energies

Article

Fault Diagnosis Method of Waterproof Valves in Engineering
Mixing Machinery Based on a New Adaptive Feature
Extraction Model

Rui Zhang !, Jiyan Yi 2, Hesheng Tang 1, Jiawei Xiang !

and Yan Ren 1:*

College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China;
20451438015@stu.wzu.edu.cn (R.Z.); tanghesheng@wzu.edu.cn (H.T.); jwxiang@wzu.edu.cn (J.X.)
WenZhou Academy of Special Equipment Science, Plot 31, Phase I of China Shoes Capital, Fengmen Street,
Lucheng District, Wenzhou 325035, China; yijiyan@126.com

Correspondence: rentingting211@wzu.edu.cn

Abstract: Due to the complex working medium of oil in construction engineering, the waterproof
valve in mixing machinery can easily cause different degrees of failure. Moreover, under adverse
working conditions and complicated noise backgrounds, it is very difficult to detect the fault of
waterproof valves. Thus, a fault diagnosis method is proposed, especially for the fault detection of
waterproof valves as a key component in the construction of mixing machinery. This fault diagnosis
method is based on a new adaptive feature extraction model, with multi-path signals to the improved
deep residual shrinkage network—stacked denoising convolutional autoencoder (named DRSN-
SDCAE). Firstly, the noisy vibration signals collected by the two vibration sensors are preprocessed,

and then transmitted to the parallel structure improved DRSN-SDCAE for adaptive denoising and

f::edca!:tz); feature extraction. Finally, these results are fused through the feature fusion strategy to realize the
effective fault diagnosis of the waterproof valve. The effectiveness of this method was verified
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through theory and experiments. The experimental results show that the proposed fault diagnosis
method based on the improved DRSN-SDCAE model can automatically and effectively extract
fault features from noise for fault diagnosis without relying on signal processing technology and
diagnosis experiences. When compared with other intelligent fault diagnosis methods, the features
extracted from multi-path inputs were more comprehensive than those extracted from single-path
inputs, and contained more complete features of hidden data, which significantly improved fault

en15082796 diagnosis accuracy based on these fault features. The contribution of this paper is to learn fault

Academic Editors: Hu Shi and features autonomously in signals with strong and complex noise through a deep network structure,

Sérgio Cruz which extends the fault diagnosis method to the field of construction machinery to improve the safe
operation and maintainability of engineering machinery.
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Mixing machines are commonly used in construction engineering to realize the mixing
and stirring of building materials such as the cement, mortar and concrete. Due to the
working process of the mixing machine itself, the working medium inevitably mixes com-
plex building materials and the polluted fluid containing a large number of particles, which
makes the hydraulic transmission system, including components in the mixing machine,
vulnerable to varying degrees of wear and heating. This damage is irreversible, and the
degree of damage will increase with working time. Moreover, the working conditions
of mixing machinery are very harsh, and in a strong and complex noise environment, it
is difficult to detect faults of the system or components in mixing machinery. Therefore,
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effective fault diagnosis methods are of great significance for the safe and reliable operation
of construction machinery.

In the fault diagnosis method, if the fault features can be extracted, it is easier to
diagnose the fault. The working environments of hydraulic transmission systems are
relatively bad, especially the working conditions of construction machinery, which often
submerges the working state of the system or components in the background of strong and
complex noise. In order to extract fault features under harsh working conditions, signal
denoising has proven to be an effective method [1]. The common methods of processing
noise signals mainly include empirical mode decomposition (EMD) [2,3], variational mode
decomposition (VMD) [4,5], and Hilbert transform (HT) [6,7]. For example, Du et al.
proposed a method combining EMD and the Wigner—Ville distribution to select the best
intrinsic mode function to achieve the effective decomposition of noisy vibration signals
from bearings in plunger pumps [8]. EMD is capable of linearizing and smoothing non-
linear, non-smooth time-series data, thus preserving as many basic features of the original
data as possible. Zhu et al. proposed a new method based on the VMD and relative entropy
(RE) to extract the useful components of the signal, which could better extract the effective
component of vibration signals with strong noise interference for a hydraulic axial piston
pump under normal state, slipper wear, and slipper luxation [9]. VMD can decompose a
raw signal into multiple subseries with different frequency scales with relative smoothness,
avoiding the endpoint effect and spurious component problems encountered in the iterative
process, with the advantages increased accuracy of complex data decomposition and better
resistance to noise interference. Yu et al. addressed the problem of strong fault signal noise
and weak fault information in the fault diagnosis of hydraulic pumps. An improved EWT
and variance contribution ratio were proposed to dynamically fuse the vibration signals in
different directions, and the Hilbert transform was used to extract weak fault features from
the background noise and inherent impact [10]. However, these denoising methods rely
on expert experience; thus, it is necessary to develop adaptive feature extraction to realize
denoising by integrating feature extraction and classification into a single learning body.

