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Abstract: Power systems are going through a transition period. Consumers want more active
participation in electric system management, namely assuming the role of producers–consumers,
prosumers in short. The prosumers’ energy production is heavily based on renewable energy sources,
which, besides recognized environmental benefits, entails energy management challenges. For
instance, energy consumption of appliances in a home can lead to misleading patterns. Another
challenge is related to energy costs since inefficient systems or unbalanced energy control may
represent economic loss to the prosumer. The so-called home energy management systems (HEMS)
emerge as a solution. When well-designed HEMS allow prosumers to reach higher levels of energy
management, this ensures optimal management of assets and appliances. This paper aims to present
a comprehensive systematic review of the literature on optimization techniques recently used in the
development of HEMS, also taking into account the key factors that can influence the development of
HEMS at a technical and computational level. The systematic review covers the period 2018–2021. As
a result of the review, the major developments in the field of HEMS in recent years are presented in
an integrated manner. In addition, the techniques are divided into four broad categories: traditional
techniques, model predictive control, heuristics and metaheuristics, and other techniques.

Keywords: home energy management system; heuristics; metaheuristics; model predictive con-
trol; MILP

1. Introduction

In the past, energy management systems have been specifically designed for energy
production and distribution/commercialization companies with the aim of monitoring and
optimizing energy flows in the power system. More recently, information and communi-
cation technologies have played an important role in the energy sector [1], enabling the
development of this type of management system at the end-user level. In this context, the
energy end-users experienced a changing role over recent years, from a passive to an active
perspective [2]. The initial objective was to manage energy consumption in their homes
by the end-user themselves. These energy management systems were then called home
energy management system (HEMS). At this stage, the main interest of end-users who have
a HEMS is to reduce the value of the electricity bill. In a next phase, in addition to reducing
electricity costs, end consumers began to worry about energy efficiency and the possibility
of producing their own energy, mainly from renewable sources. Thus, currently, HEMS can
be considered as a true energy hub, enabling the management of both the energy produced
and the energy consumed.

Consequently, HEMSs are of great interest to the public, but particularly to the scien-
tific community, with the aim of providing more and more management facilities, involving
innovative techniques with the possibility of achieving greater rigor in this management
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process. Additionally, the ability to deal with a large volume of data in this area is challeng-
ing for the scientific community [3].

In this sense, this paper aims to contribute to the development of HEMS, present-
ing a systematic review of the techniques used in the design of HEMS and serving as a
complement to other review works previously presented in this field. Within the scope of
techniques, a complete analysis of the techniques used in different categories is undertaken,
such as traditional techniques, model predictive control, heuristics and metaheuristics, and
other techniques. This paper also presents the main computational and technical issues
involved in HEMS design. To the best of our knowledge, this is the first article to carry out
a systematic review addressing in an integrated way the techniques, computational issues,
and technical issues considered in the design of HEMS.

The rest of the manuscript is organized as follows: Section 2 describes the systematic
review rationale; Section 3 presents the techniques used in home energy management
systems; Section 4 points out the related computational issues; Section 5 deals with the
technical issues considered in HEMS; Section 6 briefly extends the review to energy com-
munities and microgrids; and Section 7 provides a discussion and draws some conclusions.
The number of citations and the origins of the papers are shown in Appendix A.

2. Systematic Review Rationale

To contribute to the development of innovative strategies for HEMS, this study con-
sists of a systematic review of the applications of the techniques used in HEMS and the
associated technical and computational issues. The review follows the guidelines proposed
by Kitchenham [4] for a systematic review. According to these guidelines, at the time of
pre-review it is necessary to define the research questions and a review protocol, i.e., the
plan on which all review procedures are based. Thus, in planning the review stage, in
addition to the research questions, the following must be defined: the search strategy,
including the search words (keywords); the eligibility of the data, with the definition of
inclusion and exclusion criteria. Then, in the conducting the review stage the review starts
and should include data collection and data analysis. Finally, the results are presented, that
is, the detailed analysis of the papers included in the work.

2.1. Planning the Review

Having a plan is one of the most important steps in producing a good quality review
article, as it allows to avoid mistakes that can slow down the process and reduce the quality
of the review. Defining research questions is the most important procedure at this stage.
Additionally, the plan should include the search strategy and data eligibility.

2.1.1. Research Questions

To achieve the objectives of the review, it is essential to be able to concretely define the
subject to be addressed. This is possible through so-called research questions.

Formally, the research questions for this review can be defined as:

1. What are the main developments in terms of optimization techniques within the scope
of HEMS in recent years?

2. What are the key factors at a technical and computational level that must be considered
in the development of HEMS?

To address research question 1, the main methods and techniques used in the devel-
opment of HEMS were surveyed. The techniques were grouped into the following broad
categories: mathematical programming, heuristics and metaheuristics, model predictive
control (MPC), and other techniques.

To address research question 2, a comprehensive review of the technical and computa-
tional aspects that are considered in the development of HEMS was performed. Among
the aspects considered are the problem size, the resolution, the planning horizon, and the
time steps, as well as other important considerations such as user behavior, demand-side
management, uncertainty, and the consideration of multi-objective problems.
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2.1.2. Search Strategy

The search process is based on the identification of articles on the subject to be treated
and should have as its fundamental objective the need to answer the research questions,
highlighted above. In this process, only publications in the database Web of Science from
the year 2018 to 2021 were considered.

Keywords

Search terms were defined considering the most representative words that meet the
objectives of this review and that are related to HEMS. Preliminary searches were performed
and terms that did not add articles were discarded. The following terms were combined,
obtaining the so-called “search string” [4]:

((“home” or “residential” or “building” or “household” or “domestic”) AND (“en-
ergy management” or “power management” or “energy scheduling” or “power
scheduling” or “optimal energy” or “optimal scheduling”)) OR (“HEMS”).

This is the search string that was introduced in the database to obtain the results to the
queries.

2.1.3. Eligibility of the Data

To define the eligibility of articles to be included in this review, some exclusion and
inclusion criteria were considered from the initial set of articles obtained by the research.

Inclusion Criteria

1. Articles that provide a clear technique for HEMS.
2. Articles addressing computational performance issues when developing HEMS.
3. Articles that address essential technical issues of HEMS.
4. Articles written in English, available for free, or available on platforms available to

the research team.

Exclusion Criteria

1. Articles not related to techniques for HEMS.
2. Articles that exclusively address thermal comfort management in HEMS.
3. Articles published before 2018.

Articles that met at least one of the criteria were removed from the analysis.

2.2. Conducting the Review

At this stage, the actual review begins. Search results and important information about
data collection and data analysis were presented.

Data Collection and Analysis

The number of articles to be considered as data collection, how many were included,
and how many were excluded from the collection must be quantified. To analyze the data
and gather relevant information for a systematic review, some attributes were defined:

• Authors, title, year of publication, and journal/conference.
• Techniques.
• Computational issues.
• Technical issues.

The data were organized in tables and figures to allow an easier and faster analysis,
always aiming at answering the research questions.

The number of selected papers according to the inclusion/exclusion criteria is shown
in Table 1.
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Table 1. Number of selected articles according to the inclusion/exclusion criteria.

Database Search
Round 1 Round 2

Criteria Criteria

Web of
Science

569
Included Excluded Included Excluded

306 263 101 205
In round 1, the titles and abstracts of the papers were analyzed in detail, considering the inclusion and exclusion
criteria, resulting in a total of 306 papers. Then, in round 2, the pre-selected papers were analyzed in detail
to check the completion of the inclusion and exclusion criteria. Namely, in round 2 it was analyzed whether
each paper explicitly focused on techniques applied in HEMS, being discarded if not. As a result, 101 papers
were obtained.

The number of selected articles according to article type is shown in Figure 1.
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The previous review articles and their main features are shown in Table 2. Compared
with the reviews mentioned in Table 2:

(i) The present work is focused on residential EMS, addressing a broad range of techni-
cal and computational issues specifically assessed from a residential point of view,
facilitating understanding of the employed methods and modeling setups during the
reading.

(ii) Only references presenting a clear and extensive description of the employed methods
were included in this review.

Table 2. Review articles and main features since 2018.

Reference Title Main Features

[5]

Home energy management system
(HEMS): concept, architecture,

infrastructure, challenges and energy
management schemes

Focus on concepts, architecture, infrastructure, and energy
management scheme of HEMS. Discussion of goals and challenges

faced by HEMS.

[6] A survey on home energy management

Focus on concept and components of HEMS, electric vehicle
integration, demand-side management, appliances categorization,

discussion of uncertainty incorporation, scheduling techniques,
and security.

[7] Optimization methods for power
scheduling problems in smart home

Focus on the concepts of smart grid, smart homes, and mainly
scheduling of smart home appliances. The scheduling techniques are
divided in exact algorithms and metaheuristic algorithms. Includes a

discussion of various types of demand response programs and
price schemes.
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Table 2. Cont.

Reference Title Main Features

[8] Smart home energy management
system—a review

Focus on the concept of smart HEMS and its architecture. Explicit
demonstration of formulations for HEMS. Discussion of optimization

techniques and solution methods, forecasting, and energy trading
and tariffs. Discussion and analysis of factors in HEMS.

[9]
A review of reinforcement learning for

autonomous building energy
management

Exclusively related to review of reinforcement learning for building
energy management.

[10]
A Review of Deep Reinforcement

Learning for Smart Building
Energy Management

Exclusively related to the applications of deep reinforcement learning
for EMS.

[11]
Home Energy Management System

Concepts, Configurations, and
Technologies for the Smart Grid

Focus on main concepts, configurations, enabling technologies, and
communication technologies.

[12]

Review on Home Energy Management
System Considering Demand Responses,

Smart Technologies, and
Intelligent Controller

Focus on previous and current studies focusing on HEMS from a
demand response perspective.

[13]
A Review of Internet of Energy (IoE)
Based Building Energy Management

Systems: Issues and Recommendations

Reviews the use of IoE for improving building EMS performance and
its associated technologies.

[14]

Of impacts, agents, and functions: An
interdisciplinary meta-review of smart

home energy management
systems research

EMS benefits for the energy systems.

[15]

Intelligent Controllers and Optimization
Algorithms for Building Energy

Management Towards Achieving
Sustainable Development: Challenges

and Prospects

Focus on optimization objectives for comfort, energy use, and
scheduling in EMS.

[16]
Application of DR and co-simulation

approach for renewable integrated
HEMS: a review

Reviews the feasibility of HEMS methods according to their control
techniques and functionalities.

[17]

A review of strategies for building energy
management system: Model predictive

control, demand side management,
optimization, and fault detect

and diagnosis

Strategies for EMS focusing on model predictive control,
optimization, energy efficiency, fault detection, and diagnosis

In addition to the papers presented above, we strongly recommend the reader to
consult the article [18] which is one of the most cited and most complete papers in the
HEMS review.

Journals with at least two articles in the final selection are shown in Table 3.

Table 3. Journals with at least two articles in the final selection.

Journal Publisher Number of Articles

IEEE Access IEEE 12

Energies MDPI 9

Applied Energy Elsevier 6

Energy Elsevier 5

IEEE Transaction on Smart Grid IEEE 5
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Table 3. Cont.

