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Abstract: The residential sector is a major contributor to the global energy demand. The energy
demand for the residential sector is expected to increase substantially in the next few decades. As
the residential sector is responsible for almost 40% of overall electricity consumption, the demand
response solution is considered the most effective and reliable solution to meet the growing energy
demands. Home energy management systems (HEMSs) help manage the electricity demand to
optimize energy consumption without compromising consumer comfort. HEMSs operate according
to multiple criteria, including electricity cost, peak load reduction, consumer comfort, social welfare,
environmental factors, etc. The residential appliance scheduling problem (RASP) is defined as the
problem of scheduling household appliances in an efficient manner at appropriate periods with
respect to dynamic pricing schemes and incentives provided by utilities. The objectives of RASP are
to minimize electricity cost and peak load, maximize local energy generation and improve consumer
comfort. To increase the effectiveness of demand response programs for smart homes, various
demand-side management strategies are used to enable consumers to optimally manage their loads.
This study lists out DSM techniques used in the literature for appliance scheduling. Most of these
techniques aim at energy management in residential sectors to encourage users to schedule their
power consumption in an effective manner. However, the performance of these techniques is rarely
analyzed. Additionally, various factors, such as consumer comfort and dynamic pricing constraints,
need to be incorporated. This work surveys most recent literature on residential household energy
management, especially holistic solutions, and proposes new viewpoints on residential appliance
scheduling in smart homes. The paper concludes with key observations and future research directions.

Keywords: optimization; demand response; demand-side management; residential appliance schedul-
ing; smart home

1. Introduction

An electric grid is a huge complex network designed for providing electricity to
consumers to satisfy their growing energy demands. The International Energy Outlook
in 2016 projected that there will be a notable increase in the overall energy demand of the
world in the next 20 years. This growth in worldwide consumption has led to an immediate
change in the conventional grid to meet the increasing demands. The conventional grid is
the electricity network used for supplying and distributing the electricity from generation-
side to consumer-side. In other terms, it is used for connecting producers of electricity
to consumers of electricity. However, the existing electric grid faces few challenges [1].
These challenges vary from country to country based on the energy demands. The main
challenges are to fulfill the required demand with the resources available and to provide
accessibility of electricity with infrastructure called utilities. The other challenges faced by
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the traditional grid are as follows: (a) It is a centralized grid in which the power is generated
from a centralized location and carried to consumers. In addition, the conventional grids
are powered by non renewable energy sources—natural gas, diesel, etc. (b) One-way
communication where the consumer is just a receiver; it cannot provide any user preference,
nor can a user state the required energy demand to the utility. (c) It is not well equipped
to handle advanced technology and sensors. Thus, it fails to detect the problems and
anomalies. (d) Manual monitoring of energy distribution and manual reading of metering
infrastructure are required. All the aforementioned problems can lead to increasing grid
vulnerability and power outage risks. Thus, it is necessary to overcome these challenges
and make huge investments into the existing traditional grids. Additionally, owing to the
worldwide rise in energy demand and significant changes in energy infrastructure, there is
a need to evaluate/update the conventional grids into smart grids to address future energy
demands. The smart grid (SG) represents one such solution that makes an existing grid
more responsive and intelligent [2]. It is a relatively new concept with advanced information
and communication technologies (ICT) that integrates two-way communication between a
utility and its consumers [3]. SG facilitates the customers interacting with the utilities in a
bi-directional way to enhance the security, performance, reliability, and sustainability of
the generation, transmission, and distribution of electricity. The stakeholders of the smart
grid, including utilities, independent system operators, consumers, regulatory authorities,
etc., are shown in Figure 1.

Smart grid 
stake holders

Consumers
Independent 

system 
operators

Manufacturers 
and 

vendors

Financial firms

R&D 
organizations

Environmental 
protection 
agencies

Regulatory body

Utility companies 

Energy market 

Figure 1. Smart grid stakeholders.

The ICT infrastructure in the smart grid facilitates the power and information flow in
unidirectional and bi-directional systems. This allows consumers to express their power
needs to their service provider, which led to a new concept called demand-side management
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(DSM) [4]. Demand-side management refers to the programs implemented by utility
companies to encourage the consumers directly or indirectly to reduce their peak load and
electricity cost [5]. DSM techniques can maximize the smart grid’s efficiency, reliability, and
robustness. In the smart grid, the utility manages the household demand and consumption
of electricity by a specific set of rules. These rules are termed demand response (DR) [6].
Various incentives are published by the electricity utility companies to encourage consumers
to manage their appliances in an effective manner [7]. The utility companies publish
dynamic prices, viz., flat rate pricing (FRP), day-ahead pricing (DAP), time of use pricing
(ToUP), real time pricing (RTP), critical peak pricing (CPP), and inclined block rate (IBR).
Based on these pricing schemes, the consumers can change their consumption patterns and
cost-effectively schedule their appliances. Some of the benefits of smart grid are:

• Efficiency: Smart grid technology allows consumers to manage their electricity con-
sumption using advanced communication technologies, advanced sensors. Various
techniques have been used to manage household consumption such as shifting of the
load from on-peak period to off-peak periods, using the direct load techniques, etc.

• Empowering the customers: The most important characteristic of SG is two-way
communication between consumers and the utility, which allows users to share their
electricity demands with the utility, and users can take part in demand response
programs to manage their household consumption without compromising their com-
fort. In addition, SG enables advanced metering infrastructure (AMI), which allows
the consumers to receive the dynamic pricing tariffs from utility time to time and
respond accordingly.

• Intelligence: Smart grid is an intelligent technology that is capable of detecting power
failure and outage risks. It works intelligently to identify the overload conditions and
respond to them to achieve grid stability. A smart grid also recognizes the system’s
capability to meet the consumer’s power demand.

• Green energy: The smart grid leads the path of a clean energy environment. The use of
renewable energy sources (RESs) such as hydro, wind, and solar energy can be used in
coordination with utilities to increase the stability of the grid and sustainable energy
supply. With a smart grid, we have an effective way of reducing carbon emissions and
implementing de-carbonized energy generation and distribution. The smart grid is
geared towards reducing our need for fossil fuels [8,9].

In recent years, there has been extensive surveying carried out in the area of residential
appliance scheduling. Sarker et al. [10] have reviewed the progress of DSM, and they dis-
cussed several algorithms to solve DSM optimization problems. Leitão in [11] provided an
in-depth survey of home energy management systems with a focus on residential appliance
management and its operational goals and strategies. Salameh et al. [12] have presented
a review on demand-side management while considering economic, environmental, and
operational perspectives. In Zafar et al. [13] have presented a comprehensive survey on
HEMSs regarding configurations and enabling technologies. Various optimization tech-
niques on DSM with a focus on peak shaving and load scheduling are comprehensively
reviewed in [14]. Iqbal et al. [15] have described various DSM strategies and conducted
a comprehensive review of current and previous research works in the field of DSM. A
survey on demand response and optimization techniques to solve the appliance scheduling
problem is presented in [16]. In [17] is a survey for residential load scheduling in smart
homes. Shakeri et al. [18] have presented a review on demand response programs and
energy management in buildings. In [19], optimization of demand response techniques for
power scheduling is presented.

While all the aforementioned reviews are valuable, however, they are generally narrow
in their scopes. They mostly focus on conventional optimization techniques for scheduling
and fail to discuss other available optimization approaches. This manuscript provides
a deeper and actual analysis of residential appliance scheduling techniques used in the
literature related to DSM and also revisits the demand response programs and DSM
techniques. We were motivated to present this review to solve the multi-objective residential
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appliance scheduling problem in such a way that it can be used in future research in the area
of home energy management. As the research and development in the demand response
field are evolutionary, this work provides a detailed and summarized survey of the current
status of appliance scheduling. Moreover, our survey presents holistic approaches and
mechanisms for solving RASP. Moreover, our survey complements the existing surveys by:

• Classification of demand-side management and demand response programs for the
residential sector, and critically discussing techniques to schedule home appliances.

• Carrying out a comprehensive review of ongoing and previous research works on
residential appliance scheduling through conventional techniques, heuristic and meta-
heuristic techniques, soft computing techniques, AI techniques, energy storage based
techniques, coordinating and sharing techniques, and incentive-based techniques.

• Encouraging and motivating users to reschedule their appliance use rather than asking
them to reduce their consumption.

• Categorization model of smart home appliances.
• Considering the environmental implications of demand response, such as thermal comfort.
• Proposing the key observations and new viewpoints for DR implementation.

