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Abstract: In this paper, a methodology for short-term forecasting of power generated by a photo-
voltaic module is reported. The method incorporates a nonlinear autoregressive with exogenous
inputs (NARX) fed by the solar radiation and temperature times series, as well as an estimation of
power time series obtained by implementing an ideal single diode model. This synthetic time series
was validated against an actual photovoltaic module. The NARX model has been implemented in
conjunction with the corrective vector multiplier (CVM) technique, which uses solar radiation under
clear sky conditions to adjust the forecasting results. In addition, collinearity and the Granger causal-
ity tests were used to choose the input variables. The forecasting horizon was 24-h-ahead. The hybrid
NARX-CVM model was compared to a nonlinear autoregressive neural network and persistence
model using the typic forecasting error measures such as the mean bias error, mean squared error,
root mean squared error and forecast skill. The results showed that the forecasting skills of the hybrid
model are about 34% against the NAR model and about 42% against the Persistence model. The
model was validated by blind forecasting. The results demonstrated evidence of the quality of the
conformed forecasting model and the convenience of its implementation and building.

Keywords: solar energy; electrical power forecasting; artificial intelligence

1. Introduction

Research concerning solar radiation (SR) forecasting with the finality of estimating
the electrical energy produced by photovoltaic systems has been increased in the last few
years. SR estimation is of great importance because this parameter is used in the sizing of
the photovoltaic and thermal systems; moreover, it has meteorological variables [1,2].

Even though it is difficult to classify them, they can generally be divided into three
groups: in the first group, those who use only the clarity index [3–7]. In the second, the
hybrid models, such as hybrid data grouping models [8], models that combine different
types of artificial neural networks (ANN) [9,10], and models that use the clarity index [11].
Finally, in the third group, only ANN techniques are used.

There are models to predict the solar radiation or some of its components that only
use historical data of a single variable; these models generally present a good performance;
however, in some cases, there are used because there are no more meteorological vari-
ables. The most useful techniques for univariate data are statistical techniques [2,5] and
neural networks.

Many of these works focused mainly on the architecture of the neural network and
varying different parameters, such as the lags number, training functions, activation func-
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tions, et cetera [2,3,11–14]. Among the most used models are the Feed Forward Neural
Networks and Elman Recurrent [15].

For example, Tingting Zhu et al. [16] used a Siamese convolutional neural network
to carry out the forecasting of the direct normal irradiance in a time horizon of 10 min;
this is an interesting study due to the implemented neural network type since the more
conventional used is deep learning. Other ANNs are also used in this forecasting process
as genetic algorithms [17]. Besides the univariate models, there are approaches that take
advantage of the characteristics of two or more techniques to develop hybrid models [8].
Abdel-Rahman Hedar et al. [18] proposed a hybrid model used to forecast solar radiation,
using Weather Research Forecasting (WRF) and machine learning. They established a
classification of the solar radiation, and then several models of classification were used
to determine the corresponding class. The proposed methodology is evaluated using a
real environment temporal environment data set collected from different regions of Saudi
Arabia; nevertheless, the causality between the variables was not analyzed. Other models
used different ANN techniques [9,10], diverse meteorological variables and additional
variables such as extraterrestrial radiation [19]. It is also important to mention the models
that only used the clear index to make predictions.

According to the above mentioned, many models use different types of ANN. In most
works, the vectors that make up the input layer of the network are chosen arbitrarily; the
same happens with the inputs that feed the network that represent the lags of the used
variables (in the case of the NARX model, for example). Generally, the authors solve the
problem of the input vector conformation by testing different combinations of variables
and choosing the architecture that provides the best results, focusing on the development
of a methodology for ANN training [20,21]; failing that, they use other types of methods
to find the optimal inputs such as the k-nearest neighbors model [5,8,10], or other data
grouping techniques.

Different combinations and types of input variables have been proposed for training
the ANN for modeling, estimating, or forecasting the behavior of the SR. Kaplanis et al. [14],
Yadav et al. [22] and Kaushika et al. [23] implemented a combination of meteorological and
geographic data to improve the SR prediction. In contrast, Hocaoglu and Serttas [20] and
Wang et al. [21] worked only with meteorological data. NARX models have been imple-
mented successfully to forecast wind speed by Cadenas et al. [24]. These models have also
been implemented successfully to predict SR by Ahmad et al. [25] and Alzahrani et al. [26].

This research reports a methodology for predicting short-term energy produced by a
photovoltaic generating model (PGM) using a hybrid model. The methodology incorporates
a NARX model fed with solar radiation and temperature time series, as well as a synthetic
time series of the power of a photovoltaic module obtained from an idealized model
of a single diode. Collinearity and the Engel–Granger tests were used to choose the
significant variables of the input vector of the NARX model. The autocorrelation and
partial autocorrelation functions were also implemented to estimate the input vector lags.
In addition to the NARX model, the corrective vector multiplier (CVM) technique obtained
from a solar model was implemented. The turbidity factor of the solar energy was used to
adjust the forecasting results.