Journal Publisher Number of Articles

Sustainable Cities and Society Elsevier 5

Electric Power Systems Research Elsevier 4

Electronics MDPI 3

IEEE Internet of Things Journal IEEE 3

IEEE Transactions on Industrial Informatics IEEE 3

International Journal of Electrical Power and
Energy Systems Elsevier 3

CSEE Journal of Power and Energy Systems CSEE 2

International Journal of Renewable Energy
Research Gazi University 2

International Transactions on Electrical Energy
Systems Wiley 2

Journal of Building Engineering Elsevier 2

Journal of Energy Storage Elsevier 2

The number of selected papers distributed by year of publication is shown in Figure 2.
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3. Techniques Used in Home Energy Management Systems

HEMS are complex systems, and the decision maker must consider two fundamental
issues when planning the system operation: firstly, the system modeling, and secondly,
the techniques used to obtain a solution to the problem. The problems on which HEMS
are based can generally be formulated as linear programming problems, non-linear pro-
gramming, and its variants, mixed-integer linear programming (MILP), and non-linear
integer programming problems. In general, the problem of planning the operation of
systems such as a home is a non-linear problem with a significant number of constraints
and variables. However, through function linearization techniques it is possible to obtain
approximations that turn the problem into a linear problem. A significant number of
techniques have been applied to HEMS in recent years. However, the technique chosen
depends on the nature of the problem at hand. Generally, these techniques can be divided
into the following categories, adopted in this work for further classification: traditional
techniques, model predictive control, heuristics and metaheuristics, and other techniques,
as shown in Figure 3.
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The number of selected articles according to these categories is shown in Table 4.

Table 4. Number of selected articles according to the category of techniques.

Category Number of Articles

Traditional techniques 31
Model predictive control 8

Heuristics and metaheuristics 32
Other techniques 15

The category, technique, and simulation platform of the articles are shown in Table 5.

Table 5. Selected papers by category, technique, and simulation platform.

Reference Category Technique Simulation Platform

[19] Traditional techniques Linear programming MATLAB

[20] Traditional techniques Mixed-integer linear programming MATLAB

[21] Traditional techniques Mixed-integer linear programming -

[22] Traditional techniques Mixed-integer linear programming -

[23] Traditional techniques Mixed-integer linear programming MATLAB

[24] Traditional techniques Mixed-integer linear programming GAMS

[25] Traditional techniques Mixed-integer linear programming IBM ILOG CPLEX
optimization studio

[26] Traditional techniques Mixed-integer linear programming MATLAB

[27] Traditional techniques Non-linear programming MATLAB

[28] Traditional techniques Mixed-integer non-linear programming AIMMS

[29] Traditional techniques Mixed-integer non-linear programming MATLAB

[30] Traditional techniques Dynamic programming MATLAB

[31] Traditional techniques Dynamic programming -

[32] Traditional techniques Stochastic programming GAMS

[33] Traditional techniques Stochastic programming GAMS

[34] Traditional techniques Stochastic programming -

[35] Traditional techniques Stochastic programming MATLAB

[36] Traditional techniques Stochastic programming GAMS

[37] Traditional techniques Stochastic programming Java

[38] Traditional techniques Stochastic programming GAMS

[39] Traditional techniques Stochastic programming GAMS

[40] Traditional techniques Stochastic programming -
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Table 5. Cont.

Reference Category Technique Simulation Platform

[41] Traditional techniques Stochastic programming GAMS

[42] Traditional techniques Robust programming Python

[43] Traditional techniques Robust programming GAMS

[44] Traditional techniques Robust programming GAMS

[45] Model predictive control -

[46] Model predictive control -

[47] Model predictive control MATLAB

[48] Model predictive control MATLAB

[49] Model predictive control MATLAB

[50] Heuristics and metaheuristics
Grey wolf optimization, binary particle swarm

optimization, genetic algorithm, and
wind-driven optimization

MATLAB

[51] Heuristics and metaheuristics Genetic algorithm MATLAB

[52] Heuristics and metaheuristics Natural aggregation algorithm -

[53] Heuristics and metaheuristics Bat algorithm, grey wolf optimization, moth flam
optimization, and Harris hawks optimization MATLAB

[54] Heuristics and metaheuristics

Integrated multi-objective antlion optimization,
multi-objective particle swarm optimization, the

second version of the non-dominated sorting
genetic algorithm, and the basic antlion

optimizer algorithm

MATLAB

[55] Heuristics and metaheuristics Hybrid harmony search algorithm and particle
swarm optimization -

[56] Heuristics and metaheuristics Real coded genetic algorithm -

[57] Heuristics and metaheuristics Hybrid grey wolf genetic algorithm MATLAB

[58] Heuristics and metaheuristics Polar bear optimization -

[59] Heuristics and metaheuristics Particle swarm optimization -

[60] Heuristics and metaheuristics Grey wolf optimization MATLAB

[61] Heuristics and metaheuristics Improved genetic algorithm -

[62] Heuristics and metaheuristics Genetic algorithm MATLAB

[63] Heuristics and metaheuristics Grey wolf optimization -

[64] Heuristics and metaheuristics Enhanced leader particle swarm optimization MATLAB

[65] Heuristics and metaheuristics Hybrid cuckoo search algorithm and earthworm
algorithm MATLAB

[66] Heuristics and metaheuristics Hybrid min-conflict local search algorithm and
grey wolf optimization MATLAB

[67] Heuristics and metaheuristics Bee colony Netlogo

[68] Heuristics and metaheuristics Dragonfly algorithm and genetic algorithm -

[69] Heuristics and metaheuristics Improved version of butterfly optimization
algorithm MATLAB

[70] Heuristics and metaheuristics Reinforcement learning Python

[71] Heuristics and metaheuristics Reinforcement learning -

[72] Heuristics and metaheuristics Reinforcement learning -

[73] Heuristics and metaheuristics Reinforcement learning Python
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Table 5. Cont.

Reference Category Technique Simulation Platform

[74] Heuristics and metaheuristics Reinforcement learning MATLAB

[75] Heuristics and metaheuristics Reinforcement learning Julia

[76] Heuristics and metaheuristics Reinforcement learning MATLAB/Python

[77] Other techniques Modified Flower Pollination Algorithm and
mixed-integer linear programming MATLAB

[78] Other techniques Convolution neural network MATLAB

[79] Other techniques Reinforcement learning and neural networks MATLAB

[80] Other techniques Stochastic programming and robust
programming GAMS

[81] Other techniques Particle swarm optimization and two-point
estimate method MATLAB

[82] Other techniques Particle swarm optimization and sequential
quadratic programming MATLAB

[83] Other techniques Multi-objective genetic algorithm and
multi-objective genetic programming Python

[84] Other techniques Neural networks and model predictive control MATLAB

[85] Other techniques Reinforcement learning and fuzzy reasoning MATLAB

[86] Other techniques Fuzzy MATLAB

[87] Other techniques Fuzzy MATLAB

[88] Other techniques Fuzzy MATLAB

3.1. Traditional Techniques (Mathematical Optimization)

In this article, the traditional optimization techniques for HEMS applications refer
to techniques that use mathematical optimization based on exact algorithms. Hence, in
this category it is considered that the solution to the problem is obtained using commer-
cial solvers.

3.1.1. Linear Programming

Linear programming is an optimization technique where the objective function is a
linear function and constraints are given by linear functions. Variables assume continuous
values. It is considered the simplest way to represent mathematical programming problems.
However, it may not be the most efficient way to represent complex real-world problems,
mostly based on non-linear processes.

A comprehensive description of the theory of linear and integer programming may be
found in [89].

Pure linear programming problems make it difficult and computationally costly to
model more complex management systems such as HEMS, so it is not often used in the
design of these systems, and this is one of the reasons why few authors in recent years
adopted this approach. However, a sample of the employment of this method for HEMS
may be found in [19], where the authors propose a HEMS that considers a PV-battery
system and thermostatically controlled loads using linear programming to optimize the
energy consumption of the loads. The objective is the minimization of operational costs.

The findings of selected papers associated with linear programming are shown in
Table 6.
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Table 6. Findings of selected papers associated with linear programming.

Reference Findings

[19] Comparison between a scheme without HEMS and with HEMS, proving
the expected effectiveness of HEMS.

3.1.2. Mixed-Integer Linear Programming

Mixed-integer linear programming (MILP) refers to optimization techniques where the
objective function is given by a linear function and subject to linear constraints but includes
mixed variables, continuous and discrete variables. These problems allow for greater
modeling power as it is possible to consider binary variables that help to represent real-
world processes more effectively. The fact that it is based on a linear problem guarantees
optimality conditions, i.e., it is guaranteed to obtain a global optimum. Many research
works address the formulation of the HEMS problem using MILP. Most of the HEMS
consider the load in a segmented matter (multiple appliances or thermal/electrical loads),
as well as the energy price information.

A HEMS is proposed for a home with electric and thermal loads, and with the consid-
eration of electric vehicles (EV) integration in [20].

MILP was used in [21] where a HEMS is presented to participate in the day-ahead
electricity market through demand–response strategies. All loads, including thermal, are
considered for demand response.

A price-sensitive HEMS is proposed by authors of [22], having as components a PV
system, energy storage, and controllable loads.

Some authors design HEMS with a particular interest in managing energy storage
systems (ESS). This is the case of the authors of [23].

Multiple sources of energy in the same residence are also object of study. For instance,
the authors of [24] propose a HEMS for a house incorporating multi-energy resources,
namely, electricity, thermal energy, renewables, energy storage, and natural gas.

A new two-level optimization algorithm for the energy management of residential
appliances within a smart home is proposed in [25]. The system includes interruptible,
uninterruptible, thermostatically controlled, and non-schedulable loads, as well as the
charging/discharging strategies of EVs and ESS in the presence of distributed energy
resources (DER).

Other studies considered more technical aspects of the residence energy management.
An example may be found in [26], where the trading with technical influences of utility
requirements is considered: Volt-Watt and Volt-Var functions.

The findings of selected papers associated with mixed-integer linear programming are
shown in Table 7.

Table 7. Findings of selected papers associated with mixed-integer linear programming.

Reference Findings

[20]
The results of the proposed HEMS are compared with other energy management

systems, showing the effectiveness of the proposed model, through case studies that
allow reducing energy costs in both summer and winter.

[21] The results are compared when demand response is considered and when it is not.
They demonstrate that the strategy presented with demand response is superior.

[22] The proposed methodology allows to reduce house costs by 53% and reduce
peak-to-average ratio (PAR) by around 70%.

[23] Several energy-storage scenarios are considered, showing the benefits of considering
a battery to store energy.

[24] The results show significant cost saving while maintaining user comfort.

[25] The results show a reduction in the electricity costs and an increase in power factor
according to user’s preference.
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The number of selected papers associated with a given objective for mixed-integer
linear programming is shown in Figure 4.
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3.1.3. Non-Linear Programming

Non-linear programming, different from linear programming and MILP, is an op-
timization technique where the objective function and/or the constraints are given by
non-linear functions. It represents real-world problems in a more real manner, but its main
disadvantage is that it does not guarantee an optimal solution; that is, instead of a global
optimal, a local optimal can be obtained. Additionally, the computation time tends to
increase. For a comprehensive description of the non-linear programming theory, please
refer to [90].