The rest of the paper is organized as follows: Section 2 presents demand-side man-
agement strategies and demand response programs. In Section 3, the residential appliance
scheduling problem is addressed, along with its objectives. Section 4 presents definitions
for smart homes, HEMS, its components, and appliance classification. Section 5 describes
the scheduling techniques for appliances in a detailed manner with the key observations of
the review. Section 6 concludes with possible future directions.

2. Demand-Side Management and Demand Response
2.1. Demand-Side Management

To meet the growing energy demands of the residential sector, every service provider
company tries to minimize the extra time and cost by installing new generating units. The
optimal solution to this issue is to utilize the existing energy efficiently. Thus, the service
provider company deploys DSM programs to manage users’ energy consumption [20].
Thus, the primary goal of DSM is to minimize electricity costs by managing household
consumption. The term DSM is used to make customers aware of and encouraged by
energy management programs. Demand-side management is broadly defined as the set
of rules to monitor and implement consumer awareness programs for managing energy
efficiency along with peak shaving and encourage the users to be more energy efficient by
using energy management algorithms [21]. In general, DSM can be sub-divided into two
broad categories, as shown in Figure 2.

Demand side
management

Energy efficiency Demand response

Price-based
demand response

Incentive-based
demand response

Figure 2. Demand-side management.
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Demand-side management includes two categories, energy efficiency and demand
response [22–24], which are explained below:

• Energy efficiency: It is achieved by implementing customer-aware programs for con-
sumers who require less energy. As a result of this behavior, lower energy consumption
is obtained. Despite the importance of energy efficiency, this approach is not feasible
since one cannot force the consumer to lower their electricity consumption.

• Demand response: In this strategy, the service provider aims to minimize the electricity
consumption and shift the load from on-peak hours to off-peak hours [25]. In this
survey, we focus on demand, and more specifically, residential appliance scheduling.
This involves encouraging consumers to change their appliance usage patterns, which
could help reducing the peak shaving and electricity cost. The demand response
strategy is further divided into two sub-types, namely, price-based demand response
and incentive-based demand response, in which the users are charged with different
tariffs at different periods of the day and awarded with incentives for changing their
consumption patterns. DR is described further in Section 2.2.

For the smooth operation of the grid, there is a need to balance the energy supply and
demand. In the traditional energy grid, the balance is achieved by using peak power plants.
However, this is not always feasible, as it is difficult to generate new power plants and
install new generating units, as that is costly and time-consuming. On the other hand, DSM
uses different strategies to meet energy demands, wherein the consumers are encouraged
to reduce their consumption or shift consumption from on-peak to off-peak hours. The
DSM strategies are shown in Figure 3.

The electricity consumption can be represented in the form of load profile curves
which are plotted as load against time. Six different demand-side management techniques
shown in Figure 3 are explained below:

Demand side
management

Peak clipping

Valley filling

Load shifting

Load reduction

Load growth

Flexible load

Figure 3. Demand-side management techniques [16].

2.1.1. Peak Clipping

It is defined as total load reduction during high peak duration [24,26]. It can be
achieved by direct load control (DLC) or shutting down the unimportant load to maintain
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the smooth operation of the grid. This technique is used where new generation plants can
not be installed.

2.1.2. Valley Filling

It is a process of filling valleys (periods of low demand) [27]. It focuses on consumption
during off-peak hours. Consumers are encouraged to use electricity during the off-peak
period by providing a relatively lower pricing rate during that time. It can also be achieved
by improving system load factors during the off-peak duration.

2.1.3. Load Shifting

In demand-side management, this strategy is frequently utilized and highly effective [24].
It entails both a reduction in peak load and a shift in demand from on-peak to off-peak
hours. Consumers are encouraged to do so by lower rates offered during off-peak periods.

2.1.4. Load Reduction

Load conservation is another name for this technique [26]. It involves utilizing energy-
efficient appliances and focusing on reducing the overall electricity consumption.

2.1.5. Strategic Load Growth

Load building is the term for this approach [24,26,27]. It refers to an increase in load
as a result of increased energy consumption generally. It boosts users’ power consumption
to a certain level and promotes them to do so to keep the power system running smoothly.

2.1.6. Flexible Load Shape

This technique involves specific tariffs and contracts with the possibility of flexible
control of consumers’ equipment [24,26,27]. Users with a flexible load are identified as
those who are willing to limit their consumption in exchange for rewards.

Different DSM techniques can be used in the consumption of electricity to reduce
the peak load and increase the off-peak load. The peak load can be reduced directly
by controlling the load from utility using the direct load technique. However, if the
utility company applies this technique to a residential sector, there is always a concern for
consumers’ privacy. This acts as an obstacle in the implementation of this technique [28–32].
A few of the other limitations in the way of implementing DSM programs are listed in [33].
These limitations can be overcome by using the alternative method for load control. In this
method, the service provider company does not force consumers to shut down the load.
Instead, it gives them options to reduce their electricity consumption by managing their
demand at different times of the day [34–36]. The utility uses dynamic-price-approach-
based demand variation. It periodically notifies the pricing tariff information to consumers
via smart components of the home energy management system and the consumer manages
their demand in response to the price. DSM helps in energy conservation by ensuring
efficient use of electricity at the distribution end [37–41]. This approach is referred to
as demand response. We discuss the demand response programs in detail in the next
subsection.

2.2. Demand Response

Consumers in the wholesale energy market respond to different prices by shifting
their consumption patterns from on-peak to off-peak to earn monetary incentives, re-
sulting in decreased electricity use during high-price periods, which is called demand
response [8,42,43].

2.2.1. Main Objectives of Demand Response

The main objectives of demand response are as follows:
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• To reduce the power consumption in such a way that both consumers and the utility
companies get the mutual profit. It also involves reducing transmission and distribu-
tion loss and consumer power demands [44].

• The main effect of the aforementioned goal is to reduce the amount of needed electricity
generation. As a result, there is no need to turn on expensive-to-run power plants to
satisfy peak demand. It also allows electricity companies to achieve their pollution
targets [42].

• The goal is to limit the number of overloads in the distribution system. This goal
is achieved through the use of a distribution management system (DMS), which
monitors the distribution system’s performance and makes near-real-time decisions to
improve the system’s reliability [45].

• To maximize overall system’s stability and to balance available supply, particularly
in areas where renewable energy sources such as solar panels and wind turbines are
frequently used [46].

• To enhance the use of local power generation means, such as PV panels. The local
generation enables customers with the opportunity to supply the electricity back
to the grid. This will help with reducing the overall electricity costs for residential
households.

In smart home energy management, various demand-response-based techniques have
been used [47–54]. These techniques mainly focus on residential appliance scheduling
using price-based DR programs. The optimization-based techniques are designed and
embedded into the energy consumption scheduler to achieve the assigned objectives. These
techniques work automatically based on given inputs, which can be listed as:

• The electricity demand of the households.
• User preferences to schedule the appliances.
• Environmental parameters—temperature, weather, etc.
• Electricity pricing signals.

One of the most essential aspects in the residential appliance scheduling domain is
the power pricing signal, which is one of the above inputs. ToUP and DAP signals are
employed in most energy management strategies, since these pricing schemes are widely
adopted by many retailers and are simple to apply in the residential sector. The different
types of demand response programs are depicted in Figure 4.

Demand response
programs 

(DR)

Price-based 
programs

Incentive-based
programs

Time of use pricing (ToUP)1

Real time pricing (RTP)2

Critical peak pricing (CPP)3

Day ahead pricing (DAP)4

Inclined block rate (IBR)5

Emergency DR1

Interruptible/curtailable
services2

Direct load control3

Capacity market program4

Demand bidding5

Ancillary services market6

Figure 4. Types of demand response programs.
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2.2.2. Price-Based Demand Response

In price-based demand response programs, the electricity cost fluctuates between a
certain limit concerning variation in power demand. These programs include ToUP, RTP,
CPP, DAP, and IBR. The pricing schemes are divided into multiple rates because the utility
companies have to maintain a balance between demand and supply. The rate of electricity
is higher when there is high energy demand. The consumers get the benefits of these
programs by properly responding to the utility. Generally, the consumers’ responses are
driven by the adjustments in their consumption and load modification.

2.2.3. Incentive-Based Demand Response

These programs are specially designed by utilities, retailers, policymakers, grid opera-
tors, energy producers, etc. They refer to contractual arrangements to draw out the energy
demands from consumers during certain hours. The participating users are given mone-
tary incentives prices through these programs which are other than regular fixed prices.
Participation is open to every consumer. However, customers violating the programs are
given penalties. Table 1 represents a detailed explanation of all the DR programs.