With the development of artificial intelligence, deep learning as a complex machine
learning algorithm can extract sensitive features from the original signal by learning the
internal law and representation level of sample data. Multiple scholars have solved many
complex problems of feature extraction, data mining or pattern recognition through deep
learning techniques, such as convolutional neural networks (CNNs) [11,12], deep belief
networks (DBNSs) [13,14], recurrent neural networks (RNNs) [15,16], and autoencoders
(AEs) [17,18]. For example, Wen et al. proposed a new LeNet-5-based CNN fault diagnosis
method. By converting the signal into a two-dimensional image, the method could extract
features from the converted two-dimensional image, which was applied to the fault diag-
nosis of axial piston pumps, obtaining good diagnosis results [19]. Mallak et al. provided a
new combination of long short-term memory (LSTM) autoencoder architecture and deep
learning methods for the fault diagnosis of hydraulic components, showing that the LSTM
autoencoder can be effective in extracting features of fault signals [20]. Han et al. used
generative adversarial networks (GANs) to compensate for imbalances in the sample data,
and then used a stacked autoencoder (SAE) method to extract fault features of electrically
driven feed pump signals; the comparison of the results showed that the GAN-SAE feature
extraction strategy improved the robustness of the algorithm [21]. Liu et al. used a deep
residual network to diagnose emulsion pump faults in order to improve the accuracy of
emulsion pump fault diagnosis and to provide new ideas for intelligent fault diagnoses
of emulsion pumps [22]. Huang et al. emphasized the power of deep learning in the
application of feature engineering by using CNNs that did not rely on prior knowledge
for feature learning and using LSTM layers to capture the time delay information of fault
diagnoses of complex systems [23].

However, in strong and complex noise environments, the traditional deep learning
models always exhibit weak results. Therefore, more and more new deep learning methods
have emerged in recent years to address the interference of strong noise on the fault diag-
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nosis of mechanical equipment, which enables end-to-end fault diagnosis in engineering
applications. For example, Meng et al. proposed an enhanced denoising autoencoder
for the fault diagnosis of rolling bearings, achieving appreciable accuracy [24]. Fu et al.
proposed a fault diagnosis method combining a generative adversarial network (GAN)
and stacked denoising autoencoder (SDAE) applied in bearings and gears. When the actual
measurement data were limited, the data generated by GAN also achieved a diagnostic
accuracy of more than 90% after denoising by SDAE, which demonstrated the effectiveness
of SDAE for extracting fault information from signals [25]. SDAE is a deep learning net-
work for processing noise-containing data based on an autoencoder. It is an unsupervised
learning algorithm that adaptively extracts the main features in a signal as long as an
arbitrary noise-containing signal is imputed, and is widely used in fault diagnosis. In
general, SDAE needs the learned features to be as useful as possible and to be able to
counteract the contamination and absence of raw data to some extent. However, in dealing
with complex signals, especially in construction machinery, the features obtained are often
limited. In recent years, improved residual networks with joint attention mechanism and
soft thresholding have received increased attention. This provides new research solutions
to mechanical equipment fault diagnosis. Zhao et al. proposed a deep residual shrinkage
network (DRSN) to improve the feature learning capability of strong noisy vibration signals;
the effectiveness of the proposed method was verified through experiments on different
types of noise [26].

When a signal contains a lot of noise, it is difficult to accurately diagnose it by only
improving the anti-noise performance, because the fault information contained in a single
sensor is always limited. Thus, in addition to improving the noise immunity, it is also
necessary to enrich the fault information as much as possible in order to achieve accurate
fault diagnosis. Therefore, multi-path sensor information is necessary in strong noise work-
ing environments. Azamfar et al. implemented a novel two-dimensional convolutional
neural network structure to fuse data obtained from multiple current sensors and use them
directly for classification without manual feature extraction for the fault diagnosis of indus-
trial gearbox test stands under different health states and different operating speeds [27].
Tao et al. proposed a fault diagnosis method based on multiple vibration signals and deep
confidence networks (DBNSs) in rolling bearing fault diagnosis, which can adaptively fuse
multiple feature data to identify various bearing faults using the learning capabilities of
DBNs. The effectiveness of multi-vibration signals in fault diagnosis is demonstrated
through comparative experiments with individual sensors [28].

In the field of construction machinery, not only is the working environment very
execrable, but the working state of the system itself in a polluted medium is also relatively
complex. Therefore, it is difficult to extract the fault features of working components,
especially the weak characteristics of early faults. Moreover, when the feature information
is similar, it is difficult to identify correctly; thus, it is impossible to locate and identify faults
in working components in the construction machinery quickly and accurately. Therefore,
inspired by in-depth learning and multi-channel signals, this paper proposes a new adap-
tive feature extraction model to establish complex relationships between an original signal
with complex and strong noise and the fault mode. Through the parallel structure—the
improved deep residual shrinkage network and the superposition denoising convolu-
tion automatic encoder—the fault features can be extracted from different channels of
the vibration signal of the waterproof valve, and the feature vectors extracted from the
two channels are then combined into a single fusion feature vector, which is finally input
into the fault classification.

2. Methodology

The fault diagnosis method of waterproof valves in engineering mixing machinery
based on a new adaptive feature extraction model is shown in Figure 1. Firstly, the vibration
signals collected by the two acceleration sensors are preprocessed, and then input into the
parallel model: this is composed of improved DRSN and SDCAE. In the model, adaptive
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feature learning is used to extract the basic features from the vibration signals polluted
by strong noise. Then, the feature fusion strategy is used to fuse the two feature streams.
Finally, the fully connected (FC) layer implements the mapping operation. Cross entropy is
employed as the loss function to reflect the error between the two in the Softmax classifier,
which is used to classify the fused features.
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Figure 1. The fault diagnosis method based on a new adaptive feature extraction model.
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2.1. Deep Residual Shrinkage Network Model
2.1.1. Basic Overview

The main aim of deep residual networks is to preserve as much original input infor-
mation as possible during the training of deep convolutional neural networks, avoiding
the gradient disappearance and degradation problems caused by increasing depth in the
network. The core of the deep residual network lies in the residual building units (RBUs),
which mainly consist of convolutional layers, batch normalization (BN) layers, and ReLUs.