As is the case of linear programming, pure non-linear programming problems are not
common in HEMS. However, the authors of [27] propose an energy management system
for a residence composed solely of renewable sources, wind and PV, and batteries. The
objective is to minimize the use of energy from the grid and maximize the sale of energy to
the grid from renewables.

The findings of selected papers associated with non-linear programming are shown in
Table 8.

Table 8. Findings of selected papers associated with non-linear programming.

Reference Findings

[27] The results obtained by non-linear programming are compared with GA,
showing the superiority of the former.

3.1.4. Mixed-Integer Non-Linear Programming

Mixed-integer non-linear programming (MINLP) is an optimization technique where
the objective function and/or the constraints are given by non-linear functions. Like MILP
problems, they include mixed variables. Being non-linear does not guarantee obtaining a
global optimum and they can be very difficult to be solved.

MINLP has been successfully applied to HEMS. For instance, the authors of [28]
propose a HEMS with integrated renewables and energy storage.

A HEMS model for a smart home is proposed in [29] considering different capacities
of energy storage and PV subsidy policies on the scheduling of household appliances.

The findings of selected papers associated with mixed-integer non-linear programming
are shown in Table 9.
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Table 9. Findings of selected papers associated with mixed-integer non-linear programming.

Reference Findings

[28]
Three operating scenarios are considered: normal, economic, and smart. The
smart scenario manages to significantly reduce the daily energy cost, without

greatly detracting from the other objectives.

[29]
Comparison of single-objective and multi-objective optimization is considered.

In the simulations a reduction of 61% and 71% is verified for peak load and
electricity costs in the single-objective optimization.

The number of selected papers associated with a given objective for mixed-integer
non-linear programming is shown in Figure 5.
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3.1.5. Dynamic Programming

In dynamic programming (DP), the problem as a whole is divided into several sub-
problems, i.e., a solution to the original problem is obtained through simpler problems.
The optimal solutions of the sub-problems are stored in time, which allows previous
calculations to help in the next stages. Using this strategy, the complexity of the problem
tends to decrease [91]. For the fundamentals for the theory of DP, please consult [92].

DP has been applied in HEMS. For instance, the authors of [30] proposed a HEMS for
homes consisting of PV systems, batteries, and controllable loads. To solve the problem,
the Differential DP (DDP) technique is presented.

A novel state-space approximate DP (SS-ADP) approach to quickly solve a HEMS
problem can be found in [31].

The findings of selected papers associated with dynamic programming are shown in
Table 10.

Table 10. Findings of selected papers associated with dynamic programming.

Reference Findings

[30]
The DDP results are compared with the results of the exact DP, approximate DP,

and MINLP. DDP proves to be computationally faster than the mentioned
techniques.

[31]
Similar solutions are obtained by the proposed SS-ADP and DP, since the
solutions of the SS-ADP approach are in the 0.8% of the DP solutions. In

addition, savings in computational time of at least 20% are verified.
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The number of selected papers associated with a given objective for dynamic program-
ming is shown in Figure 6.

Energies 2022, 15, x FOR PEER REVIEW 12 of 41 
 

 

3.1.5. Dynamic Programming 
In dynamic programming (DP), the problem as a whole is divided into several sub-

problems, i.e., a solution to the original problem is obtained through simpler problems. 
The optimal solutions of the sub-problems are stored in time, which allows previous 
calculations to help in the next stages. Using this strategy, the complexity of the problem 
tends to decrease [91]. For the fundamentals for the theory of DP, please consult [92]. 

DP has been applied in HEMS. For instance, the authors of [30] proposed a HEMS 
for homes consisting of PV systems, batteries, and controllable loads. To solve the 
problem, the Differential DP (DDP) technique is presented. 

A novel state-space approximate DP (SS-ADP) approach to quickly solve a HEMS 
problem can be found in [31]. 

The findings of selected papers associated with dynamic programming are shown in 
Table 10. 

Table 10. Findings of selected papers associated with dynamic programming. 

Reference Findings 

[30] 
The DDP results are compared with the results of the exact DP, approximate DP, and MINLP. DDP 

proves to be computationally faster than the mentioned techniques. 

[31] 
Similar solutions are obtained by the proposed SS-ADP and DP, since the solutions of the SS-ADP 
approach are in the 0.8% of the DP solutions. In addition, savings in computational time of at least 

20% are verified. 

The number of selected papers associated with a given objective for dynamic 
programming is shown in Figure 6. 

 
Figure 6. Number of selected papers associated with a given objective for dynamic programming. 

3.1.6. Stochastic Programming 
Stochastic programming is an optimization technique where the objective function 

and constraints include uncertainty in parameters and variables. The optimal value of the 
objective function is given by the expected value of the objective function. Stochastic 
programming is considered when there is knowledge about the probability distribution 
function. Further, these problems can be based on two-state or multi-state problems, being 
called two-stage stochastic programming problems or multi-stage stochastic 
programming problems. A set of realizations for the parameters that involve uncertainty 
can be considered, being designated by scenarios. Usually, each scenario is associated 
with a probability. A detailed description of the fundamentals of stochastic programming 
may be found in [93]. 

Figure 6. Number of selected papers associated with a given objective for dynamic programming.

3.1.6. Stochastic Programming

Stochastic programming is an optimization technique where the objective function
and constraints include uncertainty in parameters and variables. The optimal value of
the objective function is given by the expected value of the objective function. Stochastic
programming is considered when there is knowledge about the probability distribution
function. Further, these problems can be based on two-state or multi-state problems, being
called two-stage stochastic programming problems or multi-stage stochastic programming
problems. A set of realizations for the parameters that involve uncertainty can be consid-
ered, being designated by scenarios. Usually, each scenario is associated with a probability.
A detailed description of the fundamentals of stochastic programming may be found in [93].

Due to its characteristics, stochastic programming has been applied in HEMS, not only
as the single method used but also associated with other methods to evaluate and deal
with the uncertainty. To deal with the uncertainty, two situations in particular are explored
with more frequency: dealing with electricity market price, especially when the system also
injects energy in the grid, and dealing with multiple sources of renewable energy, in which
the generation depends on factors that could suffer considerable variation, such as wind
speed and solar radiation.

For instance, stochastic programming is employed by the authors of [32] for the
optimal bidding strategy for autonomous residential energy management systems. This
system allows the management of the production and consumption of the house and
the participation in the local market environment through the technique of stochastic
programming using intervals from the scenarios that represent the uncertainty of the
market price of local electricity and PV production. The problem is formulated as a two-
stage stochastic programming problem. The first stage is related to the day-ahead market
and the second stage is related to real-time.

The approach of multiple-stage framework stochastic programming is explored by
many authors. The optimal energy management and sizing of renewable energy for a
home and a microgrid are proposed in [33], in which the problem is formulated in a
two-stage approach.

In [34], a HEMS is presented for a house composed of the PV system and battery and
loads. The problem is formulated as a two-stage stochastic programming problem as well.
The first stage determines the optimal day-ahead energy procurement and the scheduling
of shiftable appliances. The second stage is related to the real-time operation, namely the
charging and discharging process of the battery.

In [35], a HEMS with PV systems, EVs, ESS, and thermal and electric loads is presented.
The problem is formulated as a two-stage stochastic programming problem. The first stage
defines the quantities of energy to be sold and purchased from the grid, and the second
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stage defines the decisions about customer’s convenience and DER operation, namely
temperature and charging and discharging rates of EVs and energy storage.

In the same fashion of multi-resource of energy as presented above, a HEMS is pre-
sented for a home that includes wind turbines, diesel generators, and EVs in [36].

The authors of [37] propose a HEMS with demand response, renewable resources, and
battery storage.

In [38], a HEMS is presented, considering electrical and thermal loads.
The optimization problem is also formulated as two-stage stochastic programming

in [39] for a HEMS including wind micro-turbine, battery, EV, and electric and thermal
loads. The first stage is related to trading energy with the day-ahead local market, and the
second stage is related to trading energy in real-time.

Another stochastic model of a HEM system is proposed by authors of [40]. The model
optimizes the customer’s cost in different demand response programs.

In [41], a HEMS is developed for a house consisting of different electric appliances
and with generation from PV systems and battery storage.

The findings of selected papers associated with stochastic programming are shown in
Table 11.

Table 11. Findings of selected papers associated with stochastic programming.

Reference Findings

[32] It is demonstrated that the optimal offering model is more robust than the non-optimal
offering model.

[33] The results of stochastic programming are compared with the results of deterministic
programming, showing the superiority of the former.

[34] Stochastic programming is beneficial for using imperfect forecasts.

[35] The proposed strategy allows for a reduction in electricity costs.

[36] The results show that operating all capacity resources minimizes the operational costs.

[37] The operation is analyzed for two cases, with HEMS, and without HEMS. The use of a
stochastic approach improved results.

[38] The proposed methodology allows obtaining better results in less time.

[39] Participation of smart home in a time-of-use pricing scheme leads to increased profit.

[40] The deterministic approach is compared with the stochastic approach, showing the
superiority of the stochastic approach.

[41] The case studies presented on different prices allows to observe the effectiveness of the
proposed model.

The number of selected papers associated with a given objective for stochastic pro-
gramming is shown in Figure 7.
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3.1.7. Robust Programming

In robust programming, like stochastic programming, uncertainty is considered in the
parameters and variables. There is no knowledge about the probability distribution function
of parameters that involve uncertainty. Instead, intervals of values for the parameters are
considered. This often leads to exaggerated assumptions about the parameters, i.e., it
is considered the worst case. Consequently, it is not considered a consensual technique.
Further details may be found in [94,95].

Despite the above disadvantages, robust programming has been applied to HEMS.
For instance, the authors of [42] propose a HEMS considering a hierarchical control, having
a central controller and local controllers. The central controller optimizes the schedule of
the non-thermal loads. The local controllers respond to the real-time variations to obtain
thermal comfort. A data-driven distributional robust optimization is proposed to guarantee
solution robustness against the worst probability distribution of multiple uncertainties.

A flexible-constrained energy management model is proposed for smart-home-equipped
PV systems and energy storage in [43].

In [44], a risk-based robust decision-making framework for smart residential buildings,
considering electric and thermal appliances and plug-in hybrid vehicles is proposed.

The findings of selected papers associated with robust programming are shown in
Table 12.

Table 12. Findings of selected papers associated with robust programming.

Reference Findings

[42] The results show that the proposed approach can reduce the electricity cost in
comparison with other techniques.

[43] The deterministic approach is compared with the robust approach. Additionally,
a sensitivity analysis is performed to assess the robustness of the problem.

[44] The robustness of the problem and the computational efficiency are verified by
the proposed approach.