2.2.4. Demand Response Applicability for Residential Appliance Scheduling

Typically, there are four sectors for electricity consumers, which are residential, indus-
trial, commercial, and transportation [55]. Considering the sectors to which it is applied,
the effectiveness of DR can be improved. However, these programs are mostly applicable
to residential, industrial, and commercial consumers. In this work, we have focused on
the residential sector. Thus, we consider the appliance scheduling problem in residential
households only. The residential users can be divided into the following types [56]:

• Short-range users: These users are concerned about the electricity price at the current
time.

• Postponing users: These users focus on current and future prices.
• Advancing users: These users focus on current and past prices.
• Mixed users: These users are a mix of both advancing and postponing users.
• Long-range users: These users can shift their consumption patterns over a long

duration of time.
• Residential household users

Since residential households involve multiple appliances running simultaneously and
the consumption patterns are random, the implementation of demand response is more
complicated for residential users than industrial users. To address this problem, residential
appliance scheduling management programs are deployed which either shift consumption
or reduce it [25]. However, it should not be assumed that all the households have the same
power-consuming patterns. The electricity consumption is minimized by encouraging
energy-aware consumption patterns or building energy-efficient homes [57]. However,
it is observed that by shifting the power consumption from on-peak hours to off-peak, a
significant reduction in the PAR can be achieved. In the next section, we will discuss the
residential appliance scheduling problem statement in detail.
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Table 1. Summarized demand response programs.

Price-Based Demand Response Incentive-Based Demand Response

1. ToUP: Splits a day into equal periods.
The electricity is billed at a fixed price rate
for each period. The periods vary depending
on underlying billing tariffs and the time of
the day. The periods and tariffs depend on
the season, day of the week, etc. A day of
24 h is divided into equal time slots.
The electricity rates vary according to
the time of day.
2. RTP: The utility publishes the rate of
electricity in real-time usually on an hourly
or daily basis. It is dynamic pricing where
the participants are notified beforehand.
RTP implementation requires real-time
communication between consumers and
utilities. Additionally, in energy management the
controller is required to change the energy
consumption pattern resulting in overall
price reduction.
3. CPP: defines the higher price rates for
critically overloaded periods. These critical
periods are decided by utilities based on a
threshold of the total electricity consumption
of the user. This tariff scheme is similar to
ToUP except for the critical period. This
type of pricing scheme is often required in
summer when the prices change periodically
and the system is overloaded.
4. DAP: The utility company publishes the
tariff rate a day advance. Thus, the electricity
prices are updated one day beforehand so that
the consumer can plan their consumption
well in advance.
5. IBR: Considers unit electricity price rate and
which increases incrementally with the blocks
of hundreds of kWh.

1. Emergency DR: In this program, the
participating consumers who are involved
in the load reduction during fault conditions
are eligible for incentives from the utility
companies. The consumers violating the
the agreement may/may not attract the penalties.
2. Interruptible/curtailable services: These
services are generally integrated with the
consumer’s ongoing tariff. Similar to the above
DR program, the consumers participating in
this program can get the incentives for load
reduction but those not participating in the
program during fault conditions are charged
high electricity bills or could be removed from
the system for that particular period. These
programs are mostly used for large
commercial sectors.
3. Direct load control: It is a DR program in
which the utility shuts down a few residential
loads to address reliability issues. The utility
companies are directly given full access to
partial loads such as air conditioners,
water heaters. The involved customers can
get the benefits of incentives from the utility
providers. However, if the participation
agreement is violated, users are accountable
for the penalties. The DLC program is best
suited for the residential sector and
small industries.
4. Capacity market programs: These programs
are implemented for the users who are ready to
reduce/curtail their specified load in the
given period.
5. Demand bidding: In this program, the
consumers offer a certain price to the utilities
at which they agree to curtail their load and
encourage the end-users how much load they
would curtail on the given utility pricing.
6. Ancillary services market (ASM): The
consumers following this program can bid on
curtailment of load. However, the bids refer
to ASM. The participating consumers get the
incentives for committing to the program
if bids are accepted.

3. Residential Appliance Scheduling Problem

This section describes the proposed residential appliance scheduling problem. Here,
the major emphasis is given to finding more optimized appliance schedules based on
user preferences. It is assumed that the consumers have set the operating times for the
appliances before their scheduling so that the algorithm finds the best optimal schedule
without violating constraints. While considering the residential appliance scheduling
problem, the following criteria/objectives are commonly considered.
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3.1. Electricity Cost

The objective of minimizing the electricity cost is given by (1):

minimize β ×
N

∑
n=1

T

∑
t=1

(Pavg,n × Sn,t) (1)

where β is the average electricity price taken from Nord pool cost data, Pavg,n is the average
power rating of the nth appliance, as shown in Table 2. t is the time-varying from 1 to T;
T = 24, n denotes the number of appliances varies from 1 to N. In the current dataset,
14 appliances are considered. Sn,t denotes the status of the appliance whether it is on or off.

Table 2. Power ratings of appliances.

Appliances Average Power
Rating

Dishwasher 1.3
Laptop 0.35

Air conditioner 2.8
Television 0.5

Washing Machine 0.5
Water Heater 4.5
Refrigerator 0.5

Microwave Oven 0.25
Light 0.3
Fan 0.5

Electric iron 1.2
Vacuum cleaner 1.5

Clothes dryer 4.8
Electric Kettle 1.0

3.2. Peak Load

The peak load is a period when the power requirement on the electric grid is at its
highest. The utility companies encourage the consumers to minimize the peak load to
achieve balance between supply and demand. It is represented in terms of PAR, i.e., peak-
to-average ratio. Reducing the peak load enables PAR to be minimized. The loser the PAR
is to 1, the flatter the load profile curve is over a day.

3.3. Consumer Comfort

The solutions for residential appliance scheduling problems are provided by consider-
ing consumer comfort and preferences. Usually, consumer comfort is expressed as waiting
time for scheduling the appliances. The waiting time and consumer comfort are inversely
proportional to each other. The closer the waiting time to 0, the higher is the consumer
comfort. Newer works in the field of appliance scheduling also consider thermal comfort
as a part of consumer comfort. The consumer comfort in terms of appliance scheduling can
be assessed/evaluated based on the following constraints:

• Timing: Consumer comfort is affected if the appliances are scheduled outside of their
preferred time windows.

• Use of appliances: Consumer comfort is affected if the appliance functioning stops
prematurely or the appliance does not perform at all.

• Appliance priorities: While scheduling the appliances, the order in which the ap-
pliances are scheduled is very important. Thus, consumer comfort is affected if the
precedence or priority of a certain appliance over the other is changed.
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3.4. Social Welfare

It is a factor to denote the balance between consumers’ grid benefits and their associ-
ated costs. The home energy management system uses this factor to improve the overall
social welfare of the group of consumers at a global level.

3.5. Environmental Criteria

Renewable energy sources are critical in maintaining the sustainability of energy. Thus,
it is important to propose an appliance scheduling method which reduces toxic and harmful
emissions by installing reliable RESs.

4. Home Energy Management System (HEMS)

A smart home is a key component of the smart grid which comprises a dwelling
that provides consumers with comfort, home automation, security, and remote control
of household appliances via smart technology [58,59]. Lutolf in [60] has defined a smart
home as:

“The smart home concept is the integration of different services within a home
by using a common communication system. It assures economic, secure and
comfortable operation of the home and includes a high degree of intelligent
functionality and flexibility.”

A home energy management system plays an important role in demand-side manage-
ment, which deals with controlling and optimizing the home appliances on the basis of user
preferences to enhance the energy efficiency. HEMS is a device that acts as a bridge between
utility and smart home appliances to minimize or to shift the electricity consumption of
the user. The main application of HEMS is smart dispatching between the utility company
and the smart homes. It helps the utilities to deploy demand response programs to smart
homes and the electricity pricing tariff is notified to the consumer. HEMS also helps to
avoid blackouts or power outages by sending signals to the controller to either shift or
curtail the appliances’ load. Figure 5 shows the schematic block diagram of HEMS.

Energy
consumption

scheduler

Demand and
appliances
manager

Residential
appliances

Vacuum cleaner 
Dishwasher

Laptop
Air conditioner

TV
Washing machine

Utility Smart 
meter

User
interface

Electric heater
Refrigerator

Oven
Light

Fan
Electric iron

Cloths dryer
Electric kettle

Figure 5. Block diagram for a home energy management system.