The purpose of the convolutional layer is to extract different features in the input
signal, which are called fault features in fault diagnosis, so that the parameters in the
network training can be reduced and the occurrence of overfitting can be avoided, thus
improving the accuracy of the network model. The convolution operation between the
input feature map and the convolution kernel can be expressed as:

where x; and y; are the ith and jth channels of the input and output feature maps, respec-
tively, k is the convolution kernel, b is the bias, and M; is the input feature vector.

The role of batch normalization (BN) is to normalize the input values with the aim of
reducing the variation in the distribution of data in the hidden layers of the neural network.
This has the advantage of helping to speed up the convergence of the neural network and
alleviating the gradient disappearance problem in training. The calculation formula is as
follows:

1 Npatcn ( )
= X 2
. Npatcn n=1 "
1 Npatcn
2 2
[— Xn — (3)
Npatcn n;l ( " V)
—~ Xn — U
X = —— 4
" VA @
Yn = Yxn + B ®)

where x, represents the input of the nth observation and y, represents the output of the
nth observation. Njj, represents the size of the mini batch. € is a constant value which is
close to zero. 7 is a scaling parameter, and f is a bias parameter.

Both 7 and B can be obtained through training.

The ReLU activation function is widely used because of its rapid convergence, the
absence of a saturation interval, and the fact that the gradient is fixed to 1 in the part greater
than 0, effectively solving the problem of disappearing gradients that exists in Sigmoid,
which is expressed by the formula:

x, x>0
y{O,x<0 ©)

where x represents the input feature and y represents the output feature.

Global average pooling (GAP) is an operation to average the feature maps, which
can greatly reduce the parameters during neural network training and speed up the
computation of neural networks.

2.1.2. Architecture of the Residual Shrinkage Building Unit

Deep residual shrinkage networks (DRSNs) accurately classify noise-polluted samples
by introducing attention mechanisms and soft thresholding in ResNet. “Shrinkage” is the
core contribution of deep residual shrinkage networks, referring to “soft thresholding”,
which is a key step in many signal denoising algorithms. The threshold required for soft
thresholding in deep residual shrinkage networks is essentially set with the help of an
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attention mechanism. The process of soft thresholding is shown in Figure 2a. The functions
of the soft thresholding and its derivative form are expressed as follows:

xX—T, X>T
y=1{ 0, —T<x<T (7)
xX+T, x < —T
dy 1, X>T
i 0, —-T1t<x<r7 (8)
1, x < —T

where T is the threshold, and is a positive number. x and y are the input feature and output
feature, respectively.

: y : - : :
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Figure 2. Soft thresholding and its derivative: (a) soft thresholding; (b) derivative of the soft threshold.

It can be seen from Equation (8) that the derivative of the soft threshold is either
1 or 0. The plotted image is shown in Figure 2b. This property is the same as the
ReLU activation function. Therefore, soft thresholding can also reduce the risk of
gradient disappearance and gradient explosion for deep learning algorithms. The soft
thresholding function operates when both the threshold value is positive; the threshold
value cannot be greater than the maximum value of the input signal.

The residual shrinkage building units (RSBUs) are the evolution of RBUs in the residual
network, which is the most important module of the DRSN, as shown in Figure 3. Here,
the number of feature map channels is C, the width is W, and the height is 1, and there
is a red sub-network on the residual module in Figure 3. This sub-network is called the
threshold module, and its role is to set the threshold adaptively by learning the features of
the samples.

Multiple RSBUs are stacked, and the soft threshold is used as a systolic function to
learn discriminative features by multiple nonlinear transformations to eliminate noise-
related information.
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Figure 3. Residual shrinkage building unit.

2.2. Denoising Convolutional Autoencoder Model

The autoencoder is an unsupervised learning neural network composed of a three-
layer neural network, whose learning process includes an encoding process and decoding
process, and the basic structure is shown in Figure 4.

A denoising autoencoder (DAE) is an autoencoder that takes the original noise-
containing data samples as inputs and trains them to output data samples with or without
trace noise. This is not simply replicating the input of the original data, but can be un-
derstood as the process of removing noise. The hidden layer is also called the feature
extraction layer. The input signal is to be X = [x1, X2, - - - , x,,] and the coding function is fy.
The formula for converting from the input layer to the hidden layer is:

Y = fo(X) = s(WX +b) ©)

where fy denotes the activation function of the encoder, W = [wy, w», - - - , wy] is the encoder
weights matrix, and b = [by, by, - - - , by] is the offset coefficient.

After obtaining the hidden layer, the output layer is derived through a decoding
process. In this process, the decode function is set to gg and the output signal to
be Z = [z1,22,- -+ ,zn]. The output vector Z is reconstructed by Y according to the
following equation.

Z=gp(Y) =s(WY~+V) (10)
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where gy is the activation function of the decoder, W = [w},w}, - - ,w},] is the encoder
weight matrix from the hidden layer to the output layer, and b' = [b], b}, - - ,b},] is the
bias vectors for each layer.

Figure 4. The network structure of autoencoder.

Compared with the conventional DAE, denoising convolutional autoencoder
(DCAE) has the same basic structure of encoder and decoder, which is a fully connected
DAE layer replaced by a convolutional layer. CNNs with a deep structure are easy to
train; therefore, DCAE, as a type of CNN, can utilize the deep structure to improve the
reconstruction ability. As shown in Figure 5, DCAEs consist of several convolutional
and transposed convolutional layers, where the convolutional layer acts as an encoder
and the transposed convolutional layer acts as a decoder. SDCAEs consist of multiple
denoised convolutional autoencoders (DCAEs) by superposition. SDCAEs are capable
of extensive and powerful fault feature extraction from a large amount of noise-laden
vibration data in the original input.