The number of selected papers associated with a given objective for robust program-
ming is shown in Figure 8.
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3.2. Model Predictive Control

The model predictive control (MPC) is an advanced method of control based on a
receding horizon principle, aimed at determining the best course of action while meeting
the requirements. In [96,97], detailed information on the theory of the MPC may be found.
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The application of MPC in HEMS has developed significantly in recent years. For
instance, in [45] a HEMS for a residential building with a PV system, ESS, thermal and
electric loads, and EVs is proposed. The MPC problem considered a prediction horizon of
four hours for every 5 min.

The authors of [46] propose a HEMS for a smart home focusing on the energy balance
between the three phases to control both active and reactive power. Several case studies
are considered, assuming a prediction horizon of 24 h, a control horizon of 24 h, and a
simulation horizon of 48 h.

A comprehensive approach of a mixed-integer quadratic-programming MPC scheme
based on the thermal building model and the building energy management system is
employed by authors of [47].

A HEMS is developed by employing an MPC framework in [48] and implemented
using a Branch-and-Bound algorithm. The authors discuss the selection of different pa-
rameters, such as time-step to employ, predict, and control horizons and the effect of the
weather on the system performance.

A predictive HEMS for a residential building with the integration of a plug-in EV
(PEV), a PV array, and a heat pump is developed by [49]. A stochastic MPC strategy
is applied.

The findings of selected papers associated with model predictive control are shown in
Table 13.

Table 13. Findings of selected papers associated with model predictive control.

Reference Findings

[45] Various configurations, namely, stand-alone and centralized configurations of MPC are formulated and
compared with other traditional rule-based control. The MPC configurations suggest energy cost savings.

[46] The proposed methodology manages to balance the three phases.

[47]

The proposed controller offers a solution to reformulate the discrete stochastic constraints to avoid the
exponential growth of the scenario tree experienced by existing controllers. The proposed controller’s
efficiency is shown by benchmarking and comparing it with the multistage stochastic programming

algorithm in the context of HEMS.

[48]
A comparison is made between the economic performance of the proposed approach with a real

photovoltaic battery system existing in a residence equipped with several IoT devices, with savings larger
than 30% both on sunny and cloudy days.

[49] The MPC ensures that home load demand, PEV battery charging requirements, and household thermal
comfort conditions are met.

The number of selected papers associated with a given objective for model predictive
control is shown in Figure 9.
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Forecasting in HEMS

A smart household, as previously mentioned, is composed of a variety of energy
systems. To allow the HEMS to make better decisions, knowing the future values—
forecasting—of, for example, electric loads, electricity generation and storage state of
charge, is an important asset for the improvement of HEMS efficiency.

The use of forecasting models is mandatory in model-based predictive control (MBPC).
The reason is that MBPC uses predictive models, that should output the modelled variable’s
forecasts for each step ahead within the Prediction Horizon (PH) considered, i.e., provide
multi-step-ahead forecasting. This type of forecast can be achieved in a direct mode, by
having several one-step-ahead forecasting models, each providing the prediction of each
step ahead within the prediction horizon. An alternative is to use a recursive version. In
this case, only one model is necessary, and for each step within the PH, the inputs change,
eventually employing predictions obtained in previous steps.

In this sub-section, we describe some of the articles in which the forecasting is a
considerable component in the HEMS system.

In [51], a real-time forecasting is developed considering renewable generation, and
the HEMS updates the inputs of scheduling system before each optimization calculation.

In [34], forecasting is employed in an integrated HEMS framework where it is assessed
together with monitoring, scheduling, and coordination, focusing on the renewable energy
generation and storage of the residence.

The authors of [98] develop power predictions using GA-ANN for a day-ahead forecast
in a short-term fashion.

In [99], the authors used a Muti-Objective Genetic Algorithm (MOGA) framework to
design a multi-step ahead recursive forecast model (a Radial Basis Function ANN) for the
power demand in a residential HEMS. In [100], the same residence was used as case study
to propose an ensemble forecasting approach. The ensemble of models is easily obtained
by the MOGA approach and has been shown to obtain more accurate forecasts than the
single solution. Although MOGA is a metaheuristic it is only used for model design, and
not specifically for HEMS.

The authors of [84] use ANN to forecast the renewable energy sources (wind and
solar) of a net zero energy building. In [101], the authors explore forecasting techniques in
a HEMS from a prosumer perspective.

In [102], using the MOGA formulation, the authors develop a short-term forecasting
of the photovoltaic solar power, to be used in a HEMS.

Forecasting is also very important in residential energy communities. In [103], the
authors review a variety of forecasting methods to be employed in the energy communities
control context. In [104], forecasting is explored considering the load demand, wind power,
and electricity price.

3.3. Heuristics and Metaheuristics

Heuristics stand for strategies using readily accessible information to control problem-
solving processes in man and machine, to obtain good enough results in an admissi-
ble length of time. Detailed information about heuristic search strategies may be found
in [105,106]. A metaheuristic guides a subordinate heuristic using concepts derived from
artificial intelligence, biological, mathematical, natural, and physical sciences to improve
their performance. Information about metaheuristics theory may be found in [107,108].
Consequently, one of the differences between heuristics and metaheuristics is that heuristics
are problem dependent; on the contrary, metaheuristics are problem independent.

Currently, heuristics and metaheuristics are the most used techniques in HEMS, taking
advantage of the computational efficiency they often provide. For instance, a domestic
microgrid is presented and an energy management system developed in [50]. The au-
thors present four metaheuristics: grey wolf optimization (GWO), binary particle swarm
optimization (PSO) (BPSWO), genetic algorithm (GA), and wind-driven optimization.
Furthermore, they developed several combinations of these metaheuristics.
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The authors of [51] propose an energy management system based on real-time elec-
tricity scheduling for a house that includes renewable, wind energy, and PV and ESS. GA is
applied to obtain the solution of the problem.

A HEMS is presented in [52] that must guarantee the house’s resilience, i.e., to be able
to be self-sufficient when there is a failure in the network. To solve the problem, a new
metaheuristic called Natural Aggregation Algorithm (NAA) is presented.

In [53] a HEMS is proposed for the optimal management of appliances in a home. To
find the solution to the problem, four heuristics are presented: bat algorithm, GWO, moth
flam optimization, and Harris hawks optimization.

A HEMS is presented in [54]. To obtain a solution to the problem, four metaheuristics
are considered: integrated multi-objective antlion optimization, multi-objective PSO, the
second version of the non-dominated sorting GA, and the basic antlion optimizer algorithm.

A HEMS for energy management at the level of electricity and heat is developed
in [55]. To solve the problem, a fusion between the Harmony Search Algorithm technique
and the PSO is presented.

The optimal planning of various energy sources, namely, fuel cell-based micro-combined
heat and power (CHP), batteries, and EVs is proposed in [56]. For this, the real coded GA
technique is presented.

A HEMS for a consumer in the presence of an energy storage and PV generation is
developed by authors of [57]. To solve the problem, a hybrid technique between GWO and
GA is presented, named Hybrid Grey Wolf GA (HGWGA).

In [58], a HEMS is proposed for a home with demand-responsive applications, PV
systems, and ESS. The Polar Bear Optimization (PBO) technique is presented.

A scheduling algorithm for the energy management of a house consisting of PV and
wind systems, batteries, diesel generators, and responsive loads is proposed in [59]. To
solve the problem the PSO is used.

In [60], a HEMS is proposed for a smart home. To solve the problem, GWO is proposed.
The authors of [61] propose a HEMS for a household considering DER and EVs. To

solve the problem, a version of the GA, the improved GA, is presented.
A HEMS is proposed in [62], for a home with renewables, wind and PV, ESS, and

electric and thermal loads. To solve the problem, GA is used.
In [63], a smart grid scenario is developed with a novel restricted and multi-restricted

scheduling method for the residential customers. The optimization problem is developed
under the time-of-use (TOU) pricing scheme. To optimize the formulated problem, GWO
is utilized.

The problem of optimal scheduling of home appliances in HEM systems is formulated
as a constrained, multi-objective optimization problem with integer decision variables and
a powerful variant of PSO, named as enhanced leader (EL) PSO in [64]. In the proposed
multi-objective formulation, the effect of weight factor on optimal electricity bill of the
home and optimal comfort of the consumers is meticulously investigated.

In [65], an optimization problem for HEMS using a hybrid approach based on cuckoo
search algorithm and earthworm algorithm is developed. However, there is a problem
in such HEMS, that is, an uncertain behavior of the user that can lead to forced start or
stop of an appliance, deteriorating the purpose of scheduling of appliances. To solve this
issue, coordination among appliances for rescheduling is incorporated in HEMS using
game theory.

The min-conflict local search algorithm (MCA) is hybridized with the GWO for the
power scheduling problem in smart home in [66]. The proposed method is called GWO-
MCA. MCA is utilized as a new operator of GWO to improve its exploitation capability in
addressing constraint satisfaction problems, particularly scheduling problems.

The authors of [67] propose a computational intelligence model for the Internet of
Things applications by applying the concept of swarm intelligence into connected devices.
The bee colony approach is used.
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The HEMS performance improvement by using a dragonfly algorithm and GA heuristic-
based approach is evaluated in [68].

In [69], a new optimal method is developed for HEMS based on the Internet of
Things. The problem is solved using an improved version of the butterfly optimization
algorithm (BOA).

The findings of selected papers associated with heuristics and metaheuristics excluding
reinforcement learning are shown in Table 14.

Table 14. Findings of selected papers associated with heuristics and metaheuristics excluding
reinforcement learning.

Reference Findings

[50] The hybrid versions guarantee lower costs than the mentioned heuristics.

[51] The results of GA-based ESS management and traditional GA are compared.
GA-based ESS management is found superior to traditional GA.

[52] NAA is compared with Differential Evolutionary and PSO. NAA shows better
results both in terms of obtaining results and computing time.

[53] The Harris hawks optimization technique obtains the best results compared to the
other techniques.

[54] The integrated multi-objective antlion optimization can reduce costs by more
than 80%.

[55] The fusion between the two techniques demonstrates superiority compared to the
separate techniques.

[56] Optimum operation of energy sources is achieved by considering various types
of tariffs.

[57] The HGWGA technique outperforms GWO and GA.

[58] PBO is compared with GWO and GA, showing superiority in reducing electricity
and PAR costs. Still, PBO proves to be faster in terms of computing.

[59] Three scenarios are considered, ranging from an unmanaged system to the proposed
planning, showing the effectiveness of the proposed model.

[60] GWO is compared with other techniques. The results show that GWO allows for
better results.

[61] The results show that improved GA gives better results than GA.

[62] The results show that the proposed methodology allows for better results.

[63] GWO is compared with the PSO algorithm to show its effectiveness.

[64]
The results indicate the superiority of ELPSO over basic PSO, artificial bee colony,

backtracking search algorithm, gravitational search algorithm, and
dragonfly algorithm.

[65] The results show a reduction in electricity costs of 50%.

[66] The hybrid technique outperforms other techniques.

[67] The proposed approach shows a reduction in electricity costs.

[68] Dragonfly shows better results than GA in electricity cost reduction.

[69] The improved version of BOA is compared with PSO and BOA showing the
effectiveness of the proposed approach.

