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Abstract: Acoustic process tomography is a powerful tool for monitoring multiphase flow and
combustion. However, its capability of revealing details of the interrogation zone is restricted by the ill-
posed and rank deficiency problems. In each projection, a probing sound beam only passes the pixels
along its propagation path, resulting in a large number of zero-valued elements in the measurement
matrix. This is more pronounced as the resolution of the imaging zone becomes gradually finer, which
is detrimental to image reconstruction. In this study, a mathematically explicable reconstruction
algorithm of regularization is proposed by assigning each zero-valued pixel with a combination of
the values of the neighboring pixels, ruled by the appropriate regularization factors. The formula to
determine the regularization factors is also derived. Simulations are carried out to verify this new
approach, and some representative cases are presented. As a result, the ambiguity of the inverse
process is removed, and the accuracy of the image reconstruction is significantly improved. The
results show the robustness of the algorithm and certain advantages over the standard Tikhonov
regularization formula.

Keywords: acoustic tomography; image reconstruction; regularization model; temperature distribution;
inverse process

1. Introduction

In industrial operations, the online monitoring of the operation parameters plays a
vital role in securing the quality of the products. The temperature distribution is one of
the most important parameters to be monitored. The operation safety, process efficiency,
pollution control, etc., are very often closely related to the temperature distributions. With
the advantages of a nonintrusive technique, acoustic tomography is one of the modern
techniques in reconstructing temperature distribution in various devices.

For a time-of-flight method, the reconstruction of temperature distributions needs the
measurement of time as the acoustic wave propagates through the interrogation section,
and certain algorithms to calculate the temperature in the sections [1–4]. Some frequently
used algorithms include Linear Back Projection (LBP) [5], Landweber iteration [6], Alge-
braic Reconstruction Algorithms [7–10], Singular Value Decomposition (SVD) [11], etc.
Zhang [12] proposed a meshless Radial Basis Function (RBF) method combined with the
modified Tikhonov regularization to reconstruct the two-dimensional velocity field. The
impacts of shape parameters, types of RBF, and the collocation of central points on the
reconstruction are analyzed. The feasibility and effectiveness of the proposed method
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show that the proposed method is appropriate to solve severely ill-posed and underde-
termined acoustic tomography problems. Kong [13] put forward a new 3D temperature
field reconstruction method based on radial basis function approximation with polynomial
reproduction (RBF-PR) and truncated generalized singular value decomposition (TGSVD).
The experimental and simulation results both showed the effectiveness of the proposed
method. He also studied the anti-noise ability of the proposed method, and the results indi-
cated that model could reconstruct the temperature distribution with higher accuracy and
better anti-noise ability compared with TGSVD [14]. Yu [15] developed a novel nonlinear
acoustic tomography to reconstruct both temperature and the velocity field simultane-
ously, which was confirmed by the simulation. Otero [16] also described a novel acoustic
tomography method for simultaneous velocity and static temperature distributions in
high subsonic Mach number flows and presented the proof by the laboratory experiment.
Li J. [17] combined the integral equation (IE) in the forward process and the contrast source
inversion (CSI) in the inverse process in monitoring the properties of concrete quality de-
fects. The method was validated by the numerical cases. Rao [18] developed an ultrasonic
tomography method based on acoustic multiparameter full waveform inversion (FWI) for
high-resolution reconstructions of velocity and density in metal components. In his study,
the inverse Hessian was applied to mitigate the coupling effects of multiparameters. The
method could effectively alleviate the tradeoff effects between velocity and density.

In recent years, some scholars have also proposed some reconstruction algorithms of
two-dimensional temperature distribution, which represent the research state-of-the-art
in this field. Liu [19] studied a new reconstruction method that integrated the advantages
of the Tikhonov regularization method and the Least Squares Support Vector Machine
(LSSVM). The reconstruction quality was improved. Wu [20] proposed a new reconstruction
algorithm based on the Radial Basis Function (RBF) interpolation method optimized by the
evaluation function (EF-RBFI). The reconstruction results also verified the feasibility of the
proposed algorithm. Chen [21] put forward an improved Tikhonov regularization recon-
struction algorithm and reconstruction errors of temperature fields were reduced based on
simulation and experiment. Liu [22] presented a two-phase reconstruction method to ame-
liorate the reconstruction accuracy, and the superiority of the robustness and reconstruction
accuracy was validated by numerical simulations and experiment measurement. Wang [23]
proposed a new reconstruction algorithm based on the logarithmic–quadratic (LQ) Radial
Basis Function (RBF) and Singular Value Decomposition (LQ-SVD). The reconstruction
results revealed the stronger robustness and better anti-interference ability.