2.3. Fusion Strategy

Feature fusion is a strategy between data fusion and decision fusion. It avoids a
large amount of computation while avoiding a large amount of information detail loss.
After denoising by DRSN and SDCAE, the feature vectors vlT = {v11,v12,- -+ , o1} and
szT = {v21,v2, - - , vy } are obtained, respectively. Fusing two multichannel feature vectors,
the fusion strategy is defined as follows:

F(UlT, UzT) = {011,012, -+, V1, V21,022, -+, Vop } (11)
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where v; and v, are the feature vectors of DRSN and SDCAE after feature extraction,

respectively.
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Figure 5. The structure of a DCAE.

This feature fusion strategy merges two feature vectors into one feature vector, and
the resulting feature vector contains all the features contained in the two vibration signals.
The feature extraction algorithms are different for the two channels, which minimizes the
impact of redundant features on fault diagnosis. The fused feature vectors are transported
to the FC layer and then passed through the final classifier to produce the results.

2.4. Fault Diagnosis Process

1. In this study, the proposed improved DRSN-SDCAE model was divided into two
parallel paths, as shown in Figure 6. In simple terms, the signals are delivered to
the DRSN sub-path and the SDCAE sub-path, and feature learning is performed
adaptively; then, the fault feature vectors of the two sub-paths are obtained through a
feature fusion strategy to accurately identify the fault category of the waterproof valve.
The specific steps are as follows. The original vibration signals in the experiment are
collected by the vibration signal acquisition device and vibration signal sensor, and
randomly divided into several samples. The training set and testing set are used to
train the improved DRSN-SDCAE model and verify the correctness of the improved
DRSN-SDCAE model, respectively;

2. The training parameters are set, including the number of iterations, the learning rate,
the number of training batches, the L2 regularization parameters, and the initialization
of the network parameters, including the weights and offsets;

3. A supervised learning approach is used to train layer by layer and the network
parameters are fine-tuned using the backpropagation algorithm;

4. When the number of iterations satisfies the set number N, the training of the improved
DRSN-SDCAE model is completed, and it is then transferred to the next step;

5. The test sample set is fed into the improved DRSN-SDCAE model to obtain
diagnostic results.



Energies 2022, 15, 2796

10 0of 18

Raw signal acquisition

v

Divide the sample set randomly

Testing module

]
:
1
: Testing set
1
1

Training sct

A

model

training parameters configuration

! v

L 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
Construct of improved DRSN-SDCAE network structure and : Trained improved DRSN-SDCAE "
|}
. |
! 1
! 1
! 1
! 1
! 1
! 1
! 1

Initialize model weights and biases Fault classification

v

A 4

Epoch:i=1,i=from1toN

v

Forward—propagation

v

Calculate the loss function

y

Fine—tune weights and biases with
backpropagation

Training module

Figure 6. Flowchart framework of the improved DRSN-SDCAE fault diagnosis model.

3. Experimental Validation
3.1. Concept of the Waterproof Valve

The waterproof valve is a valve group composed of a safety valve, pressure-reducing
valve and check valve. Waterproof valves are installed on the master cylinder of pump
trucks, of which main function is to prevent the water in the water tank from adhering to
the piston rod of the master cylinder and entering the cylinder barrel of the master cylinder,
resulting in oil pollution and system emulsification. Figure 7 shows the internal oil circuit
diagram of the waterproof valve. It can be seen that when the pressure in the sealing
chamber of the master cylinder increases, the oil from the master cylinder will flow into the
hydraulic waterproof valve through port A until it reaches the safety pressure set by the
safety valve, and the oil will flow out of the safety port of the safety valve. At the project
site, the main cylinder fluid contains pollutant particles, which will cause wearing of the
safety valve to varying degrees. Under this working condition for a long time, the valve
core will be stuck, which will seriously affect the normal operation of the hydraulic system.
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Figure 7. Waterproof valve internal oil circuit diagram.

During the working process of mixing machinery, mortar, concrete and other building
particles will inevitably pollute the working medium. Working in this polluted medium,
different degrees of scratches or irregular wear can easily occur between the valve core and
the valve sleeve, at the acute angle of the shoulder or at the valve port of the waterproof
valve, resulting in different degrees of internal leakage of the waterproof valve. Moreover,
because the waterproof valve contains the conical valve structure, the waterproof valve
is prone to be stuck and cannot work. In addition, due to wear, a cavity which easily
resonates is formed in the front cavity of the conical valve, which affects the safe operation
of the whole hydraulic system. In this experiment, the wear degree of the cone valve in the
waterproof valve was defined as having two levels, namely, slight wear and serious wear.
When the given pressure was 10 bar, the internal leakage under slight wear was 2.5 L/min;
for severe wear, the leakage was 3.8 L/min. The locking degree of the spring inside the
valve core was also defined as having two levels, i.e., slight locking and severe locking.
The standard for defining slight locking was that at 120 bar, the given pressure reached the
safety pressure of normal safety valve, and the safety flow for slight locking was 8.5 L/min;
the pressure relief flow of severe locking was 6.3 L/min. The health valve was tested under
the same conditions, and the pressure relief flow was 9.7 L/min. The fault definition of the
waterproof valve is detailed in Table 1.

Table 1. Fault description of the waterproof valve.

