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Abstract: The complexity and uncertainty of the distribution system are increasing as the connection
of distributed power sources using solar or wind energy is rapidly increasing, and digital loads are
expanding. As these complexity and uncertainty keep increasing the investment cost for distribution
facilities, optimal distribution planning becomes a matter of greater focus. This paper analyzed the
existing mid-to-long-term load forecasting method for KEPCO’s distribution planning and proposed a
mid- to long-term load forecasting method based on ensemble learning. After selecting optimal input
variables required for the load forecasting model through correlation analysis, individual forecasting
models were selected, which enabled the derivation of the optimal combination of ensemble load
forecast models. This paper additionally offered an improved load forecasting model that considers
the characteristics of each distribution line for enhancing the mid- to long-term distribution line load
forecasting process for distribution planning. The study verified the performance of the proposed
method by comparing forecasting values with actual values.

Keywords: distribution system planning; distribution line; peak load; hybrid forecasting model

1. Introduction

Traditionally, the role of a distribution system has been to receive power from the
power grid, supply it to consumers in a certain area, and operate it smoothly. However,
as the distribution system changes due to distributed power sources such as photovoltaic
(PV) generation, wind turbine generation, and the energy storage system (ESS), the con-
cept of the distribution system is changing [1,2]. In other words, while stably supplying
electricity generated from large-scale power plants to consumers was important in the
past, the acceptance of distributed power sources near demand sides and flexibility for
new distribution systems such as microgrids and DC distribution systems are gradually
emerging as a new issue in the distribution system [3,4]. Additionally, despite the load
concentration phenomenon due to urbanization and the limitations of new distribution
facilities, consumers continuously want to receive a high-quality and reliable power supply.

Distribution planning is a technique that acquires and evaluates system operability,
stability, and reliability at a minimal cost for improving and expanding existing power
distribution systems in response to future power demand [5]. As mentioned above, as the
need for connection of distributed power sources is rapidly increasing, and digital loads
are expanding, there are customers’ increasing demands for a reliable and high-quality
supply of power, and the complexity and uncertainties of the distribution system are
also increasing. Accordingly, as investment costs for distribution facilities continue to
increase, the importance of an efficient distribution plan is growing. That is, as various
distributed power sources such as renewable energy resources, electric vehicles, and ESSs
increase in the distribution system, a complicated transformation of the distribution system
is occurring, and thus in response to this transformation, the importance of research in
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the field of distribution planning to maintain the reliability and power quality of the
distribution system at minimum cost is increasing.

As shown in Figure 1 [2], for deciding the size and timing of the distribution facility
installation in the future, the distribution line capacity should be planned in consideration
of the load. Hence, it is important to forecast future loads [6]. Recently, the renewable
energy connection to the distribution system is a factor that makes such forecasts more
difficult. In the modern distribution plan, since it is necessary to finally establish a mid-
to long-term expansion plan for distribution facilities by synthesizing the results of the
forecasting renewable energy sources and loads [7], the accuracy of load forecasting for
distribution lines is becoming more important than in the past, being the basis for effective
and economic planning.
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While the short-term load forecasting of distribution lines is necessary for operating
distribution systems, the mid- to long-term load forecasting provides very important in-
formation for operation, planning, and investment [6]. In the past distribution plans, load
forecasting assumed a constant increase in load; however, this assumption was insufficient
in distribution plans because the mid- to long-term load forecast has a non-linear character-
istic. Therefore, in addition to power data, statistical models such as the regression model
and the auto-regressive integrated moving average (ARIMA) model that use population
information and economic indicators as input variables were used, and currently, machine
learning models such as the artificial neural network (ANN) and support vector machine
(SVM) are used for load forecast [8,9]. Recently, hybrid models that combine two or more
models to solve the bias problems in machine learning models and improve forecasting
accuracy are being developed [10–12].

Currently, Korea Electric Power Corporation (KEPCO) is applying the simple linear
regression method in the mid- to long-term load forecasting for the expansion plan of
distribution lines, so improving accuracy is needed [13]. Therefore, it is necessary to analyze
the mid- to long-term load forecasting method for the existing distribution planning. This
paper derived optimal individual forecasting models based on selecting input variables
for load forecasting through correlation analysis. Then, ensemble load forecasting using
combining individual models was developed. In addition, this paper proposed a method
for improving forecasting results by considering the characteristics of each distribution
line, and the process of the mid- to long-term distribution line load peak forecasting for
distribution planning was also presented. In the end, this paper verified the performance
of the proposed method by comparing the forecasting with their actual values.