An energy consumption scheduler (ECS) is a core component of HEMS. It is an
intelligent electronic device that monitors the residential consumer’s consumption pattern.
It makes sure that the aggregate demand does not exceed the predefined limit. The ECS
contains scheduling algorithms that generate the final appliance schedules. The ECS
is capable of communicating information among the HEMS and its components. The
demand and appliances manager decides the priority and preferences of the appliances to
be scheduled. The installation of smart meter in households allows the implementation
of dynamic pricing mechanisms for utilities and consumers. A smart meter is a device
that collects and monitors consumption data of households. It is a tool which facilitates
bi-directional communication between the consumers and the utility. The smart meter
analyzes and monitors the data received from the appliances. The users are informed about
the dynamic tariff schemes published by the utility via a smart meter. The appliances
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mentioned in Figure 5 are managed and monitored by the smart meter. Normally, the
appliances used in the literature are vacuum cleaners, laptops, TVs, electric heaters, ovens,
fans, clothes dryers, dishwashers, air conditioners, washing machines, refrigerators, lights,
electric irons, and kettles. These appliances can be classified based on users’ clarity on their
classification and their operating mechanisms. The user interface is utilized by a smart
meter to exchange the control information and readings between the utility and users.

4.1. Categorization of Household Appliances

In this work, we have assumed a smart home with loads concerning household appli-
ances only. In the literature, smart home appliances are classified into different categories
on the basis of comfort of consumers. Barbato et. al. [61] classified home appliances
into fixed, shiftable, and elastic types. The authors of [62] classified household loads into
thermal loads, electrical loads, heat pump, etc. A few of the recent articles classified the
appliances into controllable comfort based loads, controllable energy based loads, and
non-controllable loads. In [63], the authors classified appliances into base, interruptible
and non-interruptible appliances. Raza et al. [64] used the appliance classification as fixed,
shiftable, and interruptible. In our study, we categorized smart home appliances into
shiftable and manually operated appliances (MOA) for better energy management and
scheduling. We consider a home where N is number of smart appliances used, having
different lengths of operational time (LOT). The categorization of appliances is shown in
Table 3.

Table 3. Classification of appliances.

Shiftable Interruptible
(SI)

Shiftable Non Interruptible
(SNI)

Manually Operated
(MO)

Vacuum Cleaner Washing machine Television
Dishwasher Water Heater Light

Clothes dryer Electric Kettle Fan
Microwave oven Electric iron Laptop

Air conditioner
Refrigerator

4.1.1. Shiftable Appliances

This type of appliance can be shifted from a one-time slot to another time slot within
a particular time duration where the pricing rate is minimum. These appliances can be
further classified into two sub-categories: (i) shiftable interruptible appliances and (ii)
shiftable non-interruptible appliances.

a. Shiftable interruptible appliances (SI): This type of appliance can be shifted from
one slot to another and can be interrupted during its operation. However. they can be
scheduled at any time within their stipulated time horizon. Interruptible appliances can
suspend their operations during functioning and restart again to continue the operation,
e.g., vacuum cleaners, dishwashers, and clothes dryers.

b. Shiftable non-interruptible appliances (SNI): This type of appliance can be shifted
but is non-interruptible. They work in a cycle and cannot be interrupted once started and
must keep running until they finish their tasks, e.g., washing machines, water heaters, and
electric kettles.

4.1.2. Manually Operated Appliances (MOA)/Non-Shiftable Appliances (NS)

The appliances with fixed energy usage, such as TV, and music player, are in this cate-
gory. In these appliances, the energy consumption is manually controlled by the real-time
demands of the consumers and is uncertain compared to other shiftable appliances. These
are manually operated, and users must be available to operate them. These appliances
have fixed operation patterns, and user convenience depends on real-time demands. Exam-
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ples are TVs, lights, fans, laptops, and air conditioners. The average power rating of the
appliances is recorded from Nord pool cost data shown in Table 2.

5. Optimization Techniques for Residential Appliance Scheduling

Home energy management system (HEMS) keeps track of household energy usage
and controls appliance schedules and operations. It can be accomplished through demand-
side management, which assists consumers in shifting their appliance consumption from
peak to off-peak hours, lowering household electricity costs. To adjust the appliance us-
age pattern, it’s crucial to schedule them in such a way that they meet all of the RASP’s
optimization goals. Researchers have been working on providing local energy (RES) that
is easy to generate, less expensive, and environmentally beneficial for several decades.
According to several studies, integrating renewable energy sources into the residential
sector provides the most cost-effective alternatives. The residential appliance scheduling
is formulated as an optimization problem which schedules the smart home appliances
in such a way that electricity cost is minimized, peak-to-average ratio is minimized, and
consumer comfort is maximized. The aforementioned objectives are optimization objectives.
Thus, to solve this problem, the methodologies employed to survey the scheduling tech-
niques involve optimization techniques. The optimization techniques used in the literature
are addressed using classical techniques with mathematical optimization, heuristic tech-
niques, meta-heuristic techniques, hybrid-heuristic techniques, soft computing techniques
based on artificial neural networks and fuzzy logic, artificial-intelligence-based techniques,
reinforcement-learning-based techniques, and storage-system-based techniques. In this
paper, we have surveyed the above mentioned techniques for appliance scheduling in
residential sector.

In the literature, a significant amount of work exists on in-home energy management
related to appliance scheduling, electricity cost, PAR, and consumer comfort. In the last few
years, numerous optimization methods have been proposed to achieve the cost reduction
objective. Some related work is cited below and summarized in Table 4. Similarly to
previous sections, the approaches are classified based on optimization techniques for
appliance scheduling, as shown in Figure 6.

Optimization
techniques

Classical
techniques

Heuristic
techniques

Meta-heuristic
techniques

Hybrid-heuristic
techniques

LP NLP CP DP

Figure 6. Classification of optimization techniques.
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Table 4. Conventional techniques based on LP and NLP.

Demand Response
Program Objective Optimization

Algorithm Consumer

Demand response
program using load

shifting and load
curtailment [65]

To payoff demand
response aggregator MILP

Residential/
commercial/

industrial

RTP and IBR [66]
Reduction of electricity

cost and improving
consumer comfort

MILP Residential

RTP [67] Reduction of total cost
of the energy hub MINLP General

ToUP [68]
Improving consumer

comfort and reduction
of energy bill

MINLP Residential

RTP [69] Reducing generation
cost of utility NLP General

Direct load control
(DLC) [70]

Reducing electricity
bill

NLP and
MINLP General

5.1. Conventional Techniques Using Mathematical Optimization

The HEMS develops appliance operation schedules that satisfy one or more criteria
while taking into account all of the underlying restrictions. Deterministic optimization-
based approaches, which can be categorized into the following groups, are a traditional
way to schedule household appliances. In this work, we focus on LP and NLP techniques,
since they are the most widely studied algorithms in the field of appliance scheduling.

5.1.1. Linear Programming (LP)

The LP problem is a simplified version of an optimization problem in which the ob-
jectives and constraints are expressed by linear relationships. In other terms, to achieve
the optimal solution, such as minimum cost or maximum profit, mathematical models are
depicted as linear relationships [71,72]. It optimizes the linear objective functions concern-
ing linear equality and inequality constraints. These problems primarily include binary
programming [73,74] and mixed-integer linear programming [6,75]. LP problems have a
relatively low computational burden and are used to solve low-scale optimization problems.
Linear programming problems involve finding the best solution to achieve optimization
objectives. Many researchers have applied LP methods to appliance scheduling. In [76], the
authors proposed LP based scheduling mechanism to reduce the peak load and to balance
the power consumption. The approach is evaluated on seven smart home appliances.
It is observed that the LP scheduling technique achieves the effectiveness of the power
consumption balance and can be useful for multiple homes as well.

Wang et al. [77] proposed mixed-integer linear programming (MILP) based tech-
nique to minimize electricity cost and improve consumer comfort. Single home with five
appliances is considered with ToUP as a pricing scheme. The results show that power
consumption and electricity bill is reduced by 5 and 58%, respectively. In [78], the MILP
technique is used for scheduling to optimize cost, PAR, and consumer comfort. It is
noted that the proposed approach achieves the said objectives and excess energy can be
injected back to the main grid when the user demand is met. MILP based HEMS was
proposed in [79] to schedule home appliances. The results demonstrated that the objective
of improving consumer comfort while lowering the electricity cost is achieved.
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5.1.2. Non-Linear Programming (NLP)

NLP is a technique for solving mathematical optimization problems with non-linear
constraints and objective functions [80,81]. Many researchers have proposed NLP methods
because it optimizes the cost and generates satisfactory results. Ref. [82] have used NLP
techniques to achieve consumer comfort and reduction of energy costs. The pricing mecha-
nisms like CPP, ToUP, RTP have been considered to evaluate the stochastic-based model.
The results demonstrate that consumer comfort is improved and the cost is reduced. In [83],
an NLP-based optimization approach is proposed for residential consumers in which the
objective is to reduce electricity cost and PAR. In addition to the above-mentioned LP and
NLP techniques, Table 5 (some of this table is adapted from [10]) summarizes a few more
techniques for residential appliance scheduling.