L. Defined . . . . Experimental
Label Fault Mode Flow Description Conditions Sample Points  Training Set Testing Set Conditions
0 Slight wear Leakage rate is 2048 800 200 The max
2.5 L/min A port pressure p Zmax}[muglp gesszl}fe
Leakage rate is is 10 b of A portis ar, the
1 Severe wear 33 I% /min 15 10 bar 2048 800 200 pressure of relief valve
is set to 100 bar, the
2 Slightlocking ~ Overflow rate of 2048 800 200 time of each
8.5 L/min A port pressure experiment is 10 min,
3 Severe locking Overflow rate of is 121 bar 2048 800 200 and the acquisition
6.3 L/min frequency of sensor is
4 Health Overflow rate of 2048 800 200 6000 Hz.

9.7 L/min
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3.2. Experiment Description

As shown in Figure 8, the waterproof valve fault test bench mainly included the tested
valve part, shown in Figure 8a, and the vibration signal acquisition part shown in Figure 8b,
and the power source part, which was provided by the hydraulic pump station. The
waterproof valve was fixed on the valve test bench to eliminate the influence of pressure
impacts of the pump or the vibration of the system itself. Four acceleration sensors (marked
as 1,2, 3 and 4 in the figure) were installed near port A, port 2, port K, and the back of the
safety valve to collect vibration signals. The hydraulic pump set a pulse pressure to deliver
to port A; its pulse pressure setting curve is shown in Figure 9. It can be seen from the curve
that the pulse pressure was set as a cycle for 6 s and decreased after reaching the maximum
pressure of 140 bar to simulate the on—off-overflow process of the overflow valve. The
sampling frequency of each experiment was 6 kHz, and the duration was 10 min.

@ (b)

Figure 8. Waterproof valve failure test bench: (a) tested valve part; (b) vibration signal acquisition.
160
140 140

140

120

100 90 90

P/bar

80

60 50 50

40

20

t/s

Figure 9. Pulse pressure curve for hydraulic pump settings.
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3.3. Data Description

Figure 10 shows the vibration data collected by one of the acceleration sensors on the
waterproof valve. The sliding time window method was used to obtain multiple signal
samples (each sample contained 2048 data points). Table 1 shows the sample distribution
of the fault diagnosis experimental dataset: 80% of the samples (800 training samples)
were used for classifier training, and 20% of the samples (200 test samples) were used for
classifier testing.

Acceleration(m/s2)

-5 1 1 1 1
0 4 6 8 10 12
/s
Figure 10. Vibration data collected by one of the acceleration sensors.
3.4. Parameter Setting
The hyperparameters had a significant impact on the performance of the proposed
model, as shown in Table 2. In this study, the relevant hyperparameters chosen for the
DRSN stage were based on popular suggestions, including the number of layers, the
number of convolutional kernels, and the size of convolutional kernels. After pre-processing
of the first part of the original signal, the size of the input to the DRSN tributary was
1 x 2048, and the output size was 4 x 1024 after one convolutional layer processing. Next,
denoising and feature extraction were performed in several RSBUs: the kernel size, kernel
number and stride in each RSBU were slightly different. The purpose was to extract features
that are more suitable for the network and more different from the next SDCAE tributaries.
Table 2. Parameter settings for each layer of the adaptive feature extraction model.
Number of The Name of the Layer Kernel Size Kernel Number Stride Output Size
Components
DRSN phase
1 Input 1 1 x 2048
1 Conv 3 4 2 4 x 1024
1 RSBU 3 4 2 4 x 512
3 RSBU 3 4 1 4 x 512
1 RSBU 3 8 2 8 x 256
3 RSBU 3 8 1 8 x 256
1 RSBU 3 16 2 16 x 128
3 RSBU 3 16 1 16 x 128
1 GAP 16
SDCAE phase
1 Input 2 1 x 2048
3 Conv 2 16/32/64 2 64 x 256
3 Trans_Conv 2 32/16/1 2 1 x 2048
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Table 2. Cont.
Number of . . .
Components The Name of the Layer Kernel Size Kernel Number Stride Output Size
p

3 Conv 2 16/32/64 2 64 x 256
3 Trans_Conv 2 32/16/1 2 1 x 2048
3 Conv 2 16/32/64 2 64 x 256
3 Trans_Conv 2 32/16/1 2 1 x 2048
1 FC 16

Fusion and

classification phase

1 Fusion layer 32
1 FC layer 5
1 Dropout layer 5

In the SDCAE stage, because the vibration signal was a one-dimensional time series,
the SDCAE used a denoising self-encoder with a one-dimensional convolution layer to
process the input noise. Therefore, the model could take the original signal directly as an
input without any additional processing. A single DCAE includes three convolutional
layers as an encoder and three transposed convolutional layers as a decoder. The size of
the same input signal is 1 x 2048.

In the fusion layer, the arrays of eigenvalues of the two streams are stitched together.
During the training process, we defined some optimization-related hyperparameters, used
the Adam optimizer, and set the learning rate of 100 epochs to 0.001. The L2 regularization
parameter was set to 0.0001, the minibatch size is set to 128, and the dropout rate was set to
0.5. Finally, the FC output layer had 5 neurons, equal to the number of trained categories
(i.e., 1 healthy state and 4 faulty states).