2. Analysis of Load Forecasting Method for the Current Distribution Planning

The mid- to long-term distribution line peak load forecasting process currently used
by KEPCO is briefly shown in Figure 2. The algorithm forecasts the increase and decrease in
the rate of electricity sales by applying the simple linear regression method to the amount
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of electricity sold in each administrative district. By deriving the share of contract power in
each administrative district, the amount of electricity that the distribution line is responsible
for by the district is calculated. Then, the increase and decrease rate of the peak load for
each administrative district and each distribution line are forecasted, and then the peak
loads of distribution lines are forecasted by applying these rates to each distribution line.
The reason for calculating the peak loads of distribution lines is to reinforce power facilities
to maintain the safety and reliability of the distribution system in mid- to long-term [13].
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However, problems related to forecasting and synthesizing the peak load for each
distribution line can occur. In general, the load does not increase evenly for each distribution
line, and the increase and decrease rate of the load is not simple to express as a simple linear
function. If distribution line peak loads are forecasted by simply applying the increase
and decrease rates of the load, there is a possibility that a large error may occur. When
comparing forecasting values from 2011 to 2020 according to the current distribution line
peak load forecasting method as of 2010 with the real distribution line peak load values
obtained from the substation operating results management system (SOMAS) within the
same period, it is analyzed that the error rate increased from an average of 19% to 52% as
the forecasting year approached 2020.

It can be observed from these results that the present load forecasting algorithm
based on the simple linear regression method has a limitation in the optimal distribution
planning. The linear regression method has the advantage of high robustness when the
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prediction period is long and when data are small; however, it may reach a limit in
forecasting accuracy as non-linear characteristics occur in mid- to long-term forecasting
because of various external variables such as weather and economy affecting the load in the
distribution system. Therefore, if a machine learning technique that can improve accuracy
while reflecting the influence of various external variables is applied, improved accuracy
can be expected for the mid- to long-term peak load forecasting for distribution lines.

3. Selection of Input Variables for Peak Load Forecasting of Distribution Lines

Machine learning derives output values as close to real ones as possible by learning
weights and biases between input variables, hidden layers, and output values and selects
output values depending on the range of input variable values like a decision tree [14]. In
the mid- to long-term distribution line peak load forecasting model, social, economic, and
meteorological variables are used as input variables, and output values are the peak load
data of each distribution line. The input variables and peak load data must be synchronized
with the forecasting time series unit desired by users through preprocessing. For the mid-
to long-term distribution planning, the annual peak load of distribution lines must be
presented as the results of the load forecasting method. However, since annual data are
insufficient to train a machine learning model, the load forecasting algorithm is configured
by a monthly peak load forecasting model with monthly data. Additionally, the annual
peak load forecasting value is derived from the results of the monthly forecasting model.

3.1. Definition of Data for Forecasting

Table 1 shows the list of load data for KEPCO’s distribution lines. The data has been
measured and obtained from KEPCO’s supervisory control and data acquisition (SCADA)
system, used to train the distribution line peak load forecasting model. Namely, these peak
load data were used as the output values lines in the mid- to long-term distribution line
peak load forecasting model using machine learning. The time series units of the peak
load data were provided by the hour, day, and month, and hourly data represents the most
detailed load profile. The hourly data were applied to the forecasting model through the
preconditioning process.

Table 1. List of load data.

Description Area

Data
Hourly By regional headquarters nationwide

(Seoul, Gyeonggi, Incheon, Gangwon, Chungbuk, Daejeon-Sejong-Chungnam, Daegu,
Jeonbuk, Gwangju-Jeonnam, Gyeongnam, Busan-Ulsan, Jeju)

Monthly
Daily

External variables such as social, economic, and meteorological variables should be
used for mid- to long-term load forecasts. Data on social and economic variables were
obtained from the Korean statistical information service [15], and meteorological informa-
tion was obtained from the Korean weather information website [16]. The conditions for
collecting social and economic variables must be time-series data for time series learning
of the machine learning model and should be updated so that the constructed model can
be continuously used. In other words, as much data as possible are required to forecast
the load after the current point in time, and it is necessary to collect new data every year
to continuously use the forecasting model in the future. A total of 597 input variables
satisfying these conditions were collected, as shown in Table 2 below.