Table 5. Comparison of conventional optimization techniques. (Part of this table was adapted
from [10]).

Techniques Mechanism Characteristics

Linear
Programming
[6,73,75,84–87]

Mathematical Programming
Model where the objective

function is linear.

1. It has a feasible solution and region.
2. The exact/optimal solution can be
determined.
3. Objective functions have a fixed set
of constraints.
4. It models a relationship between
variables as linear to maximize or
minimize an objective

Non-Linear
Programming

[81,88–91]

Mathematical Programming
Model where the objective

function is non-linear.

1. The complex problem can be
converted into an easy problem.
2. The sequence of sub-problems is
solved.
3. The exact/optimal solutions can
be found

Convex
Programming

[91–93]

Mathematical Programming
Model where the objective

function is convex.

1. This method minimizes a convex or
maximizes a concave objective function
2. Every local optimum is global
optimum
3. The optimal set is convex
4. If the objective function is strictly
convex, then the problem has at most
one optimal point.

Dynamic
Programming

[81,92–95]

Mathematical Programming
Model with no specific

parameter and each problem
has its own parameter.

1. It breaks down a complex
problem into simpler sub-problems.
2. It finds optimal solutions to
these sub-problems.
3. Recursive relation is used to
optimize the solution.

5.1.3. Convex Programming

Conic programming, least squares, geometric optimization, and Lagrange’s method
are used to tackle convex programming problems [93]. With recent advances in optimiza-
tion algorithms, convex programming is now nearly as simple as linear programming.
Convex programming techniques are usually used in demand response programs. In [96],
the authors have used RTP evaluated convex optimization technique to minimize electricity
cost and energy consumption.
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5.1.4. Dynamic Programming (DP)

The optimization problem is divided into several smaller sub-problems [81] and each
sub-problem is sequentially addressed one by one using the DP approach. Samadi et al. [97]
proposed a cost minimization scheme for shifting household appliances. The day is divided
into different time intervals and dynamic programming is used for each interval to schedule
the appliances.

5.2. Heuristic and Meta-Heuristic Optimization Techniques

For solving large problems, conventional techniques using mathematical optimiza-
tion are computationally expensive. Heuristic and meta-heuristic techniques offer good
alternatives. They rely on the high-level procedure to search for solutions resulting in
a lower computational burden than conventional techniques. The heuristic techniques
are particularly useful for the problems where it is useful to find one sub-optimal solu-
tion. Meta-heuristics are very popular optimization algorithms for solving formidable
optimization problems. They are more efficient than conventional techniques with math-
ematical optimization because of the large search space to find an optimal solution [98].
The meta-heuristic algorithms include particle swarm optimization [99,100], the genetic
algorithm [100,101], ant colony optimization [100], wind-driven optimization [102], and
bacterial foraging optimization [103], among others. The most used meta-heuristic algo-
rithms are population-based algorithms. The main goal of these algorithms is to find a
near-optimal solution with a relatively low computation burden as compared to conven-
tional techniques. The meta-heuristic algorithms are global optimization algorithms and
can be used for solving high scale constrained optimization problems.

5.2.1. Overview of Prominent Meta-Heuristic Algorithms (GA, PSO, and ACO)

In 1975, John Holland introduced a concept of genetic algorithm (GA) to solve search
space and optimization problems by natural evolution like mutation, selection, crossover,
inheritance [104–108]. GA is a well-established technique used for solving optimization
problems [109,110]. It is an evolutionary algorithm and is inspired by the evolution of
human beings from generation to generation. It is based on selection, mutation, and
crossover parameters. At every iteration, mutation and crossover operators produce new
individuals. To select a fitter individual among newly generated and previous individuals,
a stochastic-based selection operator is used. GA is used for scheduling the residential
appliances in optimal way [111]. An RTP-based pricing scheme is used. It achieves the
objective of balancing demand and available supply. The results show that electricity-saving
is 5%. In [112], the authors have used optimal scheduling of air conditioners and inverters
using GA to achieve electricity bills and peak load reduction. They have used RTP as a
pricing scheme that is notified to the user a day in advance. Genetic-algorithm-based load
scheduling for DSM is used for optimizing electricity cost and consumer comfort [113,114].
Particle swarm optimization is the most commonly used meta-heuristic algorithm for
solving optimization problems [23,115–121].

In [23], the authors have used binary PSO abbreviated as BPSO to achieve the objective
of total electricity cost minimization. A total of 19 appliances have been used in the study
and scheduling is done over a 16-hour time horizon to satisfy the requirement of the
consumer. The results show that BPSO performs better than single swarm PSO. A mutation
operator-based PSO-enabled appliance scheduling technique was developed in [115] for
a large-scale distribution network for over 20310 consumers. Binary PSO-based optimal
scheduling techniques for electric heaters are used for 200 households [116]. It is observed
that the peak load of the utility is minimized and consumer comfort is maximized. In [117],
PSO was used for DSM optimization problems to achieve minimum electricity bills for
consumers. The experimental results show that PSO performs better than GA. In [121],
the fuzzy-based PSO technique is used to solve the scheduling problem to minimize the
power losses of the system. Ref. [120] have used binary PSO for reducing total cost and
total consumption of electricity.
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Ant colony optimization algorithm was introduced in 1992 by Dorigo [122,123]. The
solution to any optimization algorithm can be determined by the optimal path of the
graph. ACO algorithm possesses special characteristics like self-organization, self-healing,
self-protection [124]. It is used for solving a discrete optimization problem. Extensive
research has been done in the area of ACO for scheduling the appliances. In [124], the
day ahead schedules are obtained using ACO enabled self-optimization technique. In this
work, only shiftable appliances are considered. Okonta et al. [125] designed the scheduling
technique based on ACO. The study focuses on electricity bills, consumer comfort, and
the ToUP pricing scheme. Rahim et al. [126] proposed a load scheduling technique to
reduce peak load, electricity cost, and PAR. They have used ToUP and IBR pricing tariffs
to avoid complexity in the calculation of energy bills. Hazra et al. [127] presented a
scheduling technique with demand response, fuzzy logic, and ACO. The results show
the reduction in bill and improvement in consumer comfort. The characteristics of the
aforementioned techniques are summarized in Table 6. Along with these prominent meta-
heuristic techniques, there exist numerous population-based meta-heuristic algorithms for
appliance scheduling which are discussed in this section.

Table 6. Comparison of meta-heuristic algorithms [10].

Meta-Heuristic
Algorithms

Mechanism User-Defined
Parameters Characteristics

Genetic
Algorithm

[104–108,128]

Inspired by the
natural evolution
of human beings

Population size,
number of parents,
selection, crossover,

mutation and
termination criteria.

1. The chromosome genes
are responsible for
developing new solutions.
2. The genes denote
the decision variable
which contains discrete
or continuous values.
3. The selection criteria and
population size affects the
search space.
4. The convergence of the
solution depends on the
selected solution and
termination criteria.

Particle swarm
optimization

[128–132]

Swarm base
technique inspired

by the social
the behavior
of birds flock.

Initial inertia weight,
final inertia

weight,
population size,

termination criteria.

1. The particle position in
each dimension acts as a
decision variable.
2. Fitness function value
depends on the distance
between particles and food.
3. The solution of the
optimization problem using
PSO is calculated by the
updated distance from
which the particle is moved
to find a new solution.
4. The convergence rate of
the solution is determined
by the termination criterion,
the running time of the
the algorithm, and the
objective function.
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Table 6. Cont.

Meta-Heuristic
Algorithms

Mechanism User-Defined
Parameters Characteristics

Ant Colony
optimization
[128,133–136]

Inspired by
social the

behavior of
ant species.

Population size,
evaporation rate,

pheromone,
termination criteria.

1. The path of the ant acts as
a decision variable.
2. The path from nest to food
determines the solution to
the optimization problem.
3. The decision space depends
on the fitness function and
fitness value of the solution
4. The convergence rate depends
on the run time of the algorithm,
termination criteria, objective
function, and the number of
iterations.