4. Results and Discussion
4.1. Confusion Matrix

A confusion matrix is an error matrix used to evaluate the performance of supervised
learning algorithms. In supervised learning, the confusion matrix is a square matrix and
the coordinates of the square matrix are the predicted labels and the true labels, respectively.
The predicted values are compared with the true values under the same characteristics,
and if both are valid, they are placed in the corresponding matrix positions; if not, they are
placed in the mismatched matrix positions. Figure 11 shows the confusion matrix of the
proposed model compared with other models. Figure 11a shows the confusion matrix of the
stacked autoencoder (SAE) fault diagnosis model, which is an unsupervised algorithm that
automatically learns features from unlabeled data; Figure 11b is the confusion matrix of the
stacked denoising convolutional autoencoder (SDCAE) fault diagnosis model, which is a
variant of the SAE; Figure 11c is the confusion matrix of the empirical mode decomposition
convolutional neural network (EMDCNN) conventional fault diagnosis model without
data fusion; Figure 11d shows the confusion matrix of the EMDCNN-EMDCNN fault
diagnosis model using data fusion, and the fault diagnosis model representing the two-
way signal brings two different acceleration sensors to the convolutional neural networks
after EMD processing, respectively; Figure 11e shows the confusion matrix of the model
proposed in this paper. The comparison between (a) and (b) shows that the adaptive
denoising had a lower error rate than the default denoising. By comparing (b) with (c),
the performance of adaptive denoising algorithm was established to be better than that
of the artificial denoising algorithm. The comparison between (c) and (d) shows that the
multi-path data fusion algorithm was better than the single path signal algorithm in fault
diagnosis. In addition, there are always some test samples that will produce large deviation
misdiagnoses, as depicted in Figure 11c, which shows that the traditional manual feature
extraction is still very random for fault diagnosis. In the proposed model, only individual
samples are misdiagnosed, and the overall accuracy is high.
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Figure 11. Confusion matrix for different methods: (a) SAE; (b) SDCAE; (c) EMDCNN; (d) EMDCNN-
EMDCNN; (e) the proposed method.

Among the five methods, the method proposed in this paper had the lowest misdiag-
nosis rate and the highest overall accuracy rate. In addition, the stability of the diagnosis
method was also very high, mainly due to: (1) The samples collected by two different
acceleration sensors were imputed into different model branches for processing. Due to
the different denoising model principles in each branch, the generated characteristic signal
could avoid interference from redundant components; (2) Additional information obtained
from multiple paths was helpful to improve the robustness of the proposed model.

4.2. Verification with Different Signal-to-Noise Ratios

Hydraulic systems work in complex environments with noise interference in practical
engineering. In order to evaluate the noise immunity of the proposed fault diagnosis model,
we artificially added Gaussian white noise to the measured vibration signal to further
evaluate its performance under different signal-to-noise ratios (SNRs). The corresponding
SNR is defined as:

P ;
SNR = 10 logw( measured szgnul) (12)

Pnoise

In order to conduct a fair comparison, the neural network models used for comparison
were kept at as similar scale as possible, and were guaranteed to be the same as the
optimizer of the proposed model; due to space limitations, we will not elaborate on the
specific parameter settings in this paper. The compared networks were SAE, SDCAE,
EMDCNN, and EMDCNN-EMDCNN.

In the analysis result of fault diagnosis, if only one experiment of the data sample
is used as the final result, the influence of random factors is not sufficient to verify the
performance of the fault diagnosis model. In order to accurately measure the model’s
ability to make correct decisions, we divided different testing samples 10 times, recorded
the diagnostic accuracy of each time, and took the average accuracy of 10 tests as the final
diagnostic result. Considering the interference of noise level on the experiment in actual
engineering practice, this experiment applied noise disturbance to samples in the testing
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set, and the testing sample dataset was divided randomly. Moreover, we used the standard
deviation to describe the stability of the model. The smaller the standard deviation, the
more stable the model. The average accuracy and standard deviation were calculated as
shown in the following equations:

A = — 1
ccuracy T+ (13)
1N
Std = N ,:21 (acc; — accang) (14)

where T denotes the number of successfully diagnosed samples and F denotes the number
of unsuccessfully diagnosed samples. The letter N denotes the number of diagnoses,
which indicates the ith diagnostic accuracy, whereas accayg denotes the average diagnostic
accuracy, here denoting the average diagnostic accuracy of 10 repetitions.

In this study, the fault diagnosis experiments of the proposed method and other
methods were conducted under noise environments with different signal-to-noise ratios,
and the noise resistance was evaluated by the average accuracy and standard deviation, as
shown in Figure 12.
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> 40
<
30
20
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-2 0 2 4 6 8 10
SNR(dB)
uSAE 63.21 63.53 64.35 66.68 67.01 66.96 67
u SDCAE 85.6 88.63 88.78 89.92 89.96 90 90.63
EMDCNN 80.9 83.2 87.56 84.32 84.5 85.06 86.23
EMDCNN-EMDCNN 93.62 92.86 94.68 90.13 94.53 95.56 93.24
® The proposed method 96.3 97.5 98 97.5 97.25 97.6 98.2

mSAE mSDCAE EMDCNN EMDCNN-EMDCNN = The proposed method

Figure 12. Average accuracy (%) of different methods for waterproof valve fault diagnosis at different
signal-to-noise ratios.

As can be seen in Figure 12, the average accuracy of the methods proposed in this
paper was above 96% at different signal-to-noise ratios. Notably, the diagnostic accuracy of
manually denoised multi-sensor models, such as EMDCNN-EMDCNN, is generally higher
than that of the single sensor. This is because the fault information obtained by multiple
sensors is more abundant. Even so, in Table 3, the stability of the artificial denoising model
is consistently worse than that of the adaptive denoising, regardless of a single sensor or
multiple sensors, which indicates that there is a randomness in the artificial denoising
method, and the adaptive denoising method is superior. In addition, we can see that the
model proposed in this paper was more stable under different signal-to-noise ratios and
adapted to the background of strong noise in engineering practice.
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Table 3. Fault diagnosis standard deviation of different methods (%).