This work was divided into six sections: Section 1 exhibits a general view of the models
used to forecast solar radiation as a first approach to predicting solar systems’ output power.
Section 2 presents the fundamental aspects of the models, techniques and tests used for
solar radiation prediction. Section 3 describes the proposed methodology used to build the
forecasting hybrid model. Section 4 shows the typical performance metrics employed to
evaluate the forecasting models. In Section 5, an analysis of the forecasting results, as well
as a discussion of the feasibility of the methodology used in the hybrid model construction,
are included. Finally, the conclusions of the research work are presented in Section 6.
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2. Mathematical Models
2.1. Collinearity Test

The collinear variables are those whose data vectors that represent them and are in the
same line. In a general way, it is if the vectors that represent n variables are in the same
subspace, that is, when one vector is a linear combination of the other vectors [27]. Exact
collinearity is difficult to find in a real situation, obviously; the fact that exact collinearity is
difficult to find does not mean that there are no collinearity troubles [28].

To find trouble collinearity, an analysis is required of the main components of the
dependent variables to figure out if there is such a problem. The linear combination of the
original variables is defined by the main components of a set of variables to other variables.

2.2. Augmented Dickey–Fuller Test

It is possible to apply the causality test only if the time series is stationary. This work
implemented the augmented Dickey–Fuller (ADF) test. This test is based on the null
hypothesis, which establishes that the analyzed time series is not stationary. Therefore, the
time series is stationary if the null hypothesis is rejected [29–31]. One way to delete non-
stationarity is through the differentiation method. This method is defined by the change
between each of the observations in the original time series, as in the following equation:

Y′t = Yt −Yt−1 (1)

where Yt is the corresponding value in the time t and Yt−1 is the corresponding value in
the time t−1.

2.3. Engle–Granger Causality Test

The Engle–Granger causality test has been used to know the relationship between
diverse meteorological variables, as presented in [32]. This technique examines whether
the lagged value of one variable helps to forecast other variables in a model, such as the
Engle–Granger test [29]:

• H0 : X does not Granger cause Y;
• H1 : X Granger causes Y.

Rule of decision: of p–value is:

• <0.01 X Granger causes Y at the 1%;
• >0.01 X does not Granger cause Y at the 1%.

The equations for two variables are as follows:

Yt =
n

∑
i=1

αiXt−i +
n

∑
j=1

β jYt−j + u1t (2)

Xt =
n

∑
i=1

λiYt−i +
n

∑
j=1

δjXt−j + u2t (3)

where X represents mean global irradiation, Y represents the air temperature, u1t is the
uncorrelated white noise, αi, β j, λi and δj are parameters to be determined and n is the
number of lags. Similarly, using the autoregressive vector technique, it is possible to apply
this technique to several variables [29].

2.4. Simplified Single Diode Model

The method based on series resistance has been widely studied and characterized to
model a PV generator [33–35]. It can obtain the characteristic curves and the generated
electrical power for a PVG [27], as shown in Figure 1.
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The characteristic equation V-I that is used to model de PVG is defined by:

IG = IscGE − NpG Io

(
e

VG+IG RsG
nNsGVT − 1

)
(4)

where Io is determined by solving Equation (4) for the following open-circuit conditions:
IG = 0 and VG = VocGE. IscGE and VocGE are the short-circuit current and open-circuit
voltages to the environmental conditions for the generator.

I0 =
IscGE

NpG

(
e

VocGE
nNsGVT − 1

) (5)

Equation (5) can be solved by an iterative method. The resistance RsG of the generator
is defined as [36]:

RsG =
VocG
IscG
− PsG

FF0 I2
scG

(6)

with,

FF0 =
voc − ln(voc − 0.72)

1 + voc
(7)

voc =
VocG

NsGnVT
(8)

where FF0 is the filling factor of the generator without series resistance, and voc is the
normalized value for the open-circuit voltage.

The short-circuit current of the PVG with temperature dependence was defined by [36]
as:

IscGE =
IscGn
1000

+

(
∂IscG
∂Tc

)
(Tc − Tc0) (9)

where Tc is the cell temperature, Tc0 is the cell temperature to conditions of nominal
operation (25 ◦C), IscGE is the short-circuit current of the generator for environmental
conditions,

(
∂IscG
∂Tc

)
is the temperature coefficient for short-circuit current and IscGn is the

nominal short-circuit current of the generator, i.e., the maximum power point to nominal
operation.