However, currently, it is difficult to find an algorithm to effectively deal with the
severe rank deficient problems. As the number of the paths of the acoustic waves is limited
by the number of the transducers, the waves may not be able to pass all the pixels in the
interrogation zone, if there are a large number of pixels. There may even be questions as
whether the results of the reconstructions are the solutions of the real problems. Although
a definite solution may be acquired by reducing the number of pixels to a number smaller
than the probing paths of the waves, this will tend to cause to coarse pixels that will largely
reduce the quality of the reconstructed images.

In this study, we propose an explicable neighboring-pixel reconstruction algorithm for
the regularization terms to remove the ambiguity of the reconstruction results and to enable
the inverse process to generate a solution. By doing so, the reconstructed images will less
severely suffer from the ill-posed problems in acoustic tomography. Firstly, it is feasible to
increase the number of pixels, which is limited by the probing paths of the waves in the
reported literature. This contributes to improving the accuracy of the image reconstruction
substantially. Secondly, the formula solution directly generates optimal results instead
of the common iterative method, facilitating error calculation. Thirdly, a majority of
the calculations can be performed beforehand, which obviously boosts the speed and
reduces the calculation burden. Numerical simulations in four cases, including centrally
symmetrical, stratified distribution, multipeak distribution, and mixed distribution, were
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carried out to verify the effectiveness of our method. In summary, the main contributions
of our algorithm are as follows.

• The proposed explicable neighboring-pixel reconstruction algorithm prominently
increases the accuracy of image reconstruction. The number of pixels can be much
larger than the number of paths, which is limited in the existing studies.

• Our method is explicable because it gives the formula solution for the first time. In
addition, it helps calculate the error.

• The fast speed and the light weight are remarkable resulting from the prior calculation
of the most parameters.

• It can be universally applied to sound velocity tomography, acoustic relaxation attenu-
ation tomography, and optical tomography, which is of great significance.

2. Principles of Acoustic Tomography for Temperature Field Reconstruction

Acoustic measurement inverts the physical characteristics of the medium by measuring
the change in the propagation parameters of the sound wave. The principle of Acoustic
Tomography for temperature field reconstruction is to invert the reciprocal of the sound
speed, which is related to the temperature, according to time of flight (TOF) of the sound
wave. As shown in Figure 1, given the theoretical temperature distribution, the theoretical
time of flight, i.e., F, could be calculated. The acoustic tomography reconstructs G∗ using
the proposed reconstruction algorithm, according to the TOF.
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Figure 1. The flow of the acoustic tomography. T, C, G mean the theoretical parameters, and T*, G*
mean the reconstruction values obtained via the reconstruction algorithm. Finally, we calculate a
series of errors between T and T* to evaluate our proposed image reconstruction method.

It is well known that the propagation of a sound wave in air will vary with temperature,
assuming that there is no heat transfer associated with the acoustic wave propagation, as
described by [24]:

c =

√
1.4RT

M
(1)

where c is the sound wave velocity in air, m/s; R is the molar gas constant, 8.31451 J/(mol·K);
T is temperature in K; and M is the relative molecular mass, kg/kmol. Equation (1) is the
basis for the acoustic measurement of temperature distributions in a gaseous medium.

It can be supposed that the mixed gases would not produce a chemical reaction, and
there is no heat transfer in the measured area. Moreover, a cross-section is considered
to describe the coordinates of the emitter or receiver via the cartesian coordinate system,
which are Ppro

(
xpro, ypro

)
and Prec(xrec, yrec) respectively. Then, the time of flight from

emitter to receiver TPR is as follows [24],

TPR =
∫

LPR

g(x, y)dl (2)

where LPR indicates the path of the sound wave between Ppro and Prec, g(x, y) is the
reciprocal of the sound velocity at the position of (x, y), and dl is the differential length in
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the path of the soundwave. It is notable that g(x, y) is an unknown function to be solved.
Since the line connecting Ppro and Prec can be expressed by

y(x) =
yrec − ypro

xrec − xpro

(
x− xpro

)
+ ypro (3)

then, dl is converted as follows,

dl =

√
1 +

(
yrec − ypro

xrec − xpro

)2
dx (4)

So, TPR can be derived as

TPR =
∫ xrec

xpro
g(x, y(x))

√
1 +

(
yrec − ypro

xrec − xpro

)2
dx (5)

where we assume xrec > xpro.
The TPR is the theoretical value of TOF. It is an integral form in Equation (5), which

is difficult to solve. Therefore, the approximate calculation is performed for each path
in Equation (6). If m̃ transducers, each with a two-fold capability of being an emitter
or a receiver, are arranged around the periphery of a circular region, then a number of
m = m̃(m̃− 1)/2 sound paths can be attained. If the measurement region is divided into n
cells, or pixels, and we assume the temperature in the region varies continuously, then the
time of flight (TOF) of the sound wave along the i-th path fi can be expressed by

fi ≈
n

∑
j=1

gjlij (6)

where gj is the reciprocal of the sound speed in the j-th cell, and lij is the length of the i-th
path inside cell j. The fi is the experimental value of TOF in the i-th path. Let

A =


l11 l12 · · · l1n
l21 l22 · · · l2n
...