Method SNR (dB)
-2 0 2 4 6 8 10
SAE 2.76 1.87 1.89 2.89 2.02 2.048 2.62
SDCAE 2.13 2.00 2.06 2.11 2.25 222 2.12
EMDCNN 2.89 3.18 2.95 2.84 2.94 3.01 2.95
EMDCNN-EMDCNN 222 2.12 2.02 2.35 2.34 224 2.25
The proposed method 0.32 0.43 0.39 0.33 0.51 0.28 0.57

5. Conclusions

A fault diagnosis method has been proposed, which was based on a new adaptive
feature extraction model (the multi-path signals to improved DRSN-SDCAE), especially for
the fault detection of waterproof valves as a key component in construction mixing machin-
ery. Theoretical and experimental results show that compared with other intelligent fault
diagnosis methods, the fault diagnosis method proposed in this paper can independently
and effectively extract fault features from strong and complex noise to obtain accurate
fault diagnosis results without relying on signal processing technology and diagnosis
experience. When the signal-to-noise ratio (SNR) changed from —2 to 8 dB, the standard
deviations of the proposed method were only 0.32%, 0.43%, 0.39%, 0.33%, 0.51%, and 0.28%,
which are much smaller than those of other algorithms. Moreover, especially when the
signal-to-noise ratio was 10 dB, the proposed diagnosis method could be used for adaptive
feature extraction, and the average diagnosis accuracy of the model exceeded 98%.

Intelligent control in the field of mechanical engineering lags behind the development
of other industrial fields. The main bottleneck lies in the intelligent fault diagnosis of
hydraulic components in hydraulic systems. Therefore, expanding the fault diagnosis
method to each key component of the hydraulic system is the development direction of our
work in the future.

Author Contributions: Writing—original draft preparation, R.Z.; writing—review and editing, J.Y.,
H.T., ].X. and Y.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 52175060)
and the Zhejiang Provincial Natural Science Foundation of China (No. LY20E050028).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data is not publicly available due to privacy issues.

Acknowledgments: The authors are grateful to support from the National Natural Science Foun-
dation of China (No. 52175060) and the Zhejiang Provincial Natural Science Foundation of China
(No. LY20E050028).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, T; Liu, S.; Wei, Y.; Zhang, H. A novel feature adaptive extraction method based on deep learning for bearing fault
diagnosis. Measurement 2021, 185, 110030. [CrossRef]

2. Lu, C;Wang, S.; Zhang, C. Fault diagnosis of hydraulic piston pumps based on a two-step EMD method and fuzzy C-means
clustering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 230, 2913-2928. [CrossRef]

3. Tang, H.B; Wu, Y.X,; Hua, G.J.; Ma, C.X. Fault diagnosis of pump using EMD and envelope spectrum analysis. J. Vib. Shock 2012,
31, 44-48.

4. Yang, T, Yu, X;; Li, G.; Dou, J.; Duan, B. An early fault diagnosis method based on the optimization of a variational modal
de-composition and convolutional neural network for aeronautical hydraulic pipe clamps. Meas. Sci. Technol. 2020, 31, 055007.

5. Tang, X.; Hu, B.; Wen, H. Fault Diagnosis of Hydraulic Generator Bearing by VMD-Based Feature Extraction and Classification.
Iran. ]. Sci. Technol. Trans. Electr. Eng. 2021, 45, 1227-1237. [CrossRef]

6. Wang, Y,; Li, Q,; Zhou, F; Zhou, Y.; Mu, X. A New Method with Hilbert Transform and Slip-SVD-Based Noise-Suppression

Algorithm for Noisy Power Quality Monitoring. IEEE Trans. Instrum. Meas. 2018, 68, 987-1001. [CrossRef]


http://doi.org/10.1016/j.measurement.2021.110030
http://doi.org/10.1177/0954406215602285
http://doi.org/10.1007/s40998-021-00421-0
http://doi.org/10.1109/TIM.2018.2864446

Energies 2022, 15, 2796 18 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

Konar, P; Chattopadhyay, P. Multi-class fault diagnosis of induction motor using Hilbert and Wavelet Transform. Appl. Soft
Comput. 2015, 30, 341-352. [CrossRef]

Du, W,; Wang, Z.; Gong, X.; Wang, L.; Luo, G. Optimum IMFs Selection Based Envelope Analysis of Bearing Fault Diagnosis in
Plunger Pump. Shock Vib. 2016, 2016, 1248626. [CrossRef]

Zhu, Y.; Wang, Q.; Wang, Y.; Yuan, S.; Tang, S.; Zheng, Z. A novel extraction method for useful component of vibration signal
combining variational mode decomposition and relative entropy. AIP Adv. 2021, 11, 035129. [CrossRef]

Yu, H; Li, H.; Li, Y. Vibration signal fusion using improved empirical wavelet transform and variance contribution rate for weak
fault detection of hydraulic pumps. ISA Trans. 2020, 107, 385-401. [CrossRef]

Tang, S.; Zhu, Y.; Yuan, S. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault
diagnosis of hydraulic piston pump. Adv. Eng. Inform. 2021, 50, 101406. [CrossRef]

Tang, S.; Zhu, Y.; Yuan, S.; Li, G. Intelligent Diagnosis towards Hydraulic Axial Piston Pump Using a Novel Integrated CNN
Model. Sensors 2020, 20, 7152. [CrossRef]