The number of selected papers associated with a given objective for heuristics and
metaheuristics excluding reinforcement learning is shown in Figure 10.
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Reinforcement Learning (RL)

RL is one of the techniques in the heuristics and metaheuristics category that has
grown the most in recent years. In this sense, a specific section on this technique is created.

A HEMS is developed in [70] using the reinforcement learning (RL) technique. Through
the Q-learning algorithm, it is possible to obtain an appliance operation planning.

The authors of [71] propose a HEMS focusing on demand response. To solve the
problem the RL technique is presented.

The energy management for a residential building is presented in [72]. The building
has PV panels, EVs, and micro-CHP. To solve the problem, the RL technique is used.

The authors of [73] developed a HEMS for a home with electric and thermal loads,
PV systems, energy storage, and EVs. To solve the problem, the RL is employed, more
precisely deep Q-learning and double deep Q-learning.

The authors of [74] provide a steady price prediction model based on artificial neural
networks. In cooperation with forecasted future prices, multi-agent RL is adopted to make
optimal decisions for different home appliances in a decentralized manner.

In [75], based on the living habits of the residents, dependency modes for house energy
resources are proposed and are integrated into the RL algorithms. Through the case studies,
it is verified that the proposed method can schedule the appliances properly to satisfy the
established dependency modes.

In [76], a data-driven approach that leverages RL to manage the optimal energy
consumption of a smart home with a rooftop solar photovoltaic system, ESS, and smart
home appliances is developed. The same authors propose a hierarchical deep RL (DRL)
method for the scheduling of energy consumption of smart home appliances and DER
including an ESS and an EV [109].

The findings of selected papers associated with reinforcement learning are shown in
Table 15.
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Table 15. Findings of selected papers associated with reinforcement learning.

Reference Findings

[70] The RL technique is compared with Least Slack Time (LST) scheduling, obtaining better results.

[71] To show the effectiveness of the proposed model, the RL results are compared with the MILP
results, showing the superiority of the RL.

[72] The results demonstrate that RL promotes good planning, allowing the purchase of energy and
gas to be carried out in periods of low prices.

[73] Double deep Q-learning is compared with PSO, showing better results.

[74] The results show that the strategy with demand response is better than the strategy without
demand response.

[75] The difference between the achieved result by the proposed approach and the optimal solution
is relatively small. However, the computational time for DRL is smaller than optimization.

[76] The results show a reduction of 14% in the electricity costs.

[109] The results show that the proposed methodology allows for better results.

The number of selected papers associated with a given objective for reinforcement
learning is shown in Figure 11.

Energies 2022, 15, x FOR PEER REVIEW 21 of 41 
 

 

Table 15. Findings of selected papers associated with reinforcement learning. 

Reference Findings 
[70] The RL technique is compared with Least Slack Time (LST) scheduling, obtaining better results. 

[71] 
To show the effectiveness of the proposed model, the RL results are compared with the MILP results, showing the 

superiority of the RL. 

[72] 
The results demonstrate that RL promotes good planning, allowing the purchase of energy and gas to be carried out 

in periods of low prices. 
[73] Double deep Q-learning is compared with PSO, showing better results. 
[74] The results show that the strategy with demand response is better than the strategy without demand response. 

[75] 
The difference between the achieved result by the proposed approach and the optimal solution is relatively small. 

However, the computational time for DRL is smaller than optimization. 
[76] The results show a reduction of 14% in the electricity costs. 
[109] The results show that the proposed methodology allows for better results. 

The number of selected papers associated with a given objective for reinforcement 
learning is shown in Figure 11. 

 
Figure 11. Number of selected papers associated with a given objective for reinforcement learning. 

3.4. Other Techniques 
This category includes all other techniques that do not fit into the categories 

presented or that have hybrid versions of the techniques described above. 
Scheduling and optimal planning of appliances are approached by different authors. 

In [77], a HEMS for the optimal planning of appliances, energy resources, and electro-
thermal storage is presented. For this, the combination between the Modified Flower 
Pollination Algorithm and the MILP is presented. 

The authors of [78] provide a new residential energy management system based on 
the convolution neural network (CNN) including a PV array environment. The CNN is 
used in the estimation of the non-linear relationship between the residence PV array 
power and meteorological datasets. The residential energy management system has three 
main stages for the energy management such as forecasting, scheduling, and real 
functioning. A short-term forecasting strategy has been performed in the forecasting stage 
based on the PV power and the residential load. A coordinated scheduling has been 
utilized for minimizing the cost function. 

A novel framework for HEMS based on RL and employing neural networks in 
achieving efficient home-based demand response is addressed in [79]. 

A HEMS for a smart home having a PV system and battery storage is proposed in [80]. 
To solve the problem, a hybrid technique between stochastic programming and robust 
optimization is presented. 

Figure 11. Number of selected papers associated with a given objective for reinforcement learning.

3.4. Other Techniques

This category includes all other techniques that do not fit into the categories presented
or that have hybrid versions of the techniques described above.

Scheduling and optimal planning of appliances are approached by different authors.
In [77], a HEMS for the optimal planning of appliances, energy resources, and electro-
thermal storage is presented. For this, the combination between the Modified Flower
Pollination Algorithm and the MILP is presented.

The authors of [78] provide a new residential energy management system based on
the convolution neural network (CNN) including a PV array environment. The CNN is
used in the estimation of the non-linear relationship between the residence PV array power
and meteorological datasets. The residential energy management system has three main
stages for the energy management such as forecasting, scheduling, and real functioning. A
short-term forecasting strategy has been performed in the forecasting stage based on the PV
power and the residential load. A coordinated scheduling has been utilized for minimizing
the cost function.

A novel framework for HEMS based on RL and employing neural networks in achiev-
ing efficient home-based demand response is addressed in [79].

A HEMS for a smart home having a PV system and battery storage is proposed in [80].
To solve the problem, a hybrid technique between stochastic programming and robust
optimization is presented.
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The authors of [81] propose a HEMS with a focus on demand response. To solve
the problem, a hybrid technique between the PSO and the two-point estimate method is
used. The technique is shown to guarantee shorter computation times without reducing
the accuracy of the results.

The energy management for a house consisting of ESS, fuel cell and electrical and
thermal loads is proposed in [82]. To solve the problem, a hybrid technique between PSO
and sequential quadratic programming is presented.

A multi-objective optimization of offline strategies for HEMS is addressed in [83]. Two
approaches are compared, namely the common timetable-based and the proposed approach
based on decision trees. The timetable-based strategy is optimized using multi-objective
GA and the tree-based using multi-objective genetic programming. The results of the latter
show a reduction in costs of up to 17%.

A novel technique for managing the energy in a zero-energy building using a combi-
nation of neural networks and MPC is proposed in [84].

A combination of RL and fuzzy reasoning is employed in [85] for an effective energy
management system with demand response. RL is considered as a model-free control
strategy which learns from the interaction with its environment by performing actions and
evaluating the results.

The authors of [86] propose the design and implementation of a fuzzy control system
that processes environmental data to recommend minimum energy consumption values
for a residential building. This system follows the forward chaining Mamdani approach
and uses decision tree linearization for rule generation.

In [87], the implementation of a HEMS based on a fuzzy logic controller is addressed.
The proposed HEMS manages the energy from the PV to supply home appliances in the
grid-connected PV-battery system. Similarly, a new power management strategy based
on fuzzy logical combined state machine control is developed in [88]. Its effectiveness
is compared with various strategies such as DP, state machine control, and fuzzy logical
control with simulation.

The findings of selected papers associated with other techniques are shown in Table 16.

Table 16. Findings of selected papers associated with the other techniques category.

Reference Findings

[77] The hybrid technique allows to obtain superior results in less time. Additionally, it is compared
with other metaheuristics and better results are achieved.

[78] The CNN is compared with other methods, proving its superiority.

[79] The results show the effectiveness of the data-driven HEMS framework, both for electricity
costs and computational efficiency.

[80] Robust optimization is used in the day-ahead operation and stochastic programming for the
real time operation. The results prove the effectiveness of the hybrid approach.

[81] The hybrid technique guarantees shorter computation times without reducing the accuracy of
the results.

[82]
The authors claim that this hybrid technique allows to incorporate the global search

characteristics of PSO with the local search capabilities of sequential quadratic programming.
The results demonstrate the effectiveness of the proposed model.

[84]
The results show that the system is capable of satisfying loads without the need to import

energy from the grid. On the contrary, the proposed approach allows injecting energy into the
grid and having some economic return.

[85] The results show that the proposed scheduling approach can smooth the power consumption
and reduce the electricity costs.

[86] The proposed approach improved the accuracy and made the computation faster.

[87] Experimental results show a fast processing time and a cost reduction of 10% when compared
with a system without a fuzzy logic controller.

[88] The effectiveness of the proposed approach is compared with various strategies such as DP,
state machine control, and fuzzy logical control with simulation.
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The number of selected papers associated with a given objective for other techniques
is shown in Figure 12.
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4. Computational Issues Considered in Home Energy Management Systems

When designing the HEMS, the decision maker must consider several factors, among
which are optimal decision making and the associated computational issues. In the case of
computational issues, one must consider the resources available at the level of processing
the programs, the formulation of the problem, and the time window that allows new
decisions to be made for the optimal HEMS operation. These issues arise because there is a
need for timely decision making and because of the dimension of the problem that tends to
grow into more complex problems.

4.1. Problem Size

The literature states that the increase in the problem dimension is related to several
aspects, namely, with the parameters that model the considered time intervals, such as the
resolution and the planning horizon, and with the number of devices considered [18].

However, other causes can increase the scale of HEMS problems. One of the causes for
the increase in the dimension of problems in the field of engineering, especially in energy
management in buildings, is the consideration of uncertainty. Uncertainty is an essential
issue because buildings in the future, in addition to the inherent uncertainty related to
load, will use renewable energy sources, and integrate EVs. Here, we are talking about the
increase in the dimension of the problem due to uncertainty essentially when considering
stochastic programming. When considering the representation of uncertainty through
scenarios in a problem, a reasonable number of scenarios should be considered to represent
the uncertainty more accurately. However, considering too many scenarios can lead to an
increase in computing time incompatible with timely decision making [93]. To solve this
problem, the literature has suggested scenario reduction techniques in [110,111]. Scenario
reduction is an important branch of decision-making problems in problems involving
uncertainty. The concept of scenario reduction aims to define subsets of the initial set of
scenarios, i.e., to determine a set of representative scenarios that best represent the initial
set of scenarios [110,111]. In the initial set, each scenario is associated with a probability.
In the final set, the preserved scenarios assume new probabilities that were previously
associated with the initial scenarios.
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4.2. Planning Horizon, Resolution, and Time Steps

From a computational point of view, in HEMS design it is important to present the
concepts of planning horizon, resolution, and time steps. Planning horizon refers to the
period of operation that is subject to treatment and optimization by the HEMS, generally in
periods of more than 1 h to days. Resolution refers to the time interval considered between
each decision-making period, usually in periods of minutes to hours. Time steps are the
result of the ratio between the planning horizon and the resolution. For instance, a planning
horizon of 12 h is considered in [48], with a resolution of 15 min, and 48 time steps. A
planning horizon of 24 h is considered, together with a resolution of 15 min, making a
total of 96 time steps in [22,24,42,52,55,72]. The scheduling horizon considered ranges from
5 a.m. of day D to 5 a.m. of day D + 1. Similarly, in [21,28,32,39,50,70,112], the time horizon
is also 24 h, but with a resolution of 1 h and 24 time steps. Other works propose the use of a
30 min resolution for a 24 h time horizon, which is equivalent to 48 time steps [23,27,51,61].
There are cases where optimization is performed for shorter resolution periods, e.g., 5 min
for a time horizon of 24 h and consequently 288 time steps are involved [20,25,34,59]. Some
authors present cases where optimization is performed for several resolution values. This is
the case of [53] which compares the results for a time horizon of 24 h, but for two different
resolutions: 1 h and 12 min. The work with the lowest resolution among the selected papers
is [60], where the resolution is 1 min for a time horizon of 24 h and a time steps value of
1440. The authors of [19,37,46,73,113] propose planning for a longer period, in the order of
days to years.