...
. . .

...
lm1 lm2 · · · lmn

, G =


g1
g2
...

gn

, F =


f1
f2
...

fm

 (7)

Then, the matrix form in all paths is expressed as,

AG = F (8)

It should be noted that AG is approximately equal to the measurements F. The specific
optimization problem is to determine G so as to minimize ||AG− F ||2. Generally, the
determination of G, which minimizes the least squares error, is presented as the solution of
AG = F in matrix theory. So, Equation (8) is expressed as an equality. If the least square
solution of AG = F is unique, then G can be taken as the distribution of the reciprocal of
the sound speed.

As indicated in Figure 2, there are a set of 12 transducers arranged evenly in a circle,
which are named as transducer_1 to transducer_12. For the extensibility of the method,
the center of the circle is defined as the origin, and the radius of the circle is 0.2. The lines
show the paths of sound waves that are generated by transducer_1 and received by the
other eleven transducers. Each transducer can be considered as an emitter or a receiver.
So, there will be a combination of sixty−six effective paths of sound waves attainable from
twelve transducers.

According to [25], there are mainly three factors that influence the resolution and
accuracy of the reconstruction of the temperature field by acoustic CT.

(1) The number and positions of the transducers. Generally speaking, more transmitters
can provide more information for image reconstruction, resulting in more accurate
images but possibly with a higher cost of the device and elongated measurement time.
As for the transmitters, normally, they are evenly distributed around the periphery of
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the measurement boundaries to have a balanced interrogation beam coverage over
the sensing zone.

(2) The accuracy of the TOF measurement. The relative error of the TOF measurement
will lead to the relative error of the temperature measurement.

(3) The state-of-the-art model and algorithm employed in the reconstruction.

The model and algorithm should reconstruct the complex temperature field accurately
and be robust.
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3. A Neighboring Cells Regularization Model
3.1. An Analysis of the Conventional Method

According to the mean value theorem for integration [26], the errors of Equation (6)
are affected not only by the distribution of the temperature but also by the maximum
size of the differential element or the pixel in the context of image reconstruction, dmax,
as well as by how the characteristic parameter for a pixel is defined. According to the
matrix theory [27], for a linear system of equations AG = F to have a unique least squares
solution, the coefficient matrix A must have full column rank. In particular, there should be
no column(s) with all zero members.

It has been a widely adopted practice to virtually divide the measurement zone into
small pixels by equally spaced horizontal lines and vertical lines. If a square interrogation
area is divided by ñ horizontal lines and ñ vertical lines, then ñ2 pixels will be counted
within this area, named as n. Accordingly, there will be ñ2 columns in matrix A. For a
circular interrogation area, however, the interrogation area may not contain all the pixels
thus generated, some pixels in the corners will stay outside the circular area. This will be
case if the division ñ exceeds a certain value, since the smaller the pixels, the more the
pixels that can be contained between the circle and the square area in the corners. If this
happens, there will be zero column(s) in matrix A, implying that there will not be a unique
solution for AG = F. Therefore, we name this value the limit of divisions for a unique
solution, LDUS for short. It is not difficult to work out the number of the outsider pixels for
a given division ñ. The number of the pixels inside the circular area represented by matrix
A corresponding to each ñ can be given by the Table 1.
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Table 1. Number of pixels inside the circular zone for each number of ñ.

Parameter Number

ñ 4 5 6 7 8 9 10 11 12

Number of pixels inside the circular zone 12 21 32 37 52 69 80 97 112

For example, for m̃ = 12, where the number of measurements is 66, ñ must be smaller
than 9 to limit the number of pixels inside the measurement zone to a valve smaller than
the number of data acquired from the measurement, if a unique least squares solution is
required for AG = F.

If ñ is chosen to be small to meet the requirement for a unique square solution, then the
errors of the solution will be inevitably large, due to the large size of the pixels. However, if
ñ is too large, the requirement on ñ for a unique least squares solution for AG = F will not
be satisfied, resulting in underdetermined problems. The Tikhonov regularization method
very often is an effective method to alleviate the underdetermined problems. The essence
of the Tikhonov method is to acquire an optimized solution for the following problem:

min{ ||AG− F ||2 + λ ||G ||2} (9)

where λ ≥ 0 is the regularization parameter. The above model first minimizes the error
||AG− F ||2, while the penalty term λ ||G ||2 will force a unique solution.