3.2. Preprocessing of Input Variable Data

Social, economic, and meteorological variables have different units of time series
depending on the data provided. The process of preconditioning them into monthly data is
required to use them as input values for the machine learning model. Data provided in
a detailed cycle, such as weather, can be collected by selecting monthly data. However,
gross domestic product (GDP), gross regional domestic product (GRDP), and population
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are economic and social indicators calculated and provided by year. Therefore, in order to
use annual data as input variables for load forecasting, it should be estimated as monthly
data based on the interpolation method. As shown Figure 3, nominal GRDP’s monthly
data were estimated by the cubic curve fitting interpolation method.

Table 2. List of input variables for load forecasting.

Name of Data Number of Input Variables

GDP-related variables 52
GDP deflator, real GDP, nominal GDP 3

GRDP by each economic activity 84
GRDP per capita 4

SMP, Unit price for settlement 2
Index of All industry production (original index) 5

Index of All industry production (seasonally adjusted index) 5
Population (by age, sex) 72

Composite indexes of business indicators 22
Index of equipment investment 40

Consumer price index according to purpose 13
Consumer price index by each item’s characteristic 26

Producer Price Index 260
Weather 9

Total 597
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3.3. Input Variable Selection Process

Forecasting performance depends on the combination of input variables in machine
learning and deep learning-based forecasting [10]. It is necessary to construct a forecast-
ing model by collecting and analyzing multiple input variables. Final input variables
for distribution line peak load forecasting should be selected, and a forecasting model
should be presented by comparing the performance of forecasting models according to the
combination of input variables through correlation analysis of input variables and output
variables such as Pearson correlation, Spearman correlation, and mutual information analy-
sis [17–22]. Figure 4 shows the input variable selection process for constructing a machine
learning model.
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3.3.1. Deriving Forecasting Input Variables

The machine learning model has learned the relational equation between input and
output values. However, the past data of input variables are insufficient to forecast accurate
loads. Therefore, forecasting models need the predicted input variables for mid- to long-
term peak loads forecasting. Additionally, it is necessary to verify the predictability of
input variables and the performance of load forecasting with them. The long short-term
memory (LSTM) model, a representative algorithm of time series machine learning, was
used to forecast input variables. A simple time series model without other external input
variables was applied for the input variable forecast. In addition, the period provided for
each data is different; thus, the learning period was configured and forecasted using the
maximum time-series data provided individually. The normalized Root Mean Squared
Error (nRMSE) was used as an index that judges predictability. nRMSE compares the
degree of error between variables with different units and scales [23], as expressed in
Equation (1). As shown in Figure 5a, the non-linear, noncyclic data in the agricultural index
is difficult to forecast. Therefore, its nRMSE is greater than 10%. Figure 5b has a trend with
a linear increase, showing that its forecast results are within 10% even after training the
LSTM model several times. Through this process, 23 out of 597 data inputs were selected,
and the list of selected data are shown in Table 3. As shown in Table 3, 23 input variables
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were selected, including 19 economic indicators, 2 social indicators, and 2 meteorological
factors such as monthly maximum and average maximum temperature.

nRMSE =
1

max(y)−min(y)

√√√√ n

∑
i=1

(
(ŷi − yi)

2

n

)
× 100 (1)
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3.3.2. Input and Output Correlation Analysis

After deriving forecasting input variables, variables that would increase the inter-
pretability of machine learning are selected through input and output correlation analysis.
The relationship between the characteristics of the overall peak load and input variables in
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the target area is identified through a correlation analysis. The correlation was analyzed
using the Pearson correlation coefficient, Spearman correlation coefficient, and the mutual
information index. The mutual information is called interdependence information and is an
indicator that can determine the correlation between two data sets in addition to the linear
correlation. The Pearson correlation coefficient, which is often used in correlation analysis,
analyzes linear correlations, and the Spearman correlation coefficient has a high correlation
even in the case of non-linear monotonic functions by analyzing the linear correlation of
rank [17–22].

Table 3. List of predictable input variables.