The open-circuit voltage of the generator, depending on the temperature, is defined as:

VocGE ≈ VocGn +

(
∂VocG
∂Tc

)
(Tc − Tc0) +

kTcK
q

ln
(

IscGE
IscGn

)
(10)

where
(

∂VocG
∂Tc

)
is the temperature coefficient of the open-circuit voltage.
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The cell temperature can be calculated with the environmental temperature and the
nominal operating cell temperature (NOCT) provided by the manufacturer. In this way,
the cell and module temperature will be given by:

Tc = TE +

(
NOCT − 20

800

)
·SR (11)

where NOCT is the nominal operating cell temperature provided by the manufacturer, Tc
is the cell temperature and TE is the environmental temperature.

2.5. Solar Radiation under Clear Sky Conditions

Solar radiation suffers losses because of atmospheric absorption and dispersion when
this passes through the atmosphere. According to the Handbook of Solar Energy [37],
after the atmospheric absorption phenomenon, the normal solar flown rate (solar radi-
ation/normal irradiation) that reaches the Earth’s surface can be estimated from Equa-
tion (12):

SRclr = Iext·exp
[
− TR

(0.9 + 9.4·cosθz)

]
(12)

where SRclr is the SR under clear sky conditions, Iext is the extraterrestrial radiation and
cosθz is defined as:

cosθz = cosφcosδcosω + sinδsinφ (13)

where θz is the zenith angle, TR is the turbidity factor, φ is the site latitude, δ is the declina-
tion angle of the Earth and ω is the hourly angle. The extraterrestrial radiation is obtained
through the following equation [38]:

Iext = IscE0(sinδsinφ + 0.9972·cosδcosφcosω0.5) (14)

where E0 is the eccentricity correction factor, Isc = 1367 W/m2 is the solar constant and
ω0.5 is the hourly angle each half hour.

2.6. Calculation of the Turbidity Factor

The following criteria were considered for calculating the turbidity factor:

• At least one day of each month is completely clear and corresponds to the day that
records the maximum SR measured for that month.

• For each month of the year, the maximum extraterrestrial SR value was calculated to
each maximum extraterrestrial SR value corresponding to a value of cosθzmonth .

By solving the turbidity factor from Equation (12), Equation (15) is obtained:

TR = −log
(

SRmaxmoth

Iextmonth

)
·
(
0.9 + 9.4·cosθzmonth

)
(15)

where SRmaxmoth is the monthly maximum SR, Iextmonth is the monthly maximum extraterres-
trial SR and cosθzmonth ; i.e., they depend on the maximum extraterrestrial radiation value.

Twelve SRmaxmoth values were obtained; one for each month. In the same way, twelve
Iextmonth maximum values were calculated. Finally, twelve values of cosθzmonth , each accord-
ing to the maximum monthly of Iextmonth , were obtained. Once these values were obtained,
the monthly turbidity factor could be calculated [27].

3. Methodology for Building the NARX-CVM Hybrid Model

During the first stage, the time series of the site’s meteorological variables used for the
hybrid NARX-CVM model construction were the temperature (T), solar radiation (SR), rela-
tive humidity (RH), wind speed (WS), and pressure (P). In addition, a synthetic time series
of the electric power (EP) was implemented, which was obtained by modeling the photo-
voltaic equipment. The structure of the NARX model was performed by an input/output
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vector. Collinearity, unit root and causality tests defined the input vector [24,27,29,32].
In addition, the autocorrelation and partial autocorrelation functions were implemented
to estimate the lags. The final resulting vector used to feed up the NARX model was
conformed by the time series of SR, T and EP, as well as 24 lags. The output vector was the
time series of the electric power (CFP).

Figure 2 shows the flow chart to forecast the electric power of a photovoltaic system.
First, the electrical power (EP) estimation was obtained by feeding up the ideal single diode
model (PVM) with SR and T time series. Second, the NARX model was trained using
the time series of the SR, T and EP to get the forecast of the electrical power (FP). Finally,
FP was improved by implementing the corrective vector multiplier (CVM) technique and
obtaining the corrected forecast of the power (CFP). The main steps of the methodology are
described below.
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3.1. Step 1: Databases (VARIABLES)

Temixco is a Mexican city located in the state of Morelos. It has warm, sub-humid
weather and possesses excellent solar energy potential. The meteorological variables
recorded in the ESOLMET station [39] are solar radiation, temperature, relative humidity,
wind speed and pressure. This database was chosen thanks to its quality, its small sampling
rate and its storage frequency.

The sensors record the data with an average of 10 min, and the measurement data
correspond to two years. The database has 105,120 data on each meteorological variable.
The data were transformed to an hourly scale, obtaining 17,520 data of each variable.

Table 1 shows the sensor characteristics used in the ELSOMET meteorological station.

Table 1. Characteristics of the meteorological sensors.