As shown in Figure 3, a circular measurement zone of a diameter d can be evenly
divided into ñ by ñ squares. According to the presence of the sound beams, the pixels can be
categorized into two sets of indexes, Index_1 = {i : at least one probing beam passing pixel i },
and Index_2 = {i : no probing beam passing pixiel i }. For a conventional 12-electrode sen-
sor, the index-set, namely Index_2, will be a nonempty set when ñ ≥ 23. The number of
elements in Index_2 will increase with ñ. For example, Index_2 will have 2 elements for
ñ = 23 and 18 elements when ñ = 32.
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Theorem 1. If Index_2 is not an empty set, then the solution of the optimization model is not the
solution of the original problem.

Proof of Theorem 1. If Index_2 is not an empty set, then at least one column in matrix
A will have all-zero members, if this column’s index corresponds to a pixel indexed in
Index_2. Let vector G̃ be the same as G except setting all the pixel values to zero if the
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pixels belong to Index_2. Then, using the definitions of the terms in Equation (9), we have
||AG− F ||2 = ||AG̃− F ||2, and ||G ||2 ≥ ||G̃ ||2. Consequently, for any regularization
factor λ ≥ 0, the value of a pixel in the solution of Equation (9) must be zero if the pixel
belongs to Index_2. This implies that, if Index_2 is not an empty set, the solution of the
optimization problem, i.e., Equation, will not be the solution of the original problem.
Therefore, when using Equation (9) for an optimized solution, the size of each pixel must
not be smaller than d/23, i.e., ñ must be smaller than 23. �

min
{
||AG− F ||p + λ2 ||G ||p

}
(10)

For the same reason, if Index_2 is not an empty set, solutions using λ ||G ||p, p ≥ 1 in
the Equation as the regularization term will not be the solution to the original problem.

3.2. The Neighboring Cells Regularization Model and Solution Scheme

For more refined images, ñ needs to be increased for more pixels. However, as has
been discussed above, a large number of ñ will make Index_2 nonempty, thus exceeding
the critical limit for a true solution to the original problem. To solve this problem, we
propose a method to maintain Index_2 as an empty set even when ñ is increased beyond
the aforementioned critical limit.

Without loss of generality, suppose the distribution of the medium presents a continu-
ous 2D function inside the measurement area, in which a pixel Pi,j is located at

(
xi, yj

)
, as

described in Figure 4.
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must be smaller than 23. 

min{‖𝑨𝑮 − 𝑭‖p + λ2‖𝑮‖p} (10) 

For the same reason, if Index_2 is not an empty set, solutions using 𝜆‖𝑮‖𝑝, 𝑝 ≥ 1 in 

the Equation as the regularization term will not be the solution to the original problem. 

3.2. The Neighboring Cells Regularization Model and Solution Scheme 

For more refined images, �̃� needs to be increased for more pixels. However, as has 

been discussed above, a large number of �̃� will make Index_2 nonempty, thus exceeding 

the critical limit for a true solution to the original problem. To solve this problem, we 

propose a method to maintain Index_2 as an empty set even when �̃� is increased beyond 

the aforementioned critical limit. 

Without loss of generality, suppose the distribution of the medium presents a con-

tinuous 2D function inside the measurement area, in which a pixel 𝑃𝑖,𝑗 is located at(𝑥𝑖 , 𝑦𝑗), 

as described in Figure 4.  

 

Figure 4. The relationship between the pixel to be amended and its adjacent pixels. 

Assuming 𝑔(𝑥, 𝑦) has a continuous first derivative, an approximation function can 

be established using the first-order Taylor expansion as follows. 

𝑔(𝑥𝑖 , 𝑦𝑗) ≈ ∑ 𝑑𝑘,𝑗−1

𝑖+1

𝑘=𝑖−1

𝑔(𝑥𝑘 , 𝑦𝑗−1) + ∑ 𝑑𝑘,𝑗+1

𝑖+1

𝑘=𝑖−1

𝑔(𝑥𝑘 , 𝑦𝑗+1) + 𝑑𝑖−1,𝑗𝑔(𝑥𝑖−1, 𝑦𝑗) + 𝑑𝑖+1,𝑗𝑔(𝑥𝑖+1, 𝑦𝑗)𝑖 ≠ 1, �̃�, 𝑗

≠ 1, �̃� 

(11) 

in which: 

𝑑𝑘,𝑗−1 = 𝑑𝑘,𝑗+1 = 𝑑𝑘−1,𝑗 = 𝑑𝑘+1,𝑗 =
√2

4(1 + √2)
 (12) 

𝑑𝑘−1,𝑗−1 = 𝑑𝑘−1,𝑗+1 = 𝑑𝑘+1,𝑗−1 = 𝑑𝑘+1,𝑗+1 =
1

4(1 + √2)
 (13) 

Figure 4. The relationship between the pixel to be amended and its adjacent pixels.