5.2.2. Population-Based Meta-Heuristic Algorithms

Genetic algorithms and strawberry algorithms are used by researchers in [137] to
address appliance scheduling problems. A smart home with 15 appliances was selected
to achieve minimum cost, PAR, and maximum consumer comfort. The experimental
results show that GA outperformed SBA in achieving the optimization objectives. The
cost and PAR were reduced by 1.1 and 8.8% as compared to SBA, and consumer comfort
was improved by 10%. In [138], GA, CSOA, and CSA were used for minimizing the cost,
PAR, and waiting time. The pricing mechanisms used were RTP and CPP with 12 home
appliances. It is noted that CSOA outperforms CSA and GA in reducing the electricity
cost and PAR for both pricing schemes, and CSOA obtained the minimum trade-off for
waiting time. Tariq et al. [139] addressed flower pollination algorithm (FPA) and harmony
search algorithm (HSA). CPP scheme is used for the implementation of scheduling of
16 smart home appliances. The simulation results show that FPA performed better than
HSA by 11 and 2% in terms of reduction of cost and 23 and 21%, respectively, in terms
of PAR. However, HSA outperforms FPA in maintaining the user comfort trade-off. The
authors of [140] used a gray wolf optimizer (GWO) for scheduling 38 home appliances
to reduce PAR and cost. The performance of GWO was compared with GA. The results
show that GWO outperforms GA by 4.6 and 17%, respectively, for electricity cost and PAR.
Reference [102] proposed WDO based residential appliance scheduling for smart homes. It
is observed that WDO performs better than PSO by 8 and 10% for PAR and energy cost.

EWA and HSA based optimization technique was used for 6 home appliances by
implementing ToUP as a pricing scheme [141]. The results show that EWA works better
for cost reduction while HSA performs better than EWA while considering PAR. In [142],
BFO based load scheduling technique is used for minimizing the cost and peak load. BFO
algorithm managed to handle a large number of appliances and showed better results than
evolutionary heuristic algorithm. It reduced cost and PAR by 10 and 7%, respectively. The
study in [143] developed GWO and BFO-based home appliance management wherein the
appliances were classified into two categories. BFO and GWO achieved 45 and 55% cost
reductions. In [144], Zafar et al. evaluated the performance of home energy management
systems with the help of three algorithms namely, HSA, BFO, and EDE. It was observed that
HSA performed better than BFO and EDE in terms of cost and PAR reduction. The existing
optimization techniques are not suitable for handling complex optimization problems and
are non-flexible in nature. They were found not incapable of handling cost optimization
and consumer comfort maximization of the residential households with a large number of
appliances [102,145,146]. Thus, we move towards hybrid heuristic optimization techniques.
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Apart from the aforementioned techniques, a few more meta-heuristic techniques are
summarized in Table 7.

Table 7. Meta-heuristic techniques.

Scheme Objective Limitations

GA [147] Reduction of electricity cost and PAR The complexity of the system is ignored

GA [148] Reduction of electricity cost and PAR Installation cost is ignored

GA [149] Reduction of electricity cost PAR and consumer comfort is neglected

GA [110] Reduction of electricity cost and PAR The consumer comfort factor is ignored

GA,
BPSO,

ACO[100]

Reduction of electricity cost
and PAR and maximization

of consumer comfort

Computational complexity
is not considered.

BPSO [150] Reduction of electricity cost Consumer privacy is not considered

HSA [151] Reduction of operational cost Consumer comfort is ignored.

BFOA [152] Reduction of electricity cost
The tradeoff between cost and

consumer comfort is not considered.

GA,
BPSO,

WDO [153]

Reduction of electricity cost
with affordable PAR

The trade-off between cost
and PAR is ignored.

5.3. Hybrid Heuristic Techniques

A combination of two or more algorithms is considered a hybrid approach. Com-
pared with single algorithms, the hybrid algorithms perform better for cost reduction,
PAR reduction, and consumer comfort satisfaction. A hybrid evolutionary approach with
PSO and neuro-fuzzy logic is proposed in [154] to eliminate the uncertainties of electricity
rates. A forecasting model is designed 24 h ahead of time to cater to varying electricity
prices. In [155], a combination of GA and PSO is used to consider non-linear optimiza-
tion. The simulation results show that the proposed method is effective for the DSM
optimization problem.

Javaid et al. [103] have designed a hybrid genetic wind-driven algorithm (HGWD) for
the residential sector in the smart grid. The results show that HGWD performed better
than GA and WDO individually by 10 and 33%, respectively, in terms of electricity cost.
HGWD reduced consumer comfort by 40%, electricity cost by 30%, and PAR by 17%.
Ahmad et al. [156] introduced hybrid approach (HGPSO) combining GA and PSO which
performs better than GA, BFO, BPSO, and WDO. The percentage of cost reduction for GA,
BFO, BPSO, and WDO was 9.8%, 15.4%, 19.5%, 15.8%, respectively. The hybrid model
HGPSO produced a bill reduction of 25.12%. Similarly, PAR reduction for GA, BFO, BPSO,
and WDO was 14.09%, 22.10%, 3.30%, 33.54%, respectively, while HGPSO reduced the PAR
by 24.88%.

Iqbal et al. [157] presented 3 hybrid approaches for cost and PAR reduction.
(1) WDO+GWO named WDGWO, (2) GA+WDO named WDGA, and (3) BPSO+WDO
named WBPSO. The simulation results were performed and it is noted that WDGWO,
WDGA, and WBPSO performed better than existing heuristic techniques. The results also
show that the proposed scheme efficiently minimizes PAR and cost. Manzoor et al. [158]
proposed teaching-learning genetic optimization (TLGO) combination of TLBO and GA.
A day ahead pricing scheme is used for residential load management. The results have
shown that the cost-saving with GA, TLGO and TLBO was 31, 33 and 31.5% respectively.
The hybrid approach TLGO also had low customer discomfort which is 1.83 in comparison
with 2.37 and 2.14 for GA and TLBO, respectively. Javaid et al. [159] combined bat algo-
rithm (BA) and crow search algorithm (CSA) to propose hybrid bat crow search algorithm
(BCSA). CPP pricing scheme was incorporated in the design of HEMS. The results showed
that BCSA reduced the cost by 31.19% as compared to 28.32 and 26.70% for BA and CSA,
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respectively. Awais et al. [160] proposed a novel hybrid algorithm by combining a bacterial
foraging optimization algorithm (BFO) and flower pollination algorithm (FPA). RTP and
CPP pricing schemes are incorporated to achieve the reduction of EC and PAR. It is noted
that for both pricing schemes, the hybrid approach HBFPA performs better than BFO
and FPA for reduction of cost and PAR with a reasonable waiting time. Apart from the
aforementioned techniques, several hybrid heuristic techniques are studied in the literature
which are summarized in Table 8 (extension of techniques reviewed in [16]).

Table 8. Hybrid heuristic techniques. Extension of techniques reviewed in [16].

Method Objective Pricing Scheme

GA and DWO [103]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

RTP

GA and PSO [156]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

RTP

GA and BFOA [161]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

ToUP, RTP, CPP

EDE and TLBO [162]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

RTP

GA and HSA [163]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

RTP, CPP

FPA and BFOA [160]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

RTP, CPP

FPA and BAT [164]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

RTP

GA and TLBO [164]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

RTP

GA and FPA [164]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

RTP

HSA and BFOA [165]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

ToUP

GA and MFO [166]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

RTP

FPA and TS [167]
Electricity cost reduction

PAR reduction
Consumer comfort maximization

RTP

5.4. Soft Computing-Based Appliance Scheduling

Soft computing techniques are used to solve the existing complex problems where
output results are imprecise and fuzzy in nature. Among many soft computing applications,
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appliance scheduling is one of them. In the literature, soft computing techniques have
been successfully applied to an appliance scheduling problem. Based on types of soft
computing techniques, the scheduling can be classified as fuzzy-logic-based scheduling
and artificial-neural-network-based scheduling as shown in Figure 7.

Soft computing
based scheduling

Fuzzy logic based
scheduling

ANN based
scheduling

Figure 7. Soft-computing techniques.