Probe Sensor Range Accuracy

CS500 Temperature probe 1000 Ω platinum resistance,
DIM43760B −40.0 ◦C to +60.0 ◦C ±0.5 ◦C

CS500 Relative humidity probe Vaisala INTERCAP 0 to 100% ±3%

R.M. Young wind sentry anemometer Cups Wheel Assembly 0.0 to 50.0 m/s ±0.5 m/s

PTB110 Barometer Vaisala BAROCAP 500.0–1100.0 hPa ±0.3 hPa

WXT510 Weather transmitter

Ultrasonic Signal
BAROCAP
THERMOCAP Sensor
HUMICAP Sensor

0 to 60 m/s
600 to 1100 hPa
−52.0 ◦C to 60.0 ◦C

0 to 100% RH

3%
±0.5 hPa
±0.3 ◦C
±3% RH

3.2. Step 2: Selecting the Input Variables (INPUTS)

In this step, different practical techniques for choosing the multivariable forecasting
model’s input variables are explained: collinearity test, augmented Dickey–Fuller (ADF)
test, time series differentiation and causality test. For practical purposes, the electrical
power was not treated as one more variable among the input variables analysis because the
EP was obtained from SR and T; besides, it has similar behavior to SR.
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3.2.1. Collinearity Test

To avoid spurious results, a forecasting model should not be including redundant or
irrelevant variables. The collinearity test helps to identify these kinds of inlet variables.

Figure 3 shows the collinearity test results; the analyzed meteorological variables are
shown in the abscissa axis, while the ordinate axis presents the variance decomposition in a
0 to 1 range. The collinear variables have values above 0.5, and a red circle highlights them.
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Figure 3. Collinearity test of the meteorological variables of Temixco.

From Figure 3, the collinear variables are temperature (T), relative humidity (RH)
and atmospheric pressure (P). Therefore, three different input vectors have been obtained
(Figure 4): input 1 = SR, T, wind speed (WS); input 2 = SR, RH, WS, and finally, input 3 = SR,
WS, P. The collinear variables, highlighted in bold font, were not kept together in either
combination.
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3.2.2. Augmented Dickey–Fuller Test (ADF)

One of the conditions for applying the Engle–Granger causality test is that the time
series must be stationary; therefore, the ADF test must be implemented before the causality
test. The augmented Dickey–Fuller test determines whether the time series is stationary.
Table 2 shows the results of the ADF test. First, the autocorrelation is verified by analyzing
the Durbin–Watson statistic.
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Table 2. ADF test results (significance test 5%).

Variable Durbin–Watson
Statistic Critical Value T–Statistic p–Valor

SR 2.00 −1.94 −1.31 0.18
T 2.00 −1.94 −0.40 0.54

RH 2.00 −1.94 −1.46 0.13
WS 1.99 −1.94 −1.71 0.08
P 1.99 −1.94 −0.02 0.67

Durbin–Watson values, estimated using a 5% significance level, range from 1.85 to
2.15, and conclude that autocorrelation does not exist in the model [25,39]. Second, the
p-value was verified to be higher than 0.05, which indicates that the time series has a unit
root; thus, it is stationary. Consequently, there was no need to differentiate any time series,
and the causality test could be applied directly.

Figure 5 shows the flow chart following the results obtained with the ADF test. In case
some of the time series have not been stationary, the first difference is calculated, and the
ADF test is applied again. Generally, it is enough to differentiate the time series once for
passing the ADF test.
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3.2.3. Engle–Granger Causality Test Results

In this causality test, the nullity hypothesis establishes that the independent variables
cause the dependent variable, so the independent variables contain helpful information for
forecasting the behavior of the dependent variable. In these kinds of tests, the significance
level is 1% [29]. Table 3 shows the causality test results applied to each group of variables
obtained from the collinearity test. From the causality test results, only the WS value is
statistically significant, as 0.12 > 0.01. Therefore, in this case, the nullity is rejected. Thus, it
is established that for the variable set (SR, T, WS), the independent variable WS does not
contain useful information to forecast the dependent variable, SR. Then, this variable is
discarded from the input variables, and the unit is used.

Figure 6 shows the variable combinations once the causality tests were applied. The
red-dotted line indicates the inputs that best describe the behavior of the power, and the
bold capital letters indicate the variables with strong collinearity. As previously reported,
the first input combination resulting from the collinearity test was SR, T and WS. Once the
causality test was applied, SR and T were obtained. The second variable set obtained from
the collinearity test was SR, RH and WS; the causality test did not report any change. The
causality test also shows no change for the third variable set (SR, WS, P). Therefore, it had
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input 1 = SR, T; input 2 = SR, RH, WS; and input 3 = SR, WS, P. The proposed methodology
focuses on finding the optimal input vector; thus, the NARX model includes only SR and T
as input variables for this study case.

Table 3. Causality test results with a significance level of 1%.