Name of Data Number of Input Variables

GDP-related variables 1
GDP deflator, real GDP, nominal GDP 1

GRDP by each economic activity 10
GRDP per capita 1

Population (by age, sex) 2
Consumer price index by each item’s characteristic 6

Weather 2

Total 23

Figures 6 and 7 show the results of analyzing the correlation coefficients of 46 in-
put variables, representing that the first row or column shows the correlation between
the month peak and other input variables. Variables in dark blue have high correlation
coefficients. In general, a correlation coefficient of 0.7 or more indicates that the linear
correlation coefficient is high, and thus variables with a Pearson correlation coefficient
or a Spearman correlation coefficient of 0.7 or higher were selected [24]. When neither
correlation coefficient satisfied the criterion of 0.7, mutual information was performed.
Although the correlation coefficients of the monthly maximum and average maximum
temperature were not satisfied with 0.7, it was analyzed that the periodic correlation was
high as shown in Figure 8 through mutual information. Accordingly, 23 input variables
were finally selected.
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4. Mid- to Long-Term Distribution Line Peak Load Forecasting Model
4.1. Implementation of the Machine Learning Model and Selection of Optimal Learning Period

The configuration of the hidden layer depends on the machine learning algorithm, and
layer configuration and the number of nodes can be selected by user settings. In particular,
the decision tree-based model has slightly different performance and characteristics de-
pending on the ensemble method applied in the tree. Although each forecast model has its
own characteristics, its performance depends on the forecasting cycle and data composition.
Hence, it is necessary to analyze various models before selecting one [25–27].

First, as for artificial neural network-based time series machine learning models,
there are many types of artificial neural network (ANN)-based models, such as recurrent
neural network (RNN), deep neural network (DNN), and convolutional neural network
(CNN), depending on the layer configuration [25,28]. Among them, the LSTM and gated
recurrent unit (GRU) models are representative RNN-based models that are advantageous
for time series learning by receiving a sequence as an input. In addition, there are different
types of decision tree-based machine learning models depending on the ensemble method.
Bagging and boosting are typically used in decision tree ensembles. Random Forest is
a representative bagging ensemble model, and LSBoost is a typical boosting ensemble



Energies 2022, 15, 2987 10 of 19

model [26]. These models were selected as forecasting algorithms for mid- to long-term
load forecasting.

It is necessary to derive the optimal learning period by comparing the performance
of the LSTM, GRU, Random Forest, and LSBoost models. Load data of distribution lines
belonging to KEPCO’s Gimje substation were obtained from SOMAS for 18 years (from
2003 to 2020). As shown in Figure 9, tests were conducted with different learning periods
to guarantee sufficient learning data with fixed the same forecasting verification period.
The forecasting verification period was fixed at eight years, and the learning periods varied
from three to ten years, as in Figure 9, with the results shown in Table 4. The mean absolute
error (MAE) and mean squared error (MSE), expressed in Equations (2) and (3), were
used to assess forecast results obtained by machine learning models. They measure the
difference between the original and predicted values. As shown in Table 4, the predicted
performance of the four machine learning forecasting models was better than the others
when the training period was over eight years. Therefore, at least an eight-year learning
period is required for good performance load forecasting of eight years.

MAE =
1
n

n

∑
i=1
|ŷi − yi| (2)

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (3)

Energies 2022, 15, x FOR PEER REVIEW 10 of 19 
 

 

Forest is a representative bagging ensemble model, and LSBoost is a typical boosting en-
semble model [26]. These models were selected as forecasting algorithms for mid- to long-
term load forecasting. 

It is necessary to derive the optimal learning period by comparing the performance 
of the LSTM, GRU, Random Forest, and LSBoost models. Load data of distribution lines 
belonging to KEPCO’s Gimje substation were obtained from SOMAS for 18 years (from 
2003 to 2020). As shown in Figure 9, tests were conducted with different learning periods 
to guarantee sufficient learning data with fixed the same forecasting verification period. 
The forecasting verification period was fixed at eight years, and the learning periods var-
ied from three to ten years, as in Figure 9, with the results shown in Table 4. The mean 
absolute error (MAE) and mean squared error (MSE), expressed in Equations (2) and (3), 
were used to assess forecast results obtained by machine learning models. They measure 
the difference between the original and predicted values. As shown in Table 4, the pre-
dicted performance of the four machine learning forecasting models was better than the 
others when the training period was over eight years. Therefore, at least an eight-year 
learning period is required for good performance load forecasting of eight years.  

MAE = 1𝑛 |𝑦పෝ − 𝑦|
ୀଵ  (2)

MSE = 1𝑛 (𝑦పෝ − 𝑦)ଶ
ୀଵ  (3)

 
Figure 9. Optimal learning period selection simulation. 