The planning horizon, the resolution, and time steps used in the selected papers are
shown in Table 17.

Table 17. Planning horizon, the resolution, and time steps used in the selected papers.

Planning Horizon Resolution Time Steps References

12 h 15 min 48 [48]

24 h 1 min 1440 [60,87]

24 h 5 min 288 [20,25,34,59]

24 h 12 min 120 [53,87]

24 h 15 min 96 [22,24,26,42,52,55,72]

24 h 30 min 48 [23,26,27,41,51,61,64]

24 h 1 h 24 [21,28,30–33,36,39,40,43,49,50,53,54,56,
57,62,68,70,71,76,77,79,80,82,85,109,112]

Days to years [19,37,46,73,75,113]

Table 17 shows that, as expected, the 24 h planning horizon and the 1 h resolution
are dominant.

5. Technical Issues Considered in Home Energy Management Systems

The decision maker must also consider some important technical aspects when design-
ing a HEMS. Namely, it must consider whether there is a need to consider uncertainty in the
formulation of the problem, whether there is more than one objective to be considered, and
whether it is necessary to formulate the problem as a multi-objective problem. Additionally,
demand-side management strategies and the associated tariffs and incentives should also
be discussed.

5.1. Uncertainty

The energy management of a house is a complex problem that requires extra attention
to the components that make up the house system. Particularly, nowadays houses are
increasingly based on energy production systems based on renewable energy resources
due to environmental concerns. In this sense, the production of energy from renewable
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sources implies greater flexibility in energy management systems, as the forecast of its
production is never perfect. Additionally, the load, i.e., the power consumption and the
electricity market prices also have random and difficult to predict behaviors. In recent
years, yet another source of uncertainty has begun to hover over electrical systems and
HEMS, the integration of EVs, many of them as bidirectional devices, with grid-to-vehicle
and vehicle-to-grid capability.

Proper representation of procedures through mathematical descriptions cannot always
be formalized using deterministic formulations. In the real world, it is expected that
situations occur where the representation of parameters through their average values is not
favorable. The literature presents solutions for non-deterministic environments to include
the treatment of uncertainty. According to [114], decision making considering the treatment
of uncertainty can be divided into three types, according to the environment: decision
making with random parameters in which the probability distribution function is known;
decision making with parameters where there is no information about the probability
distribution function; and decision making based on fuzzy sets theory, with uncertainty in
parameters’ fuzzy numbers and in constraint fuzzy sets.

To reduce the effects of uncertainty in a house, some techniques are presented in the
literature to solve this issue that can technically and economically affect the operation of
energy management systems in houses.

In environments where the probability distribution is known, the use of stochastic
programming techniques is suggested, namely two-stage stochastic programming and
multi-stage stochastic programming. Thus, in [32] the uncertainty management using
two-stage stochastic programming is presented. In the day-ahead stage, the proposed
residential energy management system considers uncertainty for electricity price and PV
generation modeled by interval-based scenarios. In the real-time stage, the uncertainty is
modeled by scenarios. There are 4 scenarios for day-ahead stage and they have the same
probability, while for real-time stage 10 scenarios are considered, with variable probability.

The authors of [33] addressed the uncertainty related to energy production, with
load consumption and with electricity prices. For each hour of the day, 10 scenarios are
generated for each of the uncertainty sources.

The authors of [34,36] addressed the uncertainty related to PV power output and load,
and wind power and load, respectively. For each uncertainty resource 6 scenarios are
generated, making a total of 36 scenarios. The probabilities of the scenarios are variable.

Some works consider the need to reduce the number of scenarios when there is a
high degree of uncertainty. This is the case of [35] where 1500 scenarios are generated
to represent PV power behavior, ambient temperature, and load behavior. Due to the
high number of scenarios, the number of 1500 scenarios is reduced to 15 new scenarios by
applying the backward method scenario reduction technique, to which new probabilities
are assigned.

The authors of [38] also used scenario reduction when considering uncertainty of PV
power. The scenario generation is based on a seven-step distribution model for a Gaussian
distribution, resulting in a total of 4096 scenarios. This value is reduced to 10 scenarios
using the backward reduction method proposed by [110]. The proposed technique is
compared with Monte Carlo Simulation (MCS) and two-point method. However, to obtain
a cost like the proposed technique, the MCS must increase the scenarios from 50,000 to
500,000, but that obviously implies a very large increase in computation time. Additionally,
considering the two-point method that generates 48 scenarios, there is no guarantee of
representing the uncertainty in the best way.

In [39], the uncertainty is associated with mobility pattern of EVs and wind power.
The scenarios are generated by an Autoregressive Moving Average (ARMA) and reduced
by 10 scenarios by K-means clustering technique.

The uncertainty associated with PV power, wind power, load, and electricity price are
addressed in [37]. A maximum of 450 scenarios is considered to represent uncertainty, as,
according to the authors, computing time can increase significantly.
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The authors of [40] consider uncertainties of EVs availability and small-scale renewable
energy generation, PV power, and wind power. Parameter realizations with uncertainty
are modeled through roulette wheel mechanism (RWM).

In [41], the uncertainty in PV power and energy demand is considered. In total,
10 scenarios of sources of uncertainty are considered.

In environments where the probability distribution is not known, the use of robust
programming techniques is necessary. Thus, in [43] the uncertainty management using
robust programming is presented. Uncertainty is related to electricity market prices. In this
work, it is stated that the use of stochastic programming is not the ideal technique to model
the uncertainty of market prices, because the probability density functions may not correctly
represent the price behavior with the integration of renewable sources. Furthermore, it is
said that the best way to access market price uncertainty without using historical data is by
considering the worst case, obtained through robust optimization.

A robust optimization approach is considered to deal with the uncertainty on energy
supply, based on wind power and the uncertainty of thermal and electrical loads by the
authors of [44]. It is stated that robust optimization approaches can be better suited for
assuming that the parameters are within some limits, which is more general than assuming
a known distribution of parameters. Furthermore, it is found that historical data can
be important for updating the limits, and that robust optimization is more suitable for
problems that involve risk, as they assume that the scenarios are the worst-case scenario
within the parameter limits.

Fuzzy decision-making environment is the last group. In this environment, according
to [114] two types of uncertainty exist, including ambiguity and vagueness. Ambiguity
refers to the situation where the choice among multiple alternatives is undetermined, while
vagueness refers to the case in which sharp and precise boundaries for some domains of
interest are not delineated.

5.2. Multi-Objective Problems

Usually, the management of a home is presented in the literature only to respond
to a single objective, or formulated only for the electrical part, or for the thermal part.
However, in many cases, researchers consider multiple objectives to be achieved simul-
taneously, as was possible to see in the summary of many of the works presented in the
previous sections. In the literature, multiple objectives are presented simultaneously, as
minimization of energy costs and user comfort [24], minimization of energy costs, PAR
and user comfort [50,53,54], minimization of energy cost and emissions [77], minimization
of energy costs and PAR [50,57], and minimization of energy costs and battery degrada-
tion [59]. However, these papers do not present the formulation in the conventional form
of multi-objective problems, that is, problems with multi-objective formulations. Thus, in
a multi-objective problem we are in the presence of more than one objective to be maxi-
mized or minimized following specific rules. The most used techniques in the specialized
literature on HEMS when there is a multi-objective problem are weighted sum and the
representation technique Pareto Front. However, outside the specialized literature on
HEMS, other techniques such as bounded objective and physical programming are used
for multi-objective problems [18].

5.2.1. Weighted Sum

In weighted sum, the formulation of the problem consists of the definition of an
objective function composed of two or more objective functions, and to each of these
objective functions a scalar is added that aims to define the weight that each will have in
the final value of the resulting objective function. Generally, the objective functions that
make up the scalar objective function are functions that concur with distinct or conflicting
objectives. The sum of the weights of each of the objective functions typically assumes the
unity value. It is considered the simplest way to formulate multi-objective problems due to
its simplicity, but the value of the objective must be linearly scalable [18].
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For instance, a multi-objective problem is formulated by the authors of [70], aiming to
minimize electricity costs and minimize the discomfort wait cost. A coefficient is used to
balance the cost of electricity with the discomfort wait cost.

Similarly, the HEMS proposed in [20] is formulated as a multi-objective problem, em-
ploying as minimization objectives the energy consumption expense and comfort deviation.
A total of 11 groups of combinations between the coefficients that model the weight of each
objective are considered. It is verified that this formulation allows flexibility to adjust the
results according to user preferences.

A problem formulated to answer multiple objectives is presented in [28], namely,
energy costs, user’s convenience, consecutive waiting time, and PAR. At this stage, the
goals all have the same weight as they do not have associated coefficients. However, given
the results obtained, it is verified that it is in the user’s interest to associate a higher weight
to some of the goals. Thus, in a second phase, coefficients are associated to each objective,
resulting in a multi-objective problem using the weighted sum technique. It is concluded
that this technique allows easier access to specific requirements of residents.

The authors of [23] formulate the model as a multi-objective problem that is converted
into a single objective problem by a linear combination of two objective functions. The two
conflicting goals are the reduction in energy costs and the reduction in peak load demand.

In [22], the HEMS is formulated as a multi-objective problem using weight coefficients
for two distinct objectives, as are user’s comfort and the total operating cost which are
negatively correlated.

An original problem is proposed in [46] with three different objectives, namely, self-
consumption, user comfort, and grid support. To formulate the problem, three coefficients
are considered that model the weight of each individual objective. The authors state that
this work presents an innovation, as the three weights can be permanently adjusted and
used in the next simulation step.

The authors of [60] claim that the formulation of the scheduling problem as a single
objective may lead to some issues in balancing the power demand and improving the user
comfort level due to the larger effort on minimizing energy cost in detriment of the other
objectives. Therefore, a multi-objective formulation is proposed, having four objectives
to minimize, namely the cost of electricity, PAR, capacity power limit rate, and waiting
time rate.

In [44], the energy management of the residential buildings is formulated as a multi-
objective problem, considering two objectives, namely operating and CO2 emissions costs.
Using the weighted sum technique, two weights are employed to control the impact of the
system operation and the total emissions on the total cost of the system; thus making it
possible to make a trade-off between the environmental impact and the economic impact.