(a) Group of variables (SR, T, WS)→ Dependent variable SR

Variable Probability
T 0.00

WS 0.12

(b) Group of variables (SR, RH, WS)→ Dependent variable SR

Variable Probability
RH 0.00
WS 0.00

(c) Group of variables (SR, P, WS)→ Dependent variable SR

Variable Probability
P 0.00

WS 0.00
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3.3. Step 3: Lags for the NARX Model (LAGS)

The autocorrelation (ACF) and partial autocorrelation functions (PACF) were imple-
mented to estimate the number of lags in the forecasting models. First, these functions
were applied to the time series; then, they were analyzed to find the seasonal patterns that
determine the lags number. The resulting interpretation of the ACF and PACF is through
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their plots, which indicate seasonality. Seasonality is defined as a pattern that repeats itself
over fixed intervals in time [28,30].

rk =
n

∑
t=k+1

(
Yt −Y

)(
Yt−k −Y

)
∑n

t=1
(
Yt −Y

)2 (16)

Yt = b0 + b1Yt−1 + b2Yt−2 + . . . + bkYt−k. (17)

Figure 7 shows the ACF and PACF plots. The ACF presents a sinusoidal behavior,
which indicates the seasonality of the SR time series (Figure 7a). Simultaneously, the PACF
plot (Figure 7b) shows peaks every 24 h, which means the time series has seasonality every
24 h. Therefore, the lags number defined for the NARX models was 24.
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3.4. Step 4: Modeling Photovoltaic Systems

The idealized single diode model was used to estimate the electric power from T (◦C)
and SR (W/m2) time series. A monocrystalline photovoltaic module ISF-250 black [40] was
used in order to verify the model’s validity. Mechanical and electrical characteristics are
shown in Tables 4 and 5, respectively.

Table 4. Mechanical characteristics of the monocrystalline module ISF-250 [40].

Parameter Characteristics

Solar cell Monocrystalline silicon–156 mm × 156 mm (6
inches)

Number of cells 60 cells (6 × 10)
Dimensions 1667 × 994 × 45 mm (65.63 × 39.13 × 1.77 in)
Weight 19 kg (41.89 pounds)

Glass High transmittance, patterned, tempered, 3.2
mm (EN-12150)

Frame Anodized aluminium, grounding drills
Maximum mechanical load 5400 Pa (112.78 psf) (Snow load)
Junction box IP 65 with three bypass diodes

Cables, plug Solar cable 1 m (39.37 in), four mm2 (12 AWG).
MC4 or LC4
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Table 5. Electrical characteristics of the monocrystalline Module ISF-250 [40]. Performance at STC:
Irradiance, 1000 W/m2; cell temperature, 25 ◦C (77 ◦F); AM, 1.5.

Parameter Characteristics

Rated power (Pmax) 250 W
Open-circuit voltage (Voc) 37.8 V
Short-circuit current (Isc) 8.75 A

Maximum power point voltage (Vmax) 30.6 V
Maximum power point current (Imax) 8.17 A

Efficiency 15.1%
Power tolerance (% Pmax) 0/+3%

Figure 8a shows the characteristic curves of the manufacturer of the monocrystalline
module ISF-250, and Figure 8b shows the characteristic curves obtained by the idealized
single diode model. A great similitude between both characteristic curves is observed,
which indicates the reliability of the electric power time series calculated from the model.
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A comparison was also made between the electrical data of the monocrystalline
module ISF-250 reported in Table 5 (manufacturer) and Table 6 (calculated). The comparison
result is presented in Table 7, where the most significant error was for the maximum current
(Imax), with an error of 1.52% above the theoretical value. An essential factor to fit the single
idealized diode model to the experimental model was the nonideality constant of the diode
(n), which frequently is set as 1.2 [34]. But, for this case study, n = 1.8 was the value that
the estimated results best fit the data provided by the manufacturer.

Table 6. Error rate between actual and estimated electrical characteristics.

Variable Estimated Actual Error

Pmax (W) 248.1 250.0 0.75%
Voc (V) 37.5 37.8 0.83%

Vmax (V) 30.8 30.6 −0.78%
Isc (A) 8.8 8.8 −0.12%

Imax (A) 8.1 8.2 1.52%
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Table 7. Architectures used to generate the NARX models.

Models Lags
(L)

Input
x(t)

Output
y(t) Hidden Neurons (hn) Output Neurons (m) Tests

NARX I 24 SR, T, RH, WS, P FPOWER 10 1 All variables

NARX II 24 SR, T, WS FPOWER 10 1 Collinearity
and causality

NARX III 24 SR, RH, WS FPOWER 10 1 Collinearity
and causality

NARX IV 24 SR, WS, P FPOWER 10 1 Collinearity
and causality

H-NARX 24 SR, T FPOWER 10 1 Collinearity
and causality

3.5. Step 5: Multivariable Forecasting Model (NARX)

In this work, a nonlinear autoregressive exogenous model (NARX) was used for
the short-term prediction of solar radiation. NARX model is a nonlinear autoregressive
model that has exogenous inputs. The artificial neural network training was carried out
using the meteorological variables recorded during the measurement of the first year.
From this database, 70% dataset was used to train the NARX model, 15% dataset for the
validation, and 15% dataset for the test. The models to obtain the blind forecasting were
then implemented; thus, the measurement of the second year that was not used to train the
model was selected. Different inputs were generated according to the results obtained in
Step 2. The model outputs were the electrical power generated by the photovoltaic module
in Step 4.