Table 4. Performance results by learning period. 

Index Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Avg. 
MAE 1.27 1.25 1.24 1.29 1.30 1.38 1.64 1.37 1.34 
MSE 2.83 2.99 2.64 2.94 2.80 3.27 4.99 3.15 3.20 

4.2. Optimal Ensemble Model Combination 
The ensemble model is proposed to compensate for individual models’ shortcomings 

and improve the forecasting performance. Ensemble models include bagging, boosting, 
voting, and stacking methods. The bagging and boosting methods aforementioned sepa-
rate data from the same model and combine multiple training results, respectively. While 
the voting method selects forecast results of a model that shows high performance during 

Figure 9. Optimal learning period selection simulation.

Table 4. Performance results by learning period.

Index Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Avg.

MAE 1.27 1.25 1.24 1.29 1.30 1.38 1.64 1.37 1.34

MSE 2.83 2.99 2.64 2.94 2.80 3.27 4.99 3.15 3.20

4.2. Optimal Ensemble Model Combination

The ensemble model is proposed to compensate for individual models’ shortcomings
and improve the forecasting performance. Ensemble models include bagging, boosting,
voting, and stacking methods. The bagging and boosting methods aforementioned separate
data from the same model and combine multiple training results, respectively. While the
voting method selects forecast results of a model that shows high performance during
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verification among different forecasting models, the stacking method uses predicted results
of different forecasting models as input variables and the actual values as output variables
to construct the learning model again [27]. The bagging and boosting ensemble methods
are not suitable for combining different models, and it is difficult to see the voting method
as a combination of models because it simply selects the forecasting results of one model.
Accordingly, the stacking method is appropriate for improving forecast accuracy based on
different machine learning models.

Four previously selected forecasting models, LSTM, GRU, random forest, and LSBoost,
are combined into a stacking ensemble model through DNN. Compared with the ANN, the
DNN model has higher performance as the complexity increases because the number of
hidden layers and nodes increases and can derive non-linear predictive values that cannot
accurately identify the relationship, unlike the regression model. DNN models are generally
used more than simple machine learning or ANN models in recent studies with increased
computing power [25]. Depending on the detailed DNN structure, there are various
derivative models such as CNN and RNN. While CNN is a modified structure to analyze
patterns such as images, the RNN can predict sequential and repeating inputs [25,28].
However, since the stacking ensemble is a structure for deriving more accurate values
for the output values of individual models, a simple DNN model can be used in the
stacking ensemble.

In the case of selecting two years of an ensemble study period, Table 5 compares
the performance of 11 ensemble models over the 8-year verification period by various
combinations of four machine learning models. In particular, three models, random
forest + LSTM + GRU, random forest + LSTM, and random forest + GRU showed higher
performance than other models. As a result, random forest + LSTM + GRU was selected as
the most representative ensemble model considering the performance index.

Table 5. Comparison of forecasting performance of ensemble models.

Combination of Forecasting Models Number of
Forecasting Models MAE MSE

Random Forest + LSTM + GRU + LSBoost 4 0.9465 1.9849

Random Forest + LSTM + GRU 3 0.8863 1.4224

Random Forest + LSTM + LSBoost 3 0.9723 2.1536

Random Forest + GRU + LSBoost 3 0.9663 0.9838

LSTM + GRU + LSBoost 3 1.0378 2.2369

Random Forest + LSTM 2 0.9182 1.5057

Random Forest + GRU 2 0.8942 1.4793

Random Forest + LSBoost 2 1.0116 2.4720

LSTM + GRU 2 1.1673 2.0823

LSTM + LSBoost 2 1.1351 2.5318

GRU + LSBoost 2 1.1183 2.5217

The disadvantage of the stacking ensemble method is that the output values of multiple
different forecasting models need to be trained; hence its learning period is relatively longer.
The selected random forest + LSTM + GRU ensemble model is applied for one and two
years, and the resultant forecasting performance is listed in Table 6. Each model was
learned for eight years, and the learning period of the ensemble model was different.
Each ensemble model was forecasted for eight years from 2013 to 2020. It is necessary to
distinguish individual learning models and ensemble learning models among the given
data because of the nature of the stacking ensemble. The learning period of the individual
time series machine learning model that applies recent trends is reduced to increase that of
ensemble learning. Therefore, it is necessary to construct an efficient ensemble model with
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a shorter period. According to Table 6, the case of learning for one year shows very poor
performance compared with the case of ensemble learning for two years. The shorter the
ensemble learning period, the longer the learning period can be invested in the time series
learning model. Finally, the two-year is proper will proper for the ensemble model based
on the acquisition data period.