5.2.2. Pareto Front

In multi-objective problems it is important to introduce a fundamental concept which
is the Pareto Front concept. Pareto Front refers to a trade-off curve where all the optimal
values of a multi-objective problem are based [115]. This curve has the function of offering
the decision maker a set of optimal solutions on which it then decides which one is closest to
its ambitions [114,115]. Thus, in a Pareto Front, with two conflicting objectives, one can only
get a higher value for one of the objectives if the other decreases. For instance, in [62], the
HEMS is formulated as a multi-objective problem using the Pareto front technique. The two
objectives in dispute are the minimization of energy consumption and the minimization
of energy costs. To show the effectiveness of the formulation, the Pareto Front results
are compared with the results obtained by the multi-objective problem formulated with
weighted sum. The results of Pareto Front are superior to those of weighted sum, achieving,
in many cases, a reduction in cost of about 25% while an increase in the use of renewable
sources is achieved.

The objectives associated with multi-objective problems obtained from the list of
selected papers are shown in Table 18.
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Table 18. Objectives associated with multi-objective problems from the list of the selected papers.

Reference Objectives Weighted Sum Pareto Front

[70] Minimization of electricity costs and of
discomfort wait cost 1

[20] Minimization of energy consumption expense
and comfort deviation 1

[28]
Minimization of energy costs, maximization of

user’s convenience, minimization of consecutive
waiting time, and minimization of PAR

1

[23] Minimization of energy costs and reduction in
peak load demand 1

[22] Maximize user’s comfort and minimization of
operating costs 1

[46] Maximize self-consumption, user comfort, and
grid support 1

[60] Minimization of electricity costs, PAR, capacity
power limit rate, and waiting time rate 1

[62] Minimization of energy costs and of
energy consumption 1

[44] Minimization of operating cost and
CO2 emissions 1

Table 18 shows that in most of the selected papers the formulation is based on multi-
objective problems using the weighted sum technique.

5.3. User Behavior

When developing HEMS, user behavior must also be taken into account. Several issues
can be addressed within the scope of user behavior, namely: the number of occupants in
the house, which can result in a significant increase in energy consumption; the availability
of users to participate in demand response strategies; and the behavior of users with
electric vehicles, which is a trend that is here to stay. For instance, in [20] six types of
uncertain user behaviors are considered, which are separately modeled through energy
consumption deviation. These six types of behaviors form the set of uncertain behaviors that
allow predicting the needs of users. A scheduling algorithm based on human–appliances
interaction in smart homes is proposed in [70]. This strategy of considering human–
appliance interaction proves to have good results. In [45], user behavior is introduced
in the model of a HEMS, through historical data extracted from a smart meter. It is also
stated that constraints may arise in data acquisition in buildings due to privacy issues
when considering user behavior. In [21], an electric vehicle charging management system
is integrated into a HEMS, taking into account the behavior of electric vehicle owners. To
model the stochastic behavior of electric vehicle holders, the uncertainty formulation takes
into account the arrival and departure periods of electric vehicles.

5.4. Demand Response and Pricing

Electric systems were characterized a few decades ago, in the previous paradigm,
as being essentially centralized and with little or no user action. Currently, there is a
paradigm shift towards a network where the user can assume some status to be able to
contribute to decisions related to the electrical system. In this sense, one of the clearest
examples of this paradigm shift are the incentives that aim to encourage the user to reduce
or change energy consumption. Here, we enter the field of demand response, which is
defined as changing the profile of energy use by users based on dynamic electricity prices or
other incentives to improve the efficiency and reliability of the power system [7]. Demand
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response programs take the form of time varying pricing or rebates because of changing the
demand profile compared to the forecasted base value [116]. In this sense, demand response
programs are commonly classified as price-based or incentive-based programs [6,7,116].
According to [6], both categories aim to minimize the energy bill for the users, with the
following differences: in price-based programs, demand is adjusted to network prices
according to user preferences, namely, TOU price, real-time price (RTP), critical peak price
(CPP), and inclining block rate (IBR); while incentive-based programs can be divided into
voluntary–direct load control (DLC) or emergency demand response program (EDRP);
mandatory–capacity market program (CAP) or interruptible/curtailable services (I/C);
and market clearing–demand bidding (DB) or ancillary services (A/S).

TOU is a widely used pricing scheme, characterized by being made up of two or
three different price periods over the course of a day. In the case of two prices, the first
refers to the price for off-peak periods and the second to peak periods [7]. The three-price
case consists of low-peak, mid-peak, and peak periods [7,117]. In many cases, the TOU is
characterized by having an associated seasonality, and it is usual for the hours of application
of these prices to vary, for example, in summer and winter. Additionally, the timetable for
these prices varies with the day of the week, with weekdays having one cost and Saturday
and Sunday other costs. This is the case for companies operating in Portugal.

For instance, in [112] the TOU is applied as a pricing scheme together with RTP or for
fixed prices. The TOU guarantees the greatest reduction in operating costs and the fixed
price the highest cost. Furthermore, the TOU guarantees the greatest exchange of energy
with the grid and the RTP the lowest value.

A typical Moroccan household is managed with a HEMS considering the TOU in [27].
The step-rate tariff is considered, which together with the TOU are the two most used price
schemes in Morocco.

The TOU is one of the pricing schemes proposed in a HEMS to manage a house
considering demand response in [45]. The TOU is compared with hourly pricing and five
minutes pricing. The result of one year of operation shows that the TOU allows cost savings
of up to 26%, a value higher than that obtained by the hourly pricing. However, the results
demonstrate that the real-time five minutes pricing allows cost savings of up to 42%. These
results are said to show the effectiveness of the TOU and RTP.

CPP is a pricing scheme very similar to the TOU, considering two distinct periods,
off-peak and peak periods, just like the TOU, with the difference of considering two periods,
one of extremely high demand values and another with relatively low demand [7,117]. The
existence of extremely high demand periods causes prices to follow this behavior, which
leads to CPP prices being higher than the TOU. CPP is a very specific case of price, as it
refers to days where less usual demand profiles are seen, characterized by very large peaks.

RTP is a pricing scheme where prices vary hourly, and there can be very large differ-
ences between the price of one hour and another hour. Two types of RTP are generally
considered, namely, day-ahead pricing and hourly pricing [7]. In the case of day-ahead
pricing, the prices for each hour of day D are defined on day D − 1. This price is closely
related to the hourly prices that are defined in the day-ahead electricity market and that
reflect the marginal price, resulting from the crossing of the energy purchase and sale
curves. The hourly price is defined by prices revealed every hour [7]. Day-ahead pricing is
the most suitable for consumers, as they know a priori the price of each hour, allowing for
timely planning and with a greater degree of certainty [7,117].

For instance, the RTP scheme is subscribed by a user of a home in Illinois, US, in [51].
The next 2 h RTP signal of each period is available for the consumer through a smart meter.
The developed HEMS has the capability of bi-directional operation, being able to sell energy
to the network at half the price of the RTP scheme.

The RTP scheme is used in [54] to measure the energy costs of a home. The RTP
scheme is compared with CPP scheme. The problem is formulated as a multi-objective
problem that analyzes the effects of each of the tariffs on each of the objectives, which are
the electricity cost and the PAR. The results show that the electricity cost is reduced by 75%
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and 80% when using RTP and CPP, respectively. Regarding PAR, it is reduced by 35% and
30% using RTP and CPP schemes with respect to the unscheduled case.

Similarly, RTP and CPP schemes are used in [57] in a HEMS. The electricity cost has
been reduced by up to 43% when only the RTP scheme is considered. By incorporating the
CPP scheme, the cost of electricity was reduced by up to 63% and the PAR reduced by up
to 38%.

Inclining Block Rate (IBR) is a pricing scheme where the price increases with increasing
energy consumption. Thus, an increase in energy consumption that exceeds the value
defined for an hour, a day, or a month result in an increase in the price to be charged [7].
This pricing scheme forces users to be more careful in how they consume energy over
a given period. The IBR scheme is used in conjunction with other price-based demand
response schemes in a HEMS in [41]. The other pricing schemes evaluated are RTP, CPP, and
TOU. The results show that the RTP scheme is the best method applied, as it simulates real
market conditions. It is said that with the TOU, as there are no penalties, it is only effective
for cases with low consumption values. Furthermore, it is claimed that the IBR together
with the TOU scheme can solve the problem of over-consumption using the price signals.

6. From HEMS to Energy Communities

Although the focus of this work is not energy communities and microgrids, we briefly
present here the developments that have been made in these areas in recent years, as those
are a very hot topic of research and application

An energy management system for a residential microgrid with a micro-CHP unit,
photovoltaic generation, hybrid vehicles, and ESS is proposed in [112]. The objective is to
minimize the energy costs associated with the purchase of energy from the grid, and with
the cost of natural gas. The transaction is compared for various pricing scenarios, namely,
TOU, RTP, or for fixed prices.

The authors of [113] propose the comparison between a management system for a
house and a community. Systems must manage energy from thermal and electrical points
of view. The problem is formulated as a multi-objective system, where the objectives are
the minimization of operating costs and emissions. The system is applied for a planning
horizon of one year and one week. It is concluded that the Community Management System
is better than the Management System for a house, both economically and environmentally.
It is stated that neither the Home Management System nor the Community Management
System is economically viable at this time, unless the size of the ESS is reduced, and the
thermal energy capacity increased.

In [103], a review of microgrid control and optimization in terms of objectives, con-
straints, and optimization techniques is presented. The components of the microgrid, the
advantages for the grid and for the final consumers are also presented.

Another review is presented in [118] regarding power generation systems for micro-
grids for residential applications. Greater attention is paid to DC microgrids. The technical
differences and strategies used in energy management systems in microgrids are presented.

A hierarchical energy management system is proposed for a set of building microgrids
that together form an energy community in [119]. Each building has a building energy
management system that optimizes the operation considering local information and price
information. Next, at the highest level, the community energy management system is
responsible for managing the operation between all building microgrids and then with the
main network. This sequence of decision making allows the minimization of the operation
costs of the problem formulated as a MILP problem. A system for planning the operation
of a microgrid is presented in [120]. The microgrid consists of several participants with
renewable production and EVs. The technique used to find the optimal solution is the multi-
agent RL. Multi-agent RL is compared to single-agent RL, demonstrating the superiority of
the former. The authors of [104] addressed an energy management system for a commercial
microgrid that includes renewable production from wind and the inclusion of EVs. The
paper’s biggest contribution is the consideration of electricity price uncertainty in an MPC.
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Furthermore, the risk is considered through the Conditional Value at Risk (CVaR) measure.
The objective is the minimization of operating costs. It is verified that EVs have an effective
contribution to the microgrid energy balance.

In [121], an energy management system for microgrids consisting of a set of buildings,
ESS, EV, and renewable energy sources is presented. The PSO is applied to find a solution
to the problem that aims to minimize costs. The results demonstrate a significant reduction
in costs.