Generally, a NARX model is formed of an input layer, a hidden layer, and the output
layer. For this case, the input layer was conformed by the input vectors previously obtained
in Step 2 and the electrical power calculated in Step 4 (EPower), while the output layer was
the electrical power (FPower). Figure 9 shows a simplified representation of the NARX
models developed from the input vectors and lags obtained in Steps 2 and 3. The letter “I”
indicates inputs, whereas “O” denotes the outputs, and 24 is the lag number.
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prediction (FPOWER).

This work’s primary purpose is to improve the forecast of the power generated by a
PV generator based on the appropriate selection of the input variables, the lags and the
application of the corrective vector multiplier (CVM). Therefore, the default configuration
proposed by the Matlab® program was used.

Figure 10 shows the general arrangement of the NARX model, where x(t) represents
the neural network inputs, n is the number of inputs variables and y(t) is the output
variable, L is the number of lags, w are the weights, b are the biases, hn is the number of
hidden layers and m is the number of output variables.

A test was made first using all variables to determine the effectiveness of the proposed
methodology. Then, using the input vectors and lags previously selected, the different
architectures of the NARX models are described in Table 7. The simplest model was
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the H-NARX model, and it is a NARX model with two input neurons (SR and T), ten
hidden neurons, 24 lags and one output neuron (electrical power). This simple model
was compared with model NARX I (all the variables are used as inputs), NARX II (input
neurons with SR, T and WS), NARX III (input neurons with SR, RH and WS), and finally,
NARX IV (input neurons with SR, WS and P).
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3.6. Step 6: Output Data Depuration of the Forecasting Model (CVM)

Forecasting models of solar radiation and photovoltaic power sometimes return values
that should not be considered in the final forecasting results. For example, a prediction
model can forecast a positive value of the SR or output electric power of a PVG at night,
which is wrong. For this reason, the use of the SR under clear sky conditions was proposed
to improve the forecasting results of the electrical power through a corrective vector
multiplier (CVM).

According to the performance tests, the forecast of the electrical power (CPOWER)
results improved when the corrective vector multiplier was applied,

CPOWER = FPOWER·CVM (18)

where FPOWER is the forecast of electrical energy obtained from the NARX model, and the
corrective vector multiplier was built from

CVM(SRclr) =

{
0 if SRclr = 0
1 if SRclr > 0

(19)

4. Performance Tests

The NARX models were programmed using the ntstool library from Matlab®. The
input vectors were reported in Table 8. According to the proposed methodology, the best-
input vector was formed by SR and T, H-NARX without CVM and H-NARX-CVM once
the CVM was applied (see Tables 8 and 9). The input number of neurons is defined by
the input vectors, the hidden layer neurons are set up in 10, the output neuron is one and
it is defined by the output vector. The number of lags was obtained using the ACF and
PACF. The time series were pre/post-processing using the functions removeconstantrows
and mapminmax. The first function removes the rows of the input vector that correspond
to input elements that always have the same value because these input elements are not
providing any useful information to the network, and the second function transforms
input data so that all values fall into the interval [−1, 1]; this can speed up the learning
networks. The division of data for training, validation and testing was carried out using
dividerand; this function divided data randomly; the sample data were split up into 70%,
15% and 15% for training, validation and testing, respectively. The performance function
is the mean squared error (mse). The transfer function is the tan-sigmoid defined as
tansig(n) = 2

1−exp(−2·n) − 1 and set up in Matlab® as tansig.
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Table 8. Performance test results before applying the corrective vector multiplier.

Model Lag Input Output MBE (W) MSE (W2) RMSE (W) R2

NARX I 24 SR, T, RH, WS, P FPower 0.45 210.30 14.50 0.95
NARX II 24 SR, T, WS FPower 0.70 147.83 12.16 0.97
NARX III 24 SR, RH, WS FPower −0.27 149.81 12.24 0.97
NARX IV 24 SR, WS, P FPower 0.72 145.15 12.05 0.97
H-NARX 24 SR, T FPower −0.18 131.42 11.46 0.97

Table 9. Performance test results after applying the corrective vector multiplier.