Table 6. Comparison of forecasting performance by ensemble learning period. Tests 1 and 2 represent
one- and two-year tests, respectively.

MAE MSE Error Rate (%)

Test 1 2.2548 8.7153 41.1126

Test 2 0.8863 1.4224 12.4454

It compared the performance of applying the ensemble model with that of individual
learning models by setting their verification period for eight years (from 2013 to 2018). As
shown in Table 7, the ensemble model has the best predictive performance compared to the
individual models.

Table 7. Comparison of ensemble and individual model prediction performance.

Forecasting Model MAE MSE Error Rate (%)

Ensemble 0.8863 1.4224 12.4454

Random Forest 1.3324 2.8062 16.4040

LSTM 1.1785 2.6965 16.1125

GRU 1.1376 2.3738 15.2158

LSBoost 1.3909 3.3398 21.0127

The proposed Random Forest + LSTM + GRU ensemble model structure is shown
in Figure 10. In addition, Table 8 shows the peak load forecasting error percentage of the
actual 15 distribution lines connected to the Gimje substation of the KEPCO Gimje Branch
Office, which was verified with the ensemble model finally proposed.
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Table 8. Forecast verification error percentage of the Gimje substation distribution lines.

Substation Number of D/Ls 2013 2014 2015 2016 2017 2018 2019 2020 Avg.

Gimje 15 7.54 10.99 16.39 19.44 11.21 9.49 9.72 14.79 12.45

5. Development of Peak Load Forecasting Process Considering Distribution Line Characteristics

As in Table 8, the proposed mid- to long-term distribution line peak load ensemble
forecasting model has improved forecasting accuracy compared to the previous linear
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regression-based peak load forecasting method. However, a distribution line may not
meet the learning period of the forecasting model because many new distribution lines
are newly built every year or may change owing to load switching. This learning period
problem may impair forecasting accuracy, so a peak load forecasting process that reflects
the characteristics of such distribution lines is required.

5.1. Forecasting Model Reflecting Load Fluctuations of Distribution Lines

In the distribution system, a new distribution line may cause load transfer and move-
ment, thus changing distribution line loads. As a result, the peak load pattern of the
distribution line may also change significantly. In such a case, even if the proposed en-
semble model is applied, the forecasting accuracy may be impaired because external input
variables do not cause the change.

For solving this problem, an outlier detection algorithm is applied in a statistical
manner. The annual maximum load change rate for each power distribution line was
derived, and the outlier of the change rate was derived. Then, outliers can be detected by
Equation (4), which is based on the outliers scaled by multiplying the constant by the MAD
as used in the statistical outlier calculation method [29].

MAD = c×median(|Xi −median(X)|), c = − 1√
2× erfcinv

( 3
2
) = 1.4826 (4)

Since the pattern characteristics are different for each distribution line, outlier criteria
were selected by the rate of yearly peak change for each distribution line. The rate of change
in the monthly peak average was defined as the rate of change in the interval based on
the period when the annual peak rate of change was large. As shown in Figure 11, the
pattern change was applied by displaying the pattern and calculating the average value
ratio between the pattern change intervals.
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Figure 11. Derivation of peak load pattern change point.

This pattern change point and interval average change were applied to the ensemble
forecasting model. As shown in Figure 12, pattern changes occur within the learning period.
In this case, the entire learning data are integrated into the latest pattern to follow it. This
approach does not learn irrelevant patterns and provides sufficient learning data for one
pattern. As shown in Figure 12, when one of the distribution lines belonged to the Gimje
substation, the overall peak load change was minor, but large pattern changes were found
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in 2004 and 2005. Figure 12 shows the result of comparing the forecasting model with
and without applying the pattern change algorithm to the distribution line. By correcting
15 distribution lines at the Gimje substation with the pattern change algorithm, it was
confirmed that the forecasting performance improved, as shown in Table 9.

Energies 2022, 15, x FOR PEER REVIEW 14 of 19 
 

 

with and without applying the pattern change algorithm to the distribution line. By cor-
recting 15 distribution lines at the Gimje substation with the pattern change algorithm, it 
was confirmed that the forecasting performance improved, as shown in Table 9. 