Huang, J.; Wang, X.; Wang, D.; Wang, Z.; Hua, X. Analysis of Weak Fault in Hydraulic System Based on Multi-scale Permutation
Entropy of Fault-Sensitive Intrinsic Mode Function and Deep Belief Network. Entropy 2019, 21, 425. [CrossRef] [PubMed]
Zhang, P.; Chen, X. Internal Leakage Diagnosis of a Hydraulic Cylinder Based on Optimization DBN Using the CEEMDAN
Technique. Shock Vib. 2021, 2021, 8856835. [CrossRef]

Ji, X;; Ren, Y,; Tang, H.; Shi, C.; Xiang, J. An intelligent fault diagnosis approach based on Dempster-Shafer theory for hydraulic
valves. Measurement 2020, 165, 108129. [CrossRef]

Jia, C,; Kang, K.; Gao, W,; Yang, D.; Chen, L.; Ai, C. Fault Prediction of Electro-hydraulic Servo Valve Based on CNN+ LSTM
Neural Network. Chin. Hydraul. Pneum. 2020, 12, 173.

Gareev, A.; Protsenko, V.; Stadnik, D.; Greshniakov, P; Yuzifovich, Y.; Minaev, E.; Nikonorov, A. Improved Fault Di-agnosis in
Hydraulic Systems with Gated Convolutional Autoencoder and Partially Simulated Data. Sensors 2021, 21, 4410. [CrossRef] [PubMed]
Wang, C.; Zhang, Y.; Ma, |.; Tao, L.; Zhang, H.; Ding, Y. Modified Stacked Convolutional Auto-Encoder for Hydraulic Pump
Fault Diagnosis with Unbalanced Data. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management,
Nanjing, China, 15-17 October 2021; pp. 1-7.

Wen, L,; Li, X,; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans.
Ind. Electron. 2017, 65, 5990-5998. [CrossRef]

Mallak, A.; Fathi, M. Sensor and component fault detection and diagnosis for hydraulic machinery integrating LSTM auto-encoder
detector and diagnostic classifiers. Sensors 2021, 21, 433. [CrossRef]

Han, H.; Hao, L.; Cheng, D.; Xu, H. GAN-SAE based fault diagnosis method for electrically driven feed pumps. PLoS ONE 2020,
15, €0239070. [CrossRef]

Liu, R. Fault Diagnosis of Emulsion Pump Based on Depth Residual Network. Coal Mine Mach. 2021, 42, 177-180.

Huang, T.; Zhang, Q.; Tang, X.; Zhao, S.; Lu, X. A novel fault diagnosis method based on CNN and LSTM and its application in
fault diagnosis for complex systems. Artif. Intell. Rev. 2021, 55, 1289-1315. [CrossRef]

Meng, Z.; Zhan, X,; Li, J; Pan, Z. An enhancement denoising autoencoder for rolling bearing fault diagnosis. Measurement 2018,
130, 448-454. [CrossRef]

Fu, Q.; Wang, H. A Novel Deep Learning System with Data Augmentation for Machine Fault Diagnosis from Vibration Signals.
Appl. Sci. 2020, 10, 5765. [CrossRef]

Zhao, M.; Zhong, S.; Fu, X.; Tang, B.; Pecht, M. Deep Residual Shrinkage Networks for Fault Diagnosis. IEEE Trans. Ind. Inform.
2019, 16, 4681-4690. [CrossRef]

Azamfar, M,; Singh, J.; Bravo-Imaz, L; Lee, J. Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural
network and motor current signature analysis. Mech. Syst. Signal Process. 2020, 144, 106861. [CrossRef]

Tao, J.; Liu, Y.; Yang, D. Bearing Fault Diagnosis Based on Deep Belief Network and Multisensor Information Fusion. Shock Vib.
2016, 2016, 9306205. [CrossRef]


http://doi.org/10.1016/j.asoc.2014.11.062
http://doi.org/10.1155/2016/1248626
http://doi.org/10.1063/5.0031943
http://doi.org/10.1016/j.isatra.2020.07.025
http://doi.org/10.1016/j.aei.2021.101406
http://doi.org/10.3390/s20247152
http://doi.org/10.3390/e21040425
http://www.ncbi.nlm.nih.gov/pubmed/33267139
http://doi.org/10.1155/2021/8856835
http://doi.org/10.1016/j.measurement.2020.108129
http://doi.org/10.3390/s21134410
http://www.ncbi.nlm.nih.gov/pubmed/34199115
http://doi.org/10.1109/TIE.2017.2774777
http://doi.org/10.3390/s21020433
http://doi.org/10.1371/journal.pone.0239070
http://doi.org/10.1007/s10462-021-09993-z
http://doi.org/10.1016/j.measurement.2018.08.010
http://doi.org/10.3390/app10175765
http://doi.org/10.1109/TII.2019.2943898
http://doi.org/10.1016/j.ymssp.2020.106861
http://doi.org/10.1155/2016/9306205

	Introduction 
	Methodology 
	Deep Residual Shrinkage Network Model 
	Basic Overview 
	Architecture of the Residual Shrinkage Building Unit 

	Denoising Convolutional Autoencoder Model 
	Fusion Strategy 
	Fault Diagnosis Process 

	Experimental Validation 
	Concept of the Waterproof Valve 
	Experiment Description 
	Data Description 
	Parameter Setting 

	Results and Discussion 
	Confusion Matrix 
	Verification with Different Signal-to-Noise Ratios 

	Conclusions 
	References