Model Lag Input Output cMBE (W) cMSE (W2) cRMSE (W) cR2

NARX-CVM I 24 SR, T, RH, WS, P CPower −0.45 184.80 13.59 0.96
NARX-CVM II 24 SR, T, WS CPower −0.01 142.78 11.95 0.97
NARX-CVM III 24 SR, RH, WS CPower −0.57 145.41 12.06 0.97
NARX-CVM IV 24 SR, WS, P CPower 0.40 143.96 12.00 0.97
H-NARX-CVM 24 SR, T CPower −0.41 130.07 11.40 0.97

The NARX models trained with the 2017 dataset were used to forecast the 2018 data
set from 24 h ahead and updated the existing data until the whole year was completed.
Performance tests were applied to the results of the annual forecasting to estimate which
ANN architecture was the one that best predicts the behavior of the electrical power. Some
of the most used performance tests are the mean squared error (MSE), the root of the mean
squared error (RMSE), the mean bias error (MBE) and the coefficient of determination
(R2) [29,41–43]. Equations (20)–(23) describe all these performance metrics.

MSE =
1
n

n

∑
i=1

(
Pf orecast − Pcalculated

)2
, (20)

RMSE =

√
1
n

n

∑
i=1

(
Pf orecast − Pcalculated

)2
, (21)

MBE =
1
n

n

∑
i=1

(Pf orecast − Pcalculated) (22)

R2 = 1− ∑
(
Ŷi −Y

)2

∑
(
Yi −Y

)2 . (23)

Table 8 shows the results of the performance tests for models before applying a
corrective vector multiplier (output: FPower). Table 9 shows the results of the performance
tests when the CVM (output: CPower).

5. Results and Discussion
5.1. Comparison between Models with and without CVM

Table 10 shows a comparison between the RMSE and cRMSE and the improvement
rate of RMSE for each case. In all cases, forecasting results were improved when CVM was
applied. The most significant improvement was obtained for the NARX-CVM I model,
where the RMSE was enhanced by 6.7%. By contrast, the lowest improvement was obtained
in NARX-CVM IV with a 0.4% improvement.

Another essential tool used for evaluating forecasting results is the linear regression
plot, where the ordinate axis represents the forecast data while the abscise axis indicates
the actual data. Figure 11 shows the linear regression plots of the five evaluated cases,
where models without the CVM are at the top of the figure. At the bottom of the figure are
the linear regressions that resulted from applying the corrective vector. This figure shows
that the linear regression dataset was more homogeneous when the corrective vector was
applied. The coefficient of correlation showed slight improvement when the CVM was
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used. The linear regression dataset shows how the application of the CVM considerably
improved the forecasting of the output power, especially in NARX I, II and III.

Table 10. RMSE comparison for NARX models with and without CVM.

Model RMSE (W) cRMSE (W) Improvement

NARX I vs. NARX-CVM I 14.50 13.59 6.7%
NARX II vs. NARX-CVM II 12.16 11.95 1.8%

NARX III vs. NARX-CVM III 12.24 12.06 1.5%
NARX IV vs. NARX-CVM IV 12.05 12.00 0.4%
H-NARX vs. H-NARX-CVM 11.46 11.40 0.5%
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5.2. Comparison of the H-NARX-CVM Model against Other Models

The forecasting results are often compared with simpler models to identify the pro-
posed model’s ability to forecast. From Table 10, the H-NARX-CVM model was the one
that provided the best results, that is, the model with the smallest RMSE. Therefore, this
was the only model used to compare the results with other prediction models. One of the
most widely used models for comparison purposes is the well-known persistence model
(Equation (24)) [25,43–45].

S(t + h) = S(t) (24)

Like the persistence model, the nonlinear autoregressive (NAR) neural network has
been used by Benmouiza, Cheknane [9,46] and García-Tena et al. [47] to forecast time series
or as a benchmark to compare more complex models.

Table 11 shows the results of the performance tests for the proposed methodology,
NAR and the persistence model. The NARX models obtained with the proposed method
outperformed the persistence and NAR models.

Table 11. Performance tests of the H-NARX-CVM, NAR and persistence models.

Models
Performance Tests

MBE MSE RMSE R2

H-NARX-CVM −0.41 130.07 11.40 0.97
NAR −1.12 300.57 17.34 0.94

Persistence 0.00 386.12 19.65 0.92

On the other hand, predictive modeling researchers use forecasting skills as one of
the most widely used measures. This compares the developed model with a less complex
model, such as persistence [41–43]. In this research, the NAR and persistence models have
also been used as benchmarks:

Forecastskill(%) =

(
1− RMSEH−NARX−CVM

RMSERe f

)
(25)

where RMSEH−NARX−CVM is the RMSE for the H-NARX-CVM model and RMSERe f is the
RMSE for the benchmark models.