 
Figure 12. Forecast results with and without applying the pattern change algorithm. 

Table 9. Performance results with and without applying the pattern change algorithm. 

Pattern Change Algorithm MAE MSE Error Rate (%) 
Before → Not applied 0.8863 1.4224 12.4454 

After → Applied 0.8329 1.2229 11.4882 

Another noticeable case is when a pattern change occurs during the forecast period. 
In this case, the timing and rate of change of the load pattern are known since the load 
transfer and movement of distribution lines are planned. There is no pattern change dur-
ing the learning period, thus learning the data as they are. Instead, a pattern change with 
an average change rate during the forecast period is applied to forecast output values. It 
can be seen from Figure 13 that a pattern change occurs during the forecast period of one 
of the distribution lines at the Gimje substation. When applying the pattern change ap-
proach proposed, the same verification period for eight years, from 2013 to 2020, was an-
alyzed for the ensemble model. Table 10 shows that the forecast results improve as com-
pared with the case where pattern change was not applied. In the end, it was verified that 
the pattern change algorithm could further improve the forecast accuracy in the case of 
load transfer or movement, which is the characteristic of the distribution line. 

Ye
ar

ly
 p

ea
k 

lo
ad

 [M
W

]

Figure 12. Forecast results with and without applying the pattern change algorithm.

Table 9. Performance results with and without applying the pattern change algorithm.

Pattern Change Algorithm MAE MSE Error Rate (%)

Before→ Not applied 0.8863 1.4224 12.4454

After→ Applied 0.8329 1.2229 11.4882

Another noticeable case is when a pattern change occurs during the forecast period.
In this case, the timing and rate of change of the load pattern are known since the load
transfer and movement of distribution lines are planned. There is no pattern change during
the learning period, thus learning the data as they are. Instead, a pattern change with an
average change rate during the forecast period is applied to forecast output values. It can
be seen from Figure 13 that a pattern change occurs during the forecast period of one of
the distribution lines at the Gimje substation. When applying the pattern change approach
proposed, the same verification period for eight years, from 2013 to 2020, was analyzed for
the ensemble model. Table 10 shows that the forecast results improve as compared with
the case where pattern change was not applied. In the end, it was verified that the pattern
change algorithm could further improve the forecast accuracy in the case of load transfer
or movement, which is the characteristic of the distribution line.

5.2. Forecasting Model of Distribution Lines with Insufficient Learning Period

The proposed peak load forecasting requires ten years of the training period, compris-
ing eight years of individual model training and two years of ensemble model training.
However, since many new distribution lines are installed every year, some distribution
lines inevitably lack the learning period. Therefore, the distribution line with an insufficient
learning period should be separated in the load forecasting process, and a separate load
forecasting model should be applied to the distribution line. A machine learning model
with better performance than the previous regression method needs to be used when the
learning period is short.
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Figure 13. Forecast results with and without applying the pattern change algorithm for the forecast period.

Table 10. Performance results with and without applying the pattern change algorithm for the
forecast period.

Pattern Change Algorithm MAE MSE Error Rate (%)

Before→ Not applied 0.8863 1.4224 12.4454

After→ Applied 0.8719 1.2817 10.9126

The 170 distribution lines of KEPCO’s Gunsan branch office were considered for the
case study. Table 11 lists the number of distribution lines that can be forecasted according
to the different learning periods; to be specific, the test number is identical to the years
assigned for the learning period. Table 11 indicates that the number of distribution lines
that could be forecasted decreased with the learning period since there was a limited period
of total data collected. Table 12 lists the performance test results of single machine learning
models for different learning periods. The verification period was eight years, from 2013 to
2020. Since the learning period was insufficient, tests with various learning periods were
required. As shown in Table 12, the LSBoost model with the best performance results was
selected as the load forecasting model for distribution lines with a short learning period.

Table 11. Number of distribution lines that can be forecasted by the proposed peak load forecasting
method according to the learning period in Gunsan branch office.

Test Number of D/Ls

1 129
2 121
3 116
4 109
5 104
6 98
7 97
8 96
9 94
10 57



Energies 2022, 15, 2987 16 of 19

Table 12. Performance comparison among single forecasting models for the different learning period.

Forecasting
Model Index Test

1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Avg.