Assuming g(x, y) has a continuous first derivative, an approximation function can be
established using the first-order Taylor expansion as follows.

g
(
xi, yj

)
≈

i+1

∑
k=i−1

dk,j−1 g
(

xk, yj−1
)
+

i+1

∑
k=i−1

dk,j+1 g
(
xk, yj+1

)
+ di−1,jg

(
xi−1, yj

)
+ di+1,jg

(
xi+1, yj

)
i 6= 1, ñ, j 6= 1, ñ (11)

in which:

dk,j−1 = dk,j+1 = dk−1,j = dk+1,j =

√
2

4
(

1 +
√

2
) (12)

dk−1,j−1 = dk−1,j+1 = dk+1,j−1 = dk+1,j+1 =
1

4
(

1 +
√

2
) (13)

The sum of all the dk,j is 1. The values of the coefficients are determined because
the distances between Pi,j−1, Pi,j+1, Pi−1,j, and Pi+1,j are unity (or can be normalized to
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unity), and between Pi,j−1, Pi,j+1, Pi−1,j, Pi+1,j, and Pi,j, they are
√

2. The smaller the distance
between two points, the smaller the difference between their function values. When
expressed by the function value of adjacent points, if the distance is large, the weight
coefficient is small; if the distance is small, the weight coefficient is large.

For cells on the lower boundary,

g
(

x1, yj
)
≈

j+1

∑
k=j−1

d2,k g(x2, yk) + d1,j−1g
(
x1, yj−1

)
+ d1,j+1g

(
x1, yj+1

)
j 6= 1, ñ (14)

in which:
d1,j−1 = d1,j+1 = d2,j =

1
3 +
√

2
(15)

d2,j−1 = d2,j+1 =
1

3
√

2 + 2
(16)

For cells on the upper boundary,

g
(

xñ, yj
)
=

j+1

∑
k=j−1

dñ−1,k g(xñ−1, yk) + dñ,j−1g
(
xñ, yj−1

)
+ dñ,j+1g

(
xñ, yj+1

)
j 6= 1, ñ (17)

in which:
dñ,j−1 = dñ,j+1 = dñ−1,j =

1
3 +
√

2
(18)

dñ−1,j−1 = dñ−1,j+1 =
1

3
√

2 + 2
(19)

For cells on the left boundary,

g
(

xj, y1
)
≈

j+1

∑
k=j−1

dk,2 g(xk, y2) + dj−1,1g
(
xj−1, y1

)
+ dj+1,1g

(
xj+1, y1

)
j 6= 1, ñ (20)

in which:
dj−1,1 = dj+1,1 = dj,2 =

1
3 +
√

2
(21)

dj−1,2 = dj+1,2 =
1

3
√

2 + 2
(22)

For cells on the right boundary,

g
(

xj, yñ
)
=

j+1

∑
k=j−1

dk,ñ−1 g(xk, yñ−1) + dj−1,ñg
(
xj−1, yñ

)
+ dj+1,ñg

(
xj+1, yñ

)
j 6= 1, ñ (23)

in which:
dj−1,ñ = dj+1,ñ = dj,ñ−1 =

1
3 +
√

2
(24)

dj−1,ñ−1 = dj+1,ñ−1 =
1

3
√

2 + 2
(25)

We express g(x1, y1), g(x1, y2), · · · , g(x1, yñ), · · · , g(xñ, y1), g(xñ, y2), · · · , g(xñ, yñ) as
a column vector, i.e.,

{
g
(
xi, yj

)∣∣i, j = 1, 2, · · · , ñ
}

. That means there will be n equations for
g
(

xi, yj
)

which are expressed above by the function value of its neighbor. Then, the left part
of the Equation (11) (or 14, 17, 20, 23) could be moved to the right part. These n equations
can be expressed as M·G ≈ 0n×1, where M is the constructed matrix. Here, the elements in
the i + (j− 1)× ñ row of M in each column are

(1)
√

2
4(1+

√
2)

at the position of Pi,j−1, Pi,j+1, Pi−1,j, Pi+1,j,

(2) 1
4(1+

√
2)

at the position of Pi−1,j−1, Pi−1,j+1, Pi+1,j−1, Pi+1,j+1,

(3) −1-in the i + (j− 1)× ñ column, which is also the diagonal element of M,
(4) 0 at the other positions.
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Therefore, we can build the following optimization model to solve the problem (A
neighboring cells regularization model)

min
{
||AG− F||22 + λ2||MG||22

}
(26)

Since
(

A
M

)
is column full rank, the equation has a unique solution. In other words,

by adding the regularization term ||MG||22 , Equation (26) has a unique solution, and an
approximation of the original problem is consequently guaranteed.

