed as a percentage, where 100% means a perfect fitting. Table 3 lists the AF for each
transformer, the best fitting order and iteration in which is achieved, and the corresponding
rms fitting errors.

As further validation of the effectiveness of the parametrized EDM, the calculated
polarization current from FDS is compared with real measurements in the time domain,
using a MIT1025 insulator resistance tester.

The theoretically expected current can be derived from the corresponding time domain
of Equation (8) with constant E(t), assumed as a step-like DC charging voltage VC(t)
divided by the radial distance d between electrodes, as follows:

ipol(t) =
[

σDC
ε0

+ ε∞δ(t) + f (t)
]

VC(t)ε0 A
d

. (23)

Table 2. Identified EDM parameters for six new transformers.

XFMR #1 XFMR #2 XFMR #3

Branch Rn
(GΩ)

Cn
(nF)

τn
(s)

Rn
(GΩ)

Cn
(nF)

τn
(s)

Rn
(GΩ)

Cn
(nF)

τn
(s)

0 9.251 7.387 68.336 11.69 9.192 107.50 810.2 4.129 3345.3
1 0.003 0.051 0.0002 0.002 0.080 0.0001 0.002 0.040 0.0001
2 0.066 0.030 0.0020 0.040 0.042 0.0017 0.050 0.014 0.0007
3 0.705 0.029 0.0202 0.400 0.030 0.0121 0.375 0.015 0.0057
4 1.980 0.109 0.2154 2.474 0.039 0.0957 4.322 0.010 0.0449
5 1.318 5.015 6.6085 2.662 0.733 1.9509 24.41 0.021 0.5200
6 0.857 35.24 30.199 0.870 31.98 27.813 29.83 1.389 41.424
7 2.781 37.46 104.20 2.165 46.41 100.50 24.06 8.831 212.55
8 - - 12.54 45.44 570.10 109.9 4.146 455.77
9 - - - - 218.7 8.688 1900.5
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Table 2. Cont.

XFMR #4 XFMR #5 XFMR #6

Branch# Rn
(GΩ)

Cn
(nF)

τn
(s)

Rn
(GΩ)

Cn
(nF)

τn
(s)

Rn
(GΩ)

Cn
(nF)

τn
(s)

0 29.05 4.360 126.69 71.94 2.664 191.63 88.45 2.696 238.42
1 0.002 0.049 0.0001 0.013 0.017 0.0002 0.006 0.018 0.0001
2 0.049 0.019 0.0009 3.993 0.001 0.0020 0.169 0.007 0.0012
3 0.424 0.021 0.0088 0.265 0.010 0.0027 0.971 0.012 0.0113
4 4.260 0.026 0.1090 2.931 0.007 0.0199 7.732 0.014 0.1098
5 3.673 1.460 5.3635 7.758 0.017 0.1288 17.27 0.066 1.1317
6 2.483 11.41 28.330 25.75 0.030 0.7649 53.13 1.093 58.081
7 17.45 9.275 161.89 16.13 1.306 21.064 834.0 0.171 142.86
8 104.2 9.995 1041.9 12.64 7.703 97.432 29.00 9.096 263.79
9 - - - 262.7 1.244 326.73 71.72 20.80 1492.4

10 - - - 71.39 10.80 771.11 - - -

Table 3. AF of reconstructed FDS curves with the best order and iteration.

XFMR 1 2 3 4 5 6

Best Order 7 8 9 8 10 9
Best Iteration 2 3 5 3 3 5

rms error 0.29 0.02 1.13 0.48 2.22 0.69
AF |C| (%) 99.94 99.80 99.74 99.83 99.71 99.74
AF C′ (%) 99.84 99.70 99.78 99.84 99.72 99.87
AF C′′ (%) 99.37 99.30 98.97 98.58 98.25 97.63

The first term in (23) represents the DC conductivity mechanism. The response
function f (t) represents polarization processes that cannot respond instantaneously to the
applied voltage and have a different time constant that is widely distributed. These terms
can be measured to make a reliable diagnosis. The term involving the impulse function δ(t)
represents the fast polarization processes occurring in extremely short times; this cannot be
recorded in practice since it involves a large amplitude, and it is avoided (discarded) during
the measurement process. Thus, the practical measured polarization current is expressed as

ipol(t) =
[

σDC
ε0

+ f (t)
]

VC(t)Cg, (24)

where the magnitude is essentially a function of f (t), σDC and the geometrical capacitance
Cg, may either be the vacuum capacitance C0 or the high-frequency capacitance C∞ of
insulation system at the time that the current measurement is started.