Figure 12 (cyan-dotted line) shows the results of the forecasting skill using the persis-
tence model as a benchmark, and a key performance indicator (KPI) of 35% was used as
a goal. H-NARX-CVM I, II, III and IV models were higher than 35% of the KPI, with the
proposed methodology being the one that obtained the best result with a skill forecasting
of 42%. Compared with model 1, with a forecasting skill of 31%, it did not exceed the target
value. But, when the exercise was performed using the NAR model as a benchmark, the
NARX models did not exceed the KPI goal, H-NARX-CVM IV being the best result, with
skill forecasting of 34%, as shown in Figure 12 (magenta-dotted line).

Results of the H-NARX-CVM, NAR and Persistence Models Versus the Real Data
This section compares the actual electrical power and the forecasting results calculated

as follows:

(1) The blind prediction of the power obtained using the proposed methodology;
(2) The blind prediction using the NAR model;
(3) The prediction using the persistence model.

A qualitative comparison was made using plots of time series of randomly chosen days
each month (Figure 13), and quantitative analysis was performed to calculate the forecasting
errors (Table 12). The days used to compare the mentioned models were obtained using
the single diode model algorithm, which allows obtaining a power production daily of
the PVG.
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Table 12. Results of performance tests.

Models
Performance Tests

MBE MSE RMSE R2

H-NARX-CVM 0.08 142.59 11.94 0.97
NAR 0.56 220.54 14.85 0.95

Persistence 1.48 330.01 18.17 0.93

Finally, a random day was chosen from the 12 days separated from the annual forecast
to make a visual and more detailed analysis of the forecast’s behavior obtained from the
H-NARX-CVM, NAR and persistence. In this case, it turned out to be October 19, as is
shown in Figure 14. From this figure, the H-NARX-CVM and the NAR models are the best
predictors of the behavior of electrical power. It can also be observed that at 3:00 p.m., the
electrical power generated by the PV system was 50.84 W. In comparison, the persistence
prediction was 87.22 W, the artificial neural network was 102.36 W and 116.58 W by the
H-NARX-CVM model.
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According to Figure 14, the best model that predicted the electrical power produced
by the photovoltaic system was the NAR model, followed by the proposed methodology.
The persistence model had a deficient performance. It is evident that on this particular
day (October 19), the NAR model surpassed the NARX-CVM model. However, in general
terms, the proposed methodology surpassed the NAR model, thus concluding that its use
is more appropriate, as shown in Tables 11–13.

Table 13. Results of the performance tests for October 19.

Models
Performance Tests

MBE MSE RMSE R2

H-NARX-CVM −0.29 329.36 18.15 0.90
NAR 1.12 291.60 17.08 0.91

Persistence −6.89 803.77 28.35 0.78

6. Conclusions

In this work, the authors present a methodology to improve and simplify the NARX
models, the input vector is the meteorological variable and the output vector is the electric
power. The electric power is estimated with the simplified single diode model. The
methodology is divided into two parts. The first one focuses on the input vector and
implements the collinearity and Granger causality tests to build the input vector from
the available variables. The second part focuses on the output vector and implements
solar radiation models to build a CVM, which is applied to the output vector to treat
with implying atypical results due to the solar radiation behavior. The collinearity test
determines which variables are collinear, and the collinear variables are used to form three
variable groups. The first group is formed with SR, T and WS, the second one with SR,
RH and WS, and the third group is formed with SR, WS and P. The Granger causality test
is applied to the three variables’ group; this technique determines which variables have
useful information to forecast the dependent variable. According to the collinearity and
Granger causality tests, the simpler NARX model is when an input vector forms with SR
and T in the H-NARX-CVM model is used.

Four NARX models were developed to validate the results with NARX-CVM I–IV.
The first uses all meteorological variables as input vectors, and three more are used as
input variables: the variables obtained from the collinearity test. The results indicate
that the best model was H-NARX-CVM model, obtained with the proposed methodology,
demonstrating the importance that the input vector plays in multivariable models. The
skill forecasting using a 35% as a goal (KPI) was determined; as a benchmark, we proposed
to use the NAR model and the persistence. The skill forecasting results indicate that the
worse NARX model, NARX-CVM I, does not overcome the proposed KPI, whereas the
NARX-CVM II, III and IV only overcame the KPI, taking it as a benchmark persistence.
The H-NARX-CMV obtained from the proposed methodology overcame the proposed KPI
with a value of 42%; using persistence as a benchmark and using the NAR model as a
benchmark, the model obtains a result of 34%, 1% above the established goal. According to
the previous report, we can conclude that even using only the collinearity tests to prove
different vectors, we obtained good results; otherwise, it is important to point out that the
usage of all variables gives worse results.

Finally, it is important to point out that the development methodology in this work
can be applied anywhere. The only requirement is that the site counts with a considerable
solar energy resource. However, due to the significant variability of the meteorological
variables in different places, the causal relationship between the variables changes. It is
necessary to carry out the whole methodology and fix the proposed NARX model.
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