As an example, we applied the above method to the reconstruction of a temperature
field. The case is a common one—a 2D continuous temperature distribution, for which
a minimum solution with a regularization term ||MG||22 can be expected. In this new
model, the distances among the pixel Pi,j and neighboring pixels Pi,j−1, Pi,j+1, Pi−1,j, Pi+1,j,
Pi−1,j−1, Pi−1,j+1, Pi+1,j−1, Pi+1,j+1 were taken into account when constructing matrix M,
which effectively removed the ambiguity of the element values, caused by the all-zero-
element in certain columns due to the absence of the probing beam passing the pixels, as
described above.

3.3. Solution of the Model

Here, A ∈ Rm×n and G ∈ Rn×m are called the plus inverse of A and denoted by A+ if
G satisfies the following Penrose—Moore equations

AGA = A (27)
GAG = G (28)

(AG)T = AG (29)

(GA)T = GA (30)

where A+ is also called the Penrose—Moore inverse. For the system of linear equations
Ax = b, x0 ∈ Rn is called the the least squares solution if it satisfies the following equation

||Ax0 − b ||2 = min
x∈Rn
||Ax− b ||2 (31)

According to the following theorem [28], let A ∈ Rm×n and b ∈ Rm; then,

(1) A+ exists as unique,
(2) If A is full-rank, then x = A+b is the only least square solution of the linear equation

Ax = b.

The model (26) is a linear least square problem, as

||AG− F||22 + λ2||MG||22 = ||
(

A
λM

)
G−

(
F

0n×1

)
||22 (32)

In addition, the model (26) is equivalent to the following formula

min||
(

A
λM

)
G−

(
F

0n×1

)
||22 (33)

As
(

A
λM

)
is full-rank, by the above theorem, the models (33) can be solved by the

generalized inverse; that is,

G =

(
A

λM

)+( F
0n×1

)
(34)

Suppose
(

A
λM

)+

= (invAM1, invAM2), where invAM1 is the first m columns in(
A

λM

)+

; then,

G∗ = invAM1·F (35)

In summary, we provide the following algorithm steps:
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(1) Input A, M, G, and C and assign a value for the regularization parameter λ.

(2) Calculate
(

A
λM

)+

, and select its first m raw as invAM1.

(3) Calculate the optimal solution G∗ = invAM1·F.

The above procedure has the following advantages:

(1) Equation (35) is used to obtain G∗ instead of the commonly used iterative method.
Therefore, G does not need a particular initialization. This yields a faster speed.

(2) After the size and the positions of the pixels are defined, Matrix M is then determined.
Similarly, if the setup of the transducers is known, then matrix A is also decided. In
addition, the value of λ can be assigned beforehand. Consequently, invAM1 can also
be determined. Because the above can all be precalculated, the solution of the problem
can be acquired very quickly.

4. Further Analyses and Simulations
4.1. Error Analysis

As compared to the common iterative methods to generate optimal results, our method
gives the formula solution, for which it is easy to calculate the error.

From Equations (35) and (36) could be obtained as follows

||∆G∗||2 ≤ ||invAM1||2·||∆F ||2 (36)

Suppose:

invAM1 =


am11 am12 · · · am1m
am21 am22 · · · am2m

...
...

. . .
...

amn1 amn2 · · · amnm

, ∆G∗ =


∆G∗1
∆G∗2

...
∆G∗n

, ∆F =


∆F1
∆F2

...
∆Fm


Then,

|∆G∗i | =
∣∣∣∣∣ m

∑
j=1

amij∆Fi

∣∣∣∣∣ ≤ m

∑
j=1

∣∣amij
∣∣·|∆Fi| ≤ ||∆F||∞

m

∑
j=1

∣∣amij
∣∣ (37)

Equation (36) gives an upper bound of the variation of ||∆G∗||2 when F changes by
an increment ∆F. Equation (37) also offers the upper bound of the changes in |∆G∗i | when
F changes by an increment ∆F. As described previously, invAM1 is determined once the
pixels are defined, the transducers are located, and λ is chosen. Therefore, when the upper
bound of

∣∣∆Fj
∣∣, j = 1, 2, · · · , m is available, then the upper bounds of ||∆G∗||2 and |∆G∗i |

can be evaluated.

4.2. Effect of Parameter λ

It can be seen that Equation (36) does play a role in the error estimation. To have an
initial understanding of such an effect, Table 2 below lists a series of values of ||invAM1||2
in relation to λ, when m̃ = 12 and ñ = 64.

Table 2. Values of ||invAM1||2 .