5.4.1. ANN-Based Scheduling

An artificial neural network is a machine learning approach having numerous ap-
plications because of its adaptability, self-organization, and real-time fast solution. ANN
is a universal approximator that uses supervised learning to solve scheduling problems.
Feedforward network architecture is commonly used among all ANN topologies. There
are two ways we can solve appliance scheduling problems using ANN; one is training
an individual ANN for each appliance [168] and the other considers training a single
ANN to schedule multiple appliances [169]. In [170], ANN-based adaptive control logic is
developed for providing thermal comfort. The proposed method used 2 predictive models
that resulted in better thermal comfort than the conventional logic. More recently, ANN
based model is used for maintaining energy efficient smart home using DR signals and
energy consumption patterns [171–173] .The study in [174] presented an ANN-based model
and the branch and bound approach is used for optimization. The results have shown 5%
energy saving. An ANN-based home energy management system is developed for optimal
scheduling of appliances in [175] which selects appropriate learning rates and neurons.
In [176], ANN-GA based hybrid model is designed for scheduling home appliances to re-
duce the grid energy usage. However, it fails to schedule a large number of appliances. The
study in [177] involves an ANN-based HEMS model for minimizing the EC and achieving
energy flexibility.

5.4.2. Fuzzy Logic-Based Scheduling

Fuzzy-logic-based techniques are used for monitoring and controlling home appli-
ances for many years. Since fuzzy techniques are simple, adaptable, flexible, and have
the capability in dealing with uncertainties and non-linearities [178,179]. Reference [180]
proposed a fuzzy controller which minimizes electricity consumption and controls indoor
building factors. The study in [181] designed the fuzzy controller which shows 76% of
annual energy saving for the electric lighting. A day-ahead pricing for solving a scheduling
problem involving an air conditioner is used in [182]. A fuzzy logic model was designed
for it [183] addressed the residential home appliance scheduling problem using applied
fuzzy logic. The user comfort factor was taken into consideration with the day-ahead
pricing scheme. A novel intelligent-agent-based appliance scheduling is used in [184]. The
experiment results show 3% energy saving while maintaining user comfort. In [185], the
adaptive fuzzy controller is developed for achieving thermal comfort in the heating ventila-
tion and air conditioning (HVAC) system. Fuzzy-logic-based design is used for controlling
the HVAC system in [186]. The simulation results showed that the thermal comfort factor
is achieved. The study in [187] classified the appliances according to consumption patterns
and designed the fuzzy controller to control illumination and HVAC systems.
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5.5. Appliance Scheduling from Other Perspectives

Apart from aforementioned techniques, there are other HEMS strategies which aim to
schedule and control home appliances from artificial intelligence (AI), coordination and
sharing methods, energy storage systems and incentive-based DR perspectives. Artificial
intelligence techniques are controlled by mimicking human thoughts and embedding hu-
man intelligence into the machines. AI based scheduling techniques are mostly used for
energy optimization and forecasting purposes. These techniques are generally classified
into machine learning, deep learning, reinforcement learning, etc. With the recent techno-
logical advancements in smart grid infrastructures, various communication technologies
and sensors are deployed which generates huge volume of data. This data needs to be sub-
sequently processed. In the context of appliance scheduling problem, various data science
and machine learning based techniques have emerged which target smart home energy
management [188,189]. In [190], authors have comprehensively discussed various machine
learning algorithms for demand forecasting and load management in residential sector.
In the literature, various deep learning and reinforcement learning approaches have been
proposed which aim to schedule appliances with maximum rewards [171,191]. In [192],
the authors proposed cost optimization strategy based on deep reinforcement learning for
home energy management. Lissa et al. [193] proposed deep reinforcement learning based
model to handle energy savings and consumer comfort. A deep reinforcement learning
approach is developed to determine optimal DR scheduling strategy [194]. Apart from
these techniques, number of researchers are focusing on energy storage systems based DR
implementation in recent years. Previously, the storage devices were not used because of
their high cost, economic reasons and short time span of the batteries. However, in recent
years, due to emergence of renewable energy sources (RES), DR implementation with
energy storage systems (ESS) has become prominent in home energy management. Energy
storage is the ultimate solution to overcome challenges associated with RESs. Batteries
can be used to store the renewable power which in turn reduces the dependency on grid
supply. The consumers are encouraged to store the power in storage devices when prices
are low. The effect of ESS and RES for home energy management is discussed in [195].
The results show that storage devices can certainly be one of the solutions for reducing
electricity consumption in peak hours. Wang et al. [196] integrated PV power generation
and electrical energy storage (EES) into smart grid and proposed hybrid electrical energy
storage (HEES). The proposed system shows 73.9% average profit enhancement for the cost
of energy during a given day. The authors of [197] proposed a system equipped with both
battery system and grid energy to schedule the electrical appliances. In this system, the
batteries are charged when electricity tariffs are cheaper and used for running appliances
when tariffs are high.

Aliabadi et al. [198] presented a comprehensive review on coordination and sharing of
electricity in neighborhood areas for smart home energy management. The authors of [199]
proposed a coordination mechanism for neighboring households with PV battery systems.
A predictive control model based on dynamic programming is designed to increase the
energy exchanged within neighborhood. A centralized coordinated DR for neighborhood
is proposed by [200]. The proposed DR model helps in achieving consumer satisfaction.
The authors of [201] proposed coordinated DR for smart homes. The proposed approach
shows the reduction of peak load and peak losses. In [202], authors have used peer-to-peer
energy trading strategy with prosumer concept. The DR implementation is performed in
two phases. Each smart home appliance is scheduled using BPSO algorithm with RTP
model and energy trading is carried out between prosumers and consumers based on
DR implementation. The simulation results show that the electricity cost is minimized
without affecting the consumer comfort of both prosumers and consumers. In [203], the
authors proposed a power scheduling algorithm based cost efficiency model to improve
consumer comfort. A trade off between consumer comfort and electricity cost is taken into
consideration. The results show that the proposed method saves the electricity cost and
improves consumer comfort factor. In [204], multiobjective home energy model is imple-
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mented using PSO and MILP techniques for prosumer-based energy management. The
experiment demonstrates that the maximization of consumer comfort is achieved. A hybrid
genetic ant colony optimization algorithm is proposed using photovoltaic battery system
to reduce electrcity cost, alleviate peak load and maximize consumer comfort [205]. The
authors of [206] proposed mixed integer programming based sharing technique for smart
home energy management. The underlying system is capable of exchanging electricity
through sales and purchases. The proposed approach determines optimal day ahead energy
scheduling of home appliances. In [207], the authors proposed decentralized scheduling
model for sharing the renewable energy among interconnected smart homes. The results
show the reduction in electricity cost and PAR without affecting the consumer comfort.
A day ahead decentralized coordination approach is proposed for appliance scheduling
and energy sharing to reduce electricity cost of consumers [208]. In [209], the authors
proposed a starvation free optimal energy sharing in distributed households environment
in which surplus energy of a prosumer smart home is exchanged with other consumer
smart homes. DSM and DR implementation is broadly discussed with challenges involved
in DSM, optimization techniques in DSM and application of storage devices such as bat-
tery ESS and EVs in [210]. In DR implementation, most of the existing literature focus
on price-based DR. However, there are fewer studies mentioning incentive-based DR in
residential sector. In incentive-based schemes, the consumers are under contractual agree-
ment with utility companies which allow them to conduct load management programs
to reduce the electricity cost. The incentive-based DR programs are classified into direct
load control, emergency DR, interruptible services, capacity market programs, demand
bidding and ancillary services market. Direct load control (DLC) is an important aspect
of incentive-based DR implementation. DLC is offered to residential users which enables
utility companies to remotely switch off the consumer’s equipment [69]. The consumers
who participate in DLC program are offered monetary incentives in advance to reduce the
consumption below defined thresholds [211,212]. In [213], the authors proposed practical
load scheduling optimization method for energy management using incentive-based DR.
Interruptible services encourage the involved consumers to shift their load from peak hours
to off-peak hours or allow them to shut down the load during emergencies failing which
users may get penalty [214,215]. Emergency DR programs are used when demands are high
and grid is affected by unplanned fault events. In such emergency situation, consumers
reschedule their loads to reduce the stress on grid. In turn, they receive monetary benefits
based on the requested levels of load reduction [216,217]. In [218], the authors proposed
an incentive-based demand response optimization (IDRO) model which is used to cost-
effectively schedule smart home appliances for minimum usage during peak hours. In
demand bidding, the involving consumers are offered rewards based on their participation
in the electricity trading for reducing their consumption. It is a market based program in
which consumers bid for the load they wish to reduce [219].

5.6. Key Points and Observations

Following are the key points and observations of the review.