GRU MAE 1.77 2.02 1.71 1.79 1.61 1.68 1.62 1.57 1.48 1.28 1.65
MSE 2.36 2.24 2.60 2.75 2.39 3.18 6.33 3.17 4.34 3.18 5.07

LSTM MAE 1.85 1.68 1.17 1.62 1.56 1.60 1.52 1.43 1.46 1.31 1.52
MSE 6.28 5.32 5.20 4.73 4.48 4.70 4.52 4.09 4.28 3.20 4.68

Random Forest MAE 1.81 1.61 1.56 1.53 1.52 1.51 1.48 1.49 1.49 1.31 1.53
MSE 5.27 4.28 4.26 4.16 4.18 4.14 4.05 4.05 4.07 3.28 4.17

LSBoost MAE 1.30 1.47 1.35 1.41 1.42 1.40 1.41 1.48 1.31 1.33 1.39
MSE 3.43 3.87 3.69 3.95 3.64 3.74 3.82 3.77 3.46 3.27 3.66

Table 13 shows the performance comparison between the existing regression fore-
casting model and the proposed LSBoost forecasting model for the 170 distribution lines
of KEPCO’s Gunsan branch office, where learning data exists for more than one year.
Table 13 indicates that the average error of 32% was significantly improved to 17% when
the LSBoost model was used. All in all, with the distribution line that lacks the training
period, the single LSBoost model has superior forecasting performance compared with the
conventional regression method.

5.3. Distribution Line Peak Load Forecasting Process for Mid- to Long-Term Distribution Planning

Figure 14 shows the proposed mid- to long-term distribution line peak load forecasting
process for distribution planning based on the ensemble model. This process improved the
forecasting accuracy for the load fluctuation and lack of learning period of the distribution line
while providing improved predictions compared to the conventional load forecasting method
for all distribution lines. Table 14 shows the forecasting verification results for all 22 distribution
lines connected to the KEPCO Gimje substation using the proposed load peak forecasting
process. The 22 distribution lines of the Gimje substation had severe load fluctuations and
insufficient learning periods. As shown in Table 14, the 8-year accuracy of the distribution line
peak load forecasting was 87% on average. Table 15 compares forecast performance between
the existing regression forecasting and the proposed model, indicating that the MAE, MSE, and
error rate were significantly improved. It was verified that the proposed peak load forecasting
process for mid- to long-term presented higher forecast accuracy than the existing method.
The efficiency of investment can be improved by the accuracy of the timing and capacity in
distribution planning with the proposed forecasting process.

Table 13. Comparison of error percentage with the existing regression method and the LSBoost model.

Forecasting Model 2013 2014 2015 2016 2017 2018 2019 2020 Avg.

Regression 27.26 28.37 30.61 39.14 36.21 41.59 48.46 51.98 37.95

LSBoost 12.68 16.85 17.58 17.49 18.35 17.28 19.71 17.48 17.18

Table 14. Forecasting error percentage of all distribution lines at the Gimje substation.

Substation Number of D/Ls 2013 2014 2015 2016 2017 2018 2019 2020 Avg.

Gimje 22 9.91 13.88 14.41 13.24 12.97 12.80 14.90 17.35 13.68

Table 15. Comparison of forecast performance between the existing and proposed model at the
Gimje substation.

MAE MSE Error Rate (%)

Existing regression model 2.0518 7.6819 27.7015

Proposed forecasting model 1.2227 2.7609 13.6837
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6. Conclusions

As the environment of the distribution system changes rapidly due to the expansion
of renewable energy, the importance of distribution planning is growing. Therefore, this
paper proposed the model and process for load forecasting, which is the essential element
in distribution planning. The optimal ensemble machine learning model was derived to
overcome the limitations of the non-linear characteristics of the existing linear regression
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load forecasting method for the mid- to long-term. The optimal input variables and the
learning period were selected. This paper presented the ensemble model for forecasting
the peak load for the mid- to long-term distribution lines and verified the result through
KEPCO’s power data. The proposed method also reflected distribution line characteristics
such as load fluctuations and lack of the learning period for its application to all distribution
lines of power utilities. Its performance was verified by actual data from distribution lines
at the KEPCO Gimje substation. In the future, KEPCO plans to implement the distribution
load forecasting system based on the proposed process of updating power data and external
data. Additionally, it will be used to plan the distribution planning for the mid-to long-term.
In particular, it will help to make investment decisions for distribution substations and
feeders. It will be expected that efficient and economical distribution planning will be
enabled even in a distribution system situation where uncertainty increases.
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