Parameter Value

λ 0.05 0.02 0.01 0.008 0.005 0.001

||invAM1||2 346.31 375.3226 380.0822 380.6652 381.2999 381.6919

Table 2 shows the trend that when λ falls below certain value, say 0.01, the variation of
||invAM1||2 will tend to level off. This phenomenon may be used to assist in the selection
of λ. After determining the position of the sensor and the method of partitioning, matrix A
and M are determined. At this point, we can calculate the corresponding ||invAM1||2 for
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different λ and select a suitable λ. Take for example, m̃ = 12, ñ = 64, λ can be selected in
the interval [0.001, 0.01].

4.3. Simulation

As shown in Figure 3, in the simulation, a circular area with d = 0.4 was evenly divided
by parallel lines at an interval of d/ñ. Twelve transmitters were placed at equal distances
around the periphery of the circular area, with one of them located at (0.2, 0). Under such
an arrangement the dimensions of matrix A were 66 × 3228. To cover a range of simulation
conditions, we focused on four different conditions in this study, and the distribution
models were as follows,

(1) Model I, Central–symmetric temperature distribution,

T1(x, y) = 297 + 400exp−78.125(x2+y2) (38)

(2) Model II, Stratified temperature distribution,

T2(x, y) = 297 + 400exp−
625(x−0.1)2

2 − 5000(y−0.12)2
49 (39)

(3) Model III, Multipeak temperature distribution,

T3(x, y) = 297 + 400
[
exp− 78.125[(x+0.16)2+(y−0.16)2] + exp− 78.125[(x−0.16)2+(y+0.16)2] + exp− 78.125[x2+(y−0.16)2]

]
(40)

(4) Model IV, Mixed temperature distribution,

T4(x, y) = 297 + 400exp−
625(x−0.1)2

2 − 5000(y−0.12)2
49 + 100

(
3.5− cos

76π

195
x
)(

2− cos
3.125π

13
y
)

(41)

The imaging area was divided into 64 by 64 pixels. For each of the above models,
acoustic velocity C was calculated according to the distribution of temperature for each
pixel. Numerical calculations were carried out to obtain the TOF between the transmitters,
i.e., the measurement data F. Then, based on the simulated F, the temperature distribution
was reconstructed via the above-described method.

Figures 5–8 represent the above four models sequentially. In the figures, the left column
shows the images of the original setups, and in the right column are the reconstructed
temperature distributions. Judging visually, the agreement was good. Small but visible
differences occurred at the corners. However, the corner parts had no effect on the results,
since they were outside the sensing area. For more subjective assessments, Table 3 gives
a comparison of the errors in the reconstruction process. The conditions corresponded
to ñ = 64 and λ = 0.005, and the “measurement data” C were error free. In the table
T = (T1, T2, · · · , Tn)

T containing the theoretical values and T∗ = (T∗1 , T∗2 , · · · , T∗n)
T were

reconstructed by Equation (9).
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Table 3. Comparison of the errors in four models.

Items Equations Model I Model II Model III Model IV

Maximum absolute error max
1≤i≤n

∣∣Ti − T∗i
∣∣ 0.4323 13.1568 7.1706 9.4499

Average absolute error 1
n

n
∑

i=1

∣∣Ti − T∗i
∣∣ 0.09189 1.2261 0.9877 1.1316

Maximum relative error max
1≤i≤n

∣∣∣ T∗i−Ti
Ti

∣∣∣ 0.063% 2.364% 1.238% 1.273%

Average relative error 1
n

n
∑

i=1

∣∣∣ T∗i−Ti
Ti

∣∣∣ 0.013% 0.327% 0.200% 0.182%

Standard Deviation 1√
n

√
n
∑

i=1

∣∣∣ T∗i−Ti
Ti

∣∣∣2 3.1925 × 10−6 8.0440 × 10−5 6.2091 × 10−7 4.57 × 10−5

In addition to the above error-free cases, noisy-data cases were also evaluated. Table 4
shows a case for model IV, where there were [−δ, δ] type errors added to the “measurement
data”. In this case, the TOF with errors, F1, was calculated by Equation (42).

F1 = F·[1 + rand(size(F)− 0.5)·(2δ)] (42)

Table 4. Model IV with errors in TOF.

Parameter Value

δ 0.01 0.0075 0.005 0.0025 0.001

Maximum absolute error 62.7365 47.26638 32.43192 18.40133 11.22825
Average absolute error 13.4561 10.13784 6.88038 3.617338 1.802721

Maximum relative error 0.08926 0.067117 0.045886 0.025141 0.015198
Average relative error 0.02266 0.017059 0.011584 0.006055 0.002979

Standard deviation 0.02828 0.021248 0.014478 0.007602 0.003837

Table 5 is the same model but with Gaussian errors in TOF (F2), as calculated by
Equation (43).

F2 = F·[1 + normrnd(0, δ, size(F))] (43)

Table 5. Model IV with Gaussian errors in TOF.