• In the manuscript, we have listed demand-side management strategies for appliance
scheduling, which include classical techniques, LP based techniques [6,71–79], NLP based
techniques [80–83,88–91], convex programming and dynamic programming [81,92–96],
genetic algorithm [104–108,128], particle swarm optimization [128–132], ant colony op-
timization [128,133–136], population based meta-heuristic algorithms [102,137–146],
hybrid-heuristic algorithms [103,154–167], artificial neural network based soft comput-
ing techniques [168–177], fuzzy logic based techniques [178–187], artificial intelligence
based techniques [171,188–194], storage system-based techniques [195–197], sharing
and coordinating neighborhood techniques [198–210], consumer comfort maximiza-
tion techniques [200,202–205,207,210], and incentive-based DR [69,211–219].

• We provided a brief overview of important components of the smart grid to manage
household consumption daily. The smart grid components include demand-side
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management, demand response programs, home energy management systems, and
smart home appliances.

• The demand-side management strategies and techniques are very effective and have
shown immense potential in residential appliance scheduling to manage users’ con-
sumption patterns. However, a few issues need to be addressed to improve and
enhance the power system.

• LP-based optimization is used when the constraints and objective functions are linear.
It is capable of providing the optimal solution. Moreover, it is fast and has high
solution speed. The problem arises when a non-linear problem is deduced into a linear
one, which may lead to an inaccurate solution.

• The NLP method provides a local or global optimum solution. It provides simpler
solutions to complex problems, and similarly to LP techniques, NLP has a high
computational burden and is unable to solve high scale optimization problems.

• Conventional techniques such as LP and NLP are best suited for finding exact solutions,
but fail to solve high dimensional and computationally expensive optimization problems.

• Heuristic and meta-heuristic algorithms are relatively faster techniques capable of finding
the near-optimal appliance schedules. However, some of the meta-heuristic techniques
can take time without satisfactory solutions due to their convergence nature.

• The efficiency of GA can be improved for a large number of iterations. However, the al-
gorithm can provide misleading results. The PSO implementation is complex because
of the long tracking process and poor response. The ACO uses pheromone evapora-
tion and weighing parameters as the standard parameters to solve the optimization
problem, as opposed to GA, which uses population size, crossover probability, and
mutation probability. PSO uses swarm size, iterations, and neighborhood size as pa-
rameters.

• GA, PSO, and ACO have fast convergence speeds given that a good set of parameters
must be defined. However, GA cannot converge easily in the presence of noise. ACO
convergence rate is faster than GA.

• The prominent conventional and meta-heuristic optimization algorithms are LP, NLP,
GA, PSO, and ACO. All these algorithms are used to solve the same optimization prob-
lem of appliance scheduling. However, they vary in terms of efficiency, convergence,
and reliability.

• GA, PSO, ACO are meta-heuristic evolutionary optimization algorithms that use
different search spaces to obtain the optimum schedules. They exhibit high efficiency
and high system independence.

• Soft computing techniques are used to solve complex and real world problems. They
are faster and do not require mathematical models for computation.

• Fuzzy logic models are integrated with meta-heuristic algorithms to solve the residen-
tial appliance scheduling problem. These algorithms can provide the best possible
results for the reduction of energy consumption without affecting consumer comfort.

• Hybrid and modified algorithms were found better in terms of performance and
results than a single algorithm.

• Energy storage systems in smart homes such as electric vehicles, batteries are promis-
ing technologies that maintain the flexibility and robustness in the smart home and
will change the grid scenario completely in the near future.

• From our detailed review, it was observed that a single algorithm may not be best to
solve the complex optimization problem because of its low convergence rate, low per-
formance, high complexity of constraints, etc. Thus, modified and hybrid algorithms
are used to solve those complex problems because of their convergence rates, perfor-
mances, uncertainties. As a result, the modified and hybrid algorithms outperform
the single algorithms.

• Based on the conducted review, most of the papers in the literature focus on residential
consumers and ignore industrial consumers. The amount of electricity consumption
in industrial sector is huge in comparison with total electricity provided by utilities.
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Most of the electricity is used for industrial automation, which includes manufactur-
ing, construction, mining, printing, etc., where high loads are involved. The utility
companies face a lot of challenges in order to fulfill this huge demand. Some of the
challenges include maintaining an adequate electricity supply and cybercriminals
launching cyber-attacks. Thus, we recommend studying the Industrial Appliance
Scheduling Problem (IASP) and surveying DSM techniques for industrial users too.

6. Conclusions and Future Directions

This manuscript provides a review of highly cited recent and old articles on DSM
for the residential appliance scheduling problem. Demand-side management techniques
and types of demand response programs are discussed in detail. We presented a compre-
hensive take on home energy management systems focusing on conventional, heuristic,
meta-heuristic, and hybrid heuristic techniques. In conventional techniques, the main
focus is on LP and NLP optimization. The conventional techniques are used for finding
exact solutions, but they fail to find the optimal solutions for computationally expensive
problems, such as RASP, because of their complex nature. Furthermore, prominent meta-
heuristic algorithms such as GA, PSO, and ACO were discussed with other population
based heuristic algorithms. We also addressed soft-computing techniques, namely, artificial
neural networks and fuzzy logic. Soft computing techniques provide the best possible
results without affecting the consumer comfort. A comparison between various residential
appliance scheduling approaches was given in terms of various factors, including electricity
cost, peak load, and consumer comfort. Apart from these, a brief overview of artificial
intelligence techniques, sharing and coordination techniques, storage-system-based tech-
niques, and incentive-based techniques was also presented. From the detailed survey,
it was observed that modified and hybrid techniques show better results than a single
algorithm in terms of convergence, complexity, and performance. Looking forward, the
demand response programs can be further investigated for wholesale electricity market
where competition and bidding is involved. The residential appliance scheduling schemes
can play a pivotal role in facilitating a microgrid as a power system solution in the future
for energy efficiency. In a smart grid, renewable energy sources are crucial for attaining
a sustainable grid and can be included in the system. However, integrating RESs with a
grid to solve appliance scheduling problems with cost-effective implementation requires
further investigation. Hybrid-based optimization algorithms improve the convergence
and computational time of the DSM optimization problems. However, when solving the
optimization problem, type of optimization should be taken into consideration in the fu-
ture. Additionally, in cases of industrial DR implementation, a similar kind of survey is
required for the industrial appliance scheduling problem. RASP is a scheduling problem
where appliances are scheduled in a time-wise manner. Thus, for scheduling purposes,
operating system concepts such as priority scheduling, CPU scheduling, and shortest job
first scheduling can be incorporated to solve the problem.
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Abbreviations
The following abbreviations are used in this manuscript:

ACO Ant Colony Optimization
AMI Advanced Metering Infrastructure
ANN Artificial Neural Network
BFO Bacterial Foraging Optimization
BFOA Bacterial Foraging Optimization Algorithm
BPSO Binary Particle Swarm Optimization
CP Convex Programming
CPP Critical Peak Pricing
CSA Cuckoo Search Algorithm
DAP Day Ahead Price
DLC Direct Load Control
DP Dynamic Programming
DR Demand Response
DSM Demand-Side Management
EC Electricity Cost
ECS Energy Consumption Scheduler
EDE Effective Differential Evolution
EES Electrical Energy Storage
EsS Energy Storage Systems
EWA Earth Worm Algorithm
FA Firefly Algorithm
FPA Flower Pollination Algorithm
GA Genetic Algorithm
GWO Grey Wolf Optimization
HEMS Home Energy Management System
HEMSs Home Energy Management Systems
HEES Hybrid Electrical Energy Storage
HGWD Hybrid Genetic Wind Driven
HSA Harmony Search Algorithm
HVAC Heating Ventilation Air Conditioning
IBR Inclined Block Rate
ICT Information and Communication Technology
IDRO Incentive-based Demand Response Optimization
LOT Length of Operational Time
LP Linear Programming
MILP Mixed-Integer Linear Programming
MINLP Mixed-Integer Non-linear Programming
MO Manually Operated
MOA Manually Operated Appliances
NLP Non Linear Programming
NS Non Shiftable Appliances
PAR Peak-to-Average Ratio
PSO Particle Swarm Optimization
RASP Residential Appliance Scheduling Problem
RESs Renewable Energy Sources
RTP Real Time Pricing
SBA Strawberry Algorithm
SG Smart Grid
SI Shiftable Interruptible appliances
SNI Shiftable Non-Interruptible appliances
TLBO Teaching-Learning-Based Optimization
TLGO Teaching Learning Genetic Optimization
ToUP Time-of-Use Pricing
WDO Wind Driven Optimization
WT Waiting Time
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