A fuzzy logic-based energy management for microgrids connected to the grid is
developed by the authors of [122]. The system includes renewable sources and energy
storage. The goal is to minimize power fluctuations in the network, while maintaining the
battery state of charge within predefined limits.

Similarly, in [123], a fuzzy logic controller is applied in the EMS of microgrids by
considering dramatic behavior of renewable energy resources while maintaining bat-
tery state within secure limits. A comparison with the time-based constant and variable
charge/discharge control of battery demonstrates, in simulation, the effectiveness of the
proposed fuzzy controller in a residential AC microgrid.

An energy management system is presented for a hybrid residential microgrid con-
sisting of a diesel generator, wind turbine, PV system, and battery energy storage in [124].
The objectives are to minimize costs, reduce emissions, and increase the penetration of
renewable sources. The problem is solved using PSO. The results demonstrate that there
can be a reduction in emissions of more than 35% in the optimal configuration compared to
the scenario where diesel generators are responsible for satisfying all demand.

A risk-averse energy management system for large-scale industrial building micro-
grids is presented in [125]. The objectives are to minimize operating costs and minimize
greenhouse gas emissions. To solve the problem, a hybrid technique between the flower
pollination algorithm and MILP is applied. It is noted that this hybrid version is applied
because the techniques compensate for the limitations of each one, namely the disadvantage
of obtaining an optimal location with the flower pollination algorithm and the size of the
problem for the MILP. The results show that the proposed hybrid technique outperforms
other techniques such as GA and simulated annealing.

The authors of [126] propose an energy management system of a building microgrid
with the objective of minimizing energy costs, considering thermal comfort. The system
uses the MPC to define the optimal operating points. The results allow for the reduction in
operating costs.

A model for the optimal integration of building microgrids based on renewable sources,
EV, and batteries in the electricity market is proposed in [127], namely, in the day-ahead
market and in the regulated market. The objective is to maximize the profit of building
microgrids through participation in the electricity market. The problem is formulated as a
MILP problem. The results demonstrate the increase in profit, the reduction in renewable
energy curtailment, and decrease in power in peak hours compared to the case where there
is no optimization.

Stochastic programming is applied in an energy management system for grid-connected
building microgrids considering uncertainty of PV power and the stochastic behavior of
EVs in [128]. The system based on stochastic programming is compared with deterministic
programming, showing that the former guarantees the minimization of electricity costs.

In [129], an energy management system for a residential microgrid with PV generation
and battery energy storage is presented. The aim is to minimize electricity costs. PSO is
used to solve the problem. The PSO when compared with other techniques allows better
results to be obtained.

7. Conclusions

This review article provided a comprehensive systematic review of published works
considering HEMS techniques, technical and computational issues. The results of the
systematic review resulted in the division of techniques used in HEMS systems into four
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categories: traditional techniques, MPC, heuristics and metaheuristics, and other tech-
niques. The authors conclude this document by presenting the discussion of the following
points identified through the development of this work, and that should be highlighted:

− IEEE Access (IEEE) is the journal with the biggest number of documents published
within the review criteria, followed by Energies (MDPI) and Applied Energy (Else-
vier). Within the considered period, 2020 was the year when most documents were
published.

− The reviews published between 2018 and 2021 focused mainly on broader concepts
and enabling technologies presentation, HEMS architecture, benefits for the energy
grid, and specific components of HEMS or methods, as reinforced learning.

− There is a variety of documents being published on the topic of HEMS. However,
when addressing specifically the HEMS techniques, many studies were excluded from
the review due to the lack of information on the applied method itself.

− Although not being a specific search term, most of the articles have as an objective the
reduction in the economic costs related to residence power consumption.

− The statistical analysis of the data showed that the most used technique is the category
of heuristics and metaheuristics, followed by traditional techniques. In fact, this
was an expected conclusion since with the development of systems that emulate
the behavior of nature and the development of Artificial Intelligence, it has seen
an exponential growth in recent years. Thus, it is expected that in the future these
systems will continue to play an important role in HEMS design.

− It is also important to highlight the traditional techniques, based on exact algorithms
and solved by commercial solvers, which guarantee a global optimum when formu-
lated as linear problems. This is an advantage of traditional techniques and should
not be overlooked. With the evolution of computational power and the reduction in
computing time, these techniques will continue to play an important role in the future
of HEMS.

− The MPC will also be an important player as it can contribute to limiting the uncer-
tainty that characterizes HEMS.

− MATLAB is the simulation platform most used for the development of selected works,
but some works also used GAMS and Python, among other punctual uses of other
platforms.

− In computational issues, it is verified that most of the papers address the issue of
operation planning using HEMS using a 24 h planning horizon and a 1 h resolution.
It is expected that in the future there will be a need for optimization systems that plan
for values of less than one hour to obtain a more reliable optimization.

− Some documents, despite clearly presenting the HEMS technique being used, did not
present in detail the simulation setup used, which may make the method complicated
to replicate. The application of the same method for the same case study/data set may
have different results according to the assumed simulation setup, such as planning
horizon, resolution, and time steps. We advise the clear presentation of this setup in
future publications.

− Uncertainty is also a very important factor to consider in HEMS systems, especially
when it integrates renewable energy resources and their forecast.

− Most HEMS ideally should have a multi-objective approach, once the social compo-
nent related to the occupants’ preferences is as important as the energy savings or
other objectives intrinsically related to grid or system benefits.

− Overall, the works published on HEMS are very focused on the adaptation of the
adopted framework to the case study in which it is applied, and ideally there should
be more studies focusing on the assessment of generalization of the methods for
other datasets (residential buildings with different occupation patterns, equipment
usage, among others). The good performance of the HEMS generalization assessment
contributes as a basis to the commercialization of these solutions.
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− The performance assessment metrics of a HEMS—how good is the HEMS for a deter-
mined case study—should vary according to the objectives of the system, considering
the compromise between accuracy, computational resources, computational time,
among others.

Although this review followed all the rules presented in Section 2, this work has some
limitations. From the outset, the fact of considering selected papers from the year 2018
forward on the Web of Science platform. This decision was made as the optimization in
the HEMS area has grown rapidly and we aimed to present a systematic and recent review
that could provide an overview of what has been done in recent years. As a result, some
important papers in the area may have been missed. However, we presented throughout
the text, and, in Table 1, the review papers that were previously undertaken in this area
and that include papers earlier than 2018.

We found that it is very difficult to compare the results obtained with different tech-
nologies, and even with different approaches using the same technology. This is due to the
complexity of the problem, the multiplicity of the different factors intervening in a HEMS,
and the lack of public databases in this topic that can be used by different researchers to
assess their different technologies. In this sense, in [130] the reader can find several data
related to a group of houses located in the South of Portugal, with HEMS, renewable energy,
and energy storage.

As this work was focused on HEMS techniques, nothing was mentioned regarding the
necessary infrastructure to implement the HEMS, quite often obtained by IOT techniques.
Additionally, to implement HEMS techniques efficiently, one should be able to detect which
appliances are working, preferably using Non-Invasive Load Monitoring (NILM) methods.
These are important topics for an overall view of HEMS.

Another limitation is the absence of a complete review of microgrids and energy
communities. We only briefly present the link between HEMS, energy communities, and
microgrids. In the future, from our point of view, it is expected that management systems
for energy communities will become the rule rather than the exception as it has been until
now. This will happen because with the opening of the market and with greater decision-
making power of the prosumers, they will aggregate to start managing their energy on a
larger scale and perhaps enter the market in the form of clean energy aggregators. When
a large community of buildings is considered, its management involves typically the fast
processing of a large quantity of data, precluding, this way, the use of big data platforms.
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Nomenclature

ANN Artificial neural network
A/S Ancillary services
ARMA Autoregressive Moving Average
BOA Butterfly optimization algorithm
BPSWO Binary particle swarm optimization
CAP Capacity market program
CHP Combined heat and power
CNN Convolution neural network
CPP Critical peak pricing
DB Demand bidding
DER Distributed energy resources
DDP Differential dynamic programming
DLC Direct load control
DP Dynamic programming
DRL Deep reinforcement learning
EDRP Emergency demand response program
ELPSO Enhanced leader particle swarm optimization
ESS Energy storage system
EV Electric vehicle
GA Genetic algorithm
GWO Grey Wolf Optimization
HEMS Home energy management system
IBR Inclining Block Rate
I/C Interruptible/curtailable services
HGWGA Hybrid Grey Wolf GA
LST Least Slack Time
MCA Min-conflict local search algorithm
MOGA Multi-objective genetic algorithm
MILP Mixed-integer linear programming
MINLP Mixed-integer non-linear programming
NAA Natural Aggregation Algorithm
NILM Non-intrusive load monitoring
MPC Model predictive control
PAR Peak-to-average ratio
PBO Polar bear optimization
PEV Plug-in EV
PSO Particle swarm optimization
PV Photovoltaic
RWM Roulette wheel mechanism
RL Reinforcement learning
RTP Real-time price
TOU Time-of-use
SS-ADP State-space approximate DP

Appendix A

The number of citations and location of selected review articles with at least five
citations is shown in Table A1.

Table A1. Number of citations and location of selected review articles with at least 5 citations.

Reference Citations Location

[5] 15 India

[6] 38 Portugal

[7] 38 Malaysia
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Table A1. Cont.

Reference Citations Location

[9] 41 USA

[11] 17 Qatar

[12] 132 United Arab Emirates

[13] 77 Malaysia

[14] 9 USA

[16] 11 India

[17] 49 Spain
The number of citations was taken from the Web of Science as of 23 March 2022.

The number of citations and location of selected articles with at least five citations is
shown in Table A2.

Table A2. Number of citations and location of selected articles with at least 5 citations.

Reference Citations Location

[19] 21 Iraq

[20] 27 China

[23] 59 India

[24] 20 China

[28] 6 South Korea

[29] 16 China

[32] 30 Spain

[33] 18 Russia

[35] 16 USA

[36] 43 Qatar

[37] 23 Turkey

[38] 31 China

[39] 21 Spain

[40] 112 Italy

[41] 23 Iran

[44] 45 Iran

[45] 37 USA

[46] 7 Austria

[47] 47 Austria

[49] 20 Denmark

[50] 24 Pakistan

[51] 33 China

[54] 19 Iran

[55] 5 China

[56] 8 South Korea

[57] 20 Pakistan
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Table A2. Cont.

Reference Citations Location

[58] 5 Pakistan

[59] 7 Algeria

[60] 13 United Arab Emirates

[61] 8 China

[62] 7 Mexico

[63] 24 Ethiopia

[64] 6 Iran

[65] 10 Pakistan

[66] 13 Malaysia

[67] 7 South Korea

[68] 13 Pakistan

[69] 25 China

[72] 10 Iran

[73] 13 China

[74] 79 South Korea

[76] 26 South Korea

[79] 49 China

[80] 21 Iran

[81] 70 China

[82] 13 China

[83] 15 Slovenia

[84] 18 Egypt

[85] 26 England

[86] 9 Greece

[88] 8 South Korea
The number of citations was taken from the Web of Science as of 23 March 2022. The location is based on the
available information about the first author.
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