Parameter Value

δ 0.0005 0.0003 0.0001 0.001 0.005

Maximum absolute
error 11.02863 9.889493 9.347564 13.77893 52.1729

Average absolute error 1.667104 1.363348 1.160435 2.61925 11.44429
Maximum relative error 0.01464 0.013525 0.012802 0.018683 0.077785
Average relative error 0.002745 0.002222 0.001873 0.00437 0.019302

Standard deviation 3.56 × 10−3 2.98 × 10−3 2.64 × 10−3 5.51 × 10−3 2.42 × 10−2

It can be seen from Tables 3–5 that the algorithm developed in this study significantly
improved the accuracy of the reconstruction. In addition, it was demonstrated through the
four different cases.

To evaluate the model proposed in this study, the results produced by this new
model min

{
||AG− F||22 ,+, λ2||MG||22

}
were compared with the results from the stan-

dard regularization method, i.e., min
{
||AG− F||22 + λ2||G||22

}
. Model IV, expressed by

Equation (35), was chosen for the comparison. Suppose the true image was G0, the values
obtained by this method were denoted by G1, and the values from the standard regular-
ization method were G2, with the regularization factor λ = 0.001. The L_2 norms of the
images and the reconstructed images were ||G0 ||2= 0.0606654115, ||G1 ||2 = 0.0606654755
and ||G2 ||2 = 0.0540761482, respectively.
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As for the errors, the maximum absolute error between G1 and G0 was
||G1 −G0||∞= 1.256 × 10−5 , the average error between G1 and G0 over 812 points was
||G1−G0||1/812 = 9.95982e−7 , while the maximum relative error was

(∣∣∣1− G1i
G0i

∣∣∣)0.005829max.
The new method produced very small errors between G1 and G0. Temperature profile
T1 calculated from G1 was very close to the original temperature profile T0, as seen in
Tables 3–5. The maximum absolute error between G2 and G0 was ||G2 −G0||∞ = 0.0042 .
The average error between G2 and G0 over 812 points was ||G2 −G0||1/812 = 0.00131 .
The temperature profile T2 calculated from G2 had larger errors with regard to the original
temperature T0.

In order to illustrate the advantage of the reconstruction algorithm proposed in this
study, five references about the temperature field reconstruction algorithm are discussed
for comparison on the single-peak temperature field reconstruction error, which is explored
in all these references. The specific data are presented in Table 6. As can be seen from the
comparison of various errors, the explicable neighboring-pixel reconstruction algorithm
proposed in this study showed obvious superiority.

Table 6. Comparison of single-peak temperature field reconstruction error with other reconstruction
algorithms in the other references.

The Reconstruction Algorithm Error in This Paper Error in the Reference

Tikhonov-LSSVM (Tikhonov and the least squares
support vector machine) in Ref. [24] Maximum relative error 0.063% Maximum relative error 0.75%

EF-RBFI (radial basis function interpolation method
optimized by the evaluation function) in Ref. [25] Root mean square error 0.0003% Root mean square error 3.69%

Improved Tikhonov Regularization in Ref. [26] Average relative error 0.013% Average relative error 1.710%

GWO–ABP method (Adaboost.RT based BP neural
network algorithm based on Grey wolf optimizer

algorithm) in Ref. [27]
Average relative error 0.013% Average relative error 1.16%

LQ-SVD (logarithmic–quadratic radial basis function
and singular value decomposition algorithm) in Ref. [28] Root mean square error 0.0003% Root mean square error 3.0617%

5. Conclusions

Reconstruction methods play a crucial role in CT technologies. In acoustic tomography,
the distinct scarcity of probing paths causes severe detrimental effect in the image recon-
struction. In this study, the authors analyzed the dependence of a solution of the inverse
problem upon the full column rank and proposed an explicable neighboring-pixel recon-
struction algorithm to force a unique optimal solution by a new form of the regularization
term, i.e., the neighboring correlation method.

Numerical simulations were carried out to verify the newly proposed algorithm.
Through reconstruction of four representative cases, i.e., centrally symmetrical, strati-
fied distribution, multipeak distribution, and mixed distribution, accurate temperature
reconstruction results were obtained that clearly verified the effectiveness of the proposed
algorithm. Comparison with the standard Tikhonov regularization formula also showed
the superiority of the new method. Error analyses were performed for the above four cases,
and the average relative errors were 0.013%, 0.327%, 0.200%, and 0.182%, respectively.
Additionally, the results with various Gaussian noises did not significantly deteriorate the
reconstruction performance, validating the robustness of the algorithm.

Other merits were also found of the proposed method. Our method was explicable
because it gave the formula solution, for which it was easy to calculate the error. The
fast speed was also remarkable due to a majority of the calculations being performed
beforehand; thus, the calculation burden was much reduced for online reconstruction.
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