Conversely, the polarization current can be calculated from the EDM as

ipol(t) =

(
1

R0
+

m

∑
n=1

1
Rn

e−
t

τn

)
VC(t) (25)

By comparing (24) and (25), it is easy to identify the DC resistance as R0 = σDCCg/ε0 .
Figure 6 presents the polarization currents for transformers #3, #5, and #6 only, given

by time domain measurements and calculated from the parametrized EDM using FDS. The
polarization current is measured for transformers #3 and #6 using a charging voltage of
500 and 1000 VDC for transformer #5. The charging time is 1200 s for all of them. Figure 6
shows good agreement between measurements and the identified EDM, thus validating
the proposed approach.
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9. Discussion

The identified parameters in Table 2 show the sensibility of the values to the condi-
tion and properties of the dielectric material comprising its insulation system. Each of
the tested transformers have different moisture content and specific oil conductivity (oil
quality), as shown in Table 1. In addition, these parameters have a strong dependence
on the coil geometry as expected by Equation (21) since the coil height, diameters, and
interwinding construction are customized and optimized based on its power, KV class,
and specific performance required. However, it is not the intention of this paper to evalu-
ate the correlation of the insulation properties with the obtained parameter values. The
contribution of this work is intended to develop an effective algorithm that can be used
to straightforwardly identify the EDM branch parameters whose values can be further
correlated to the condition of a multilayer insulation system for diagnosis and decisions
concerning life management, aging, or water content, among others. In future publications,
the pole distribution in the complex plane is intended for achieving a better interpretation
of the insulation system condition.

As for the tested transformers, there is not a general rule on the number of EDM
RC branches, as seen in Table 2. In the proposed algorithm, the order (number of poles)
is related to the number of branches in the EDM. Each branch represents a polarization
process with a particular constant time; then, the number of branches will depend upon the
nature of the tested transformer and its condition. Usually, six to ten branches are enough
to achieve accurate approximations [10]. The results in this paper agree with such numbers,
noting that seven to ten branches are enough to achieve an accuracy above 99.7% for |C|
and C′ and above 97.6% for C′′ .

Positive realness of the RC elements is guaranteed via the proposed approach. This
permits (a) to calculate realistic time constants involved in the polarization process and
(b) to accurately reproduce polarization currents avoiding unstable simulation.

The proposed algorithm compares the polarization current from the EDM-obtained
parameters and from real FDS measurements. Figure 6 shows a fairly good agreement
between the calculated and measured polarization current. The deviation seen in the first
seconds (i.e., < 100 s) can be explained by referring to Equations (24) and (25) where the term
δ(t), which is of extremely short duration and high magnitude, is not recorded as already
explained before. In addition, the accuracy of the first part of the polarization current
during data acquisition, 0.1 to 1 s after switching, requires additional special equipment
and other complex circuits. The data acquisition for the polarization current in this paper
was performed with a Megger MIT1025 Insulation Resistance Tester [24] which does not
have the accuracy of a sophisticated polarization current tester. The polarization current
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was recorded during the dielectric charge and discharge test. Although the current related
to the response function is correctly recorded and represents the rest of the polarization
processes that cannot respond instantaneously to the applied voltage, this polarization
current arises in a delayed way to the applied voltage. This part characterizes the most
important property of the dielectric systems. Then, the effort to increase the accuracy of
the first part of the polarization current with aforesaid complexity in an instrument is not
required [25].

10. Conclusions

In this paper, the EDM circuit parameters are calculated from FDS measurements and a
modified version of the VF algorithm. The proposed approach permits direct identification
of the EDM parameters, leads to realizable equivalent circuits and models without resorting
to post-processing algorithms, and permits one to calculate realistic time constants of the
polarization process. Furthermore, embedding the positive realness constrain within VF
permits one to maintain fitting accuracy, as opposed to using a post-processing scheme.
The identified EDM can be used to simulate and characterize dielectric responses either in
frequency or time domain of multilayer insulation systems.

The effectiveness of the proposed approach has been evaluated on the insulation
system of six real power transformers where the major insulation barrier between high- and
low-voltage is composed of oil–paper layers. In addition, the polarization current has been
obtained directly with good accuracy from the EDM, mitigating the noise vulnerability of
time domain measurements when performed on site.
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