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Abstract: In fault detection and the diagnosis of large industrial systems, whose chemical processes
usually exhibit complex, high-dimensional, time-varying and non-Gaussian characteristics, the classi-
fication accuracy of traditional methods is low. In this paper, a kernel limit learning machine (KELM)
based on an adaptive variation sparrow search algorithm (AVSSA) is proposed. Firstly, the dataset
is optimized by removing redundant features using the eXtreme Gradient Boosting (XGBOOST)
model. Secondly, a new optimization algorithm, AVSSA, is proposed to automatically adjust the
network hyperparameters of KELM to improve the performance of the fault classifier. Finally, the
optimized feature sequences are fed into the proposed classifier to obtain the final diagnosis results.
The Tennessee Eastman (TE) chemical process is used to verify the effectiveness of the proposed
method through multidimensional diagnostic metrics. The results show that our proposed diag-
nosis method can significantly improve the accuracy of TE process fault diagnosis compared with
traditional optimization algorithms. The average diagnosis rate for 21 faults was 91.00%.

Keywords: fault diagnosis; Tennessee Eastman process; KELM;XGBOOST; AVSSA; feature selection

1. Introduction

Chemical process equipment has evolved over time to become more automated, com-
plicated, and intelligent. Chemical processes frequently produce hazardous circumstances,
such as toxic corrosion, as well as complicated equipment, making safety management
difficult [1–3]. Furthermore, because the systems in the chemical process are intimately
linked, a failure of one portion of the system can result in the entire system failing. Chemical
process accidents result in numerous incidents of significant property and social losses each
year [4–7]. As a result, there is a pressing need in the chemical industry to develop an intel-
ligent fault detection and diagnosis system. However, the chemical process encompasses
both the chemical industry and other process industries, a scope that is too broad to be
discussed conveniently. Therefore, this paper chooses to focus on the TE process and to
propose a fault diagnosis method applied to TE process.

There are three types of fault detection and diagnosis systems: quantitative, qual-
itative, and historical process data models [8–10]. Fault diagnostic methods based on
historical process data, for example, process data or signals directly without the need for
a complicated and exact mathematical model, avoiding a huge amount of prior informa-
tion and time-consuming and difficult mathematical processes [11]. The amount of data
available to researchers has expanded significantly as a result of the information and big
data era, making it challenging for quantitative and qualitative methodologies to meet
the requirements in terms of diagnosis accuracy and speed. As a result, data-driven fault
diagnosis approaches are common in the chemical sector.

Data-based diagnostic methods and machine-learning-based diagnostic methods are
the two broad categories of data-based diagnostic approaches [12]. Principal component
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analysis [13], partial least squares [14], independent component analysis [15], and Fisher
discriminant analysis [16] are examples of statistics-based approaches. Some dimension-
reduction methods, such as multi-scale principal component analysis [17] and kernel Fisher
discriminant analysis [18], have made advancements in terms of the highly nonlinear
correlation between variables and very complicated processes in chemical systems. How-
ever, as the number of data dimensions grows, the complexity of these statistics-based
methodologies grows exponentially, resulting in dimension disaster [19,20].

With the development of clever algorithms in recent years, machine learning methods
have become increasingly popular in defect diagnosis systems, supporting artificial neural
networks [21], support vector machines [22] and other machine learning methods.

In 1943, Mcculloch and Pitts demonstrated that a neuron is a simple gate-valued device
that performs a logic function [23]. In 1958, Rosenblatt proposed the perceptron, the first
feed-forward neural network, which is a binary linear classifier based on an artificial neural
network [24]. In 1982, Hopfield, a physicist at Caltech, proposed the HNN model [25].
Backward propagation, the method of making vector sweeps of all neurons in a perceptron
at the same time, was independently proposed by several scientists in 1986 [26]. Rumelhart
and McClelland devised a theory based on parallel distributed processing and developed
a multilayer network-based back-propagation learning technique [27].

Extreme learning machine was proposed by Huang in 2006 as a new feedforward
neural network training approach [28]. Extreme learning machines can train hundreds
of times faster than typical BP networks and support vector machines. Huang et al.
created KELM in 2011, which uses kernel functions instead of feature mapping in the
hidden layer of ELM to speed up learning and improve the learning model’s stability and
generalization [29].

Although progress has been achieved in the use of ELM in the detection of chemical
process faults, there are still certain issues to be resolved. Some variables have a negligible
effect on the results of the chemical process, while too many variables require computing
resources. The correctness of the categorization model must be assessed after the process
monitoring data have been obtained. According to long-term studies, many features
are unrelated to the classification goals. Data features were sorted into three groups by
John [30]: strongly correlated, weakly correlated, and irrelevant features. Feature selection
involves finding a subset of features that can optimize and specify the evaluation criteria.
Feature selection is applied in many fault diagnosis methods.

Among the commonly used feature selection algorithms, it is worth mentioning
LDA, PCA, SVM, RFTB, GBDT, and so on. Ronald A. Fisher [31] in 1936 introduced the
Linear Discriminant method, which is sometimes used to solve classification problems.
The original linear discriminant was applied to binary classification problems and was
later generalized in 1948 by C. R. Rao [32] to “multiclass linear discriminant analysis” or
“multiple discriminant analysis”.

Lau et al. [33] used multi-scale principal component analysis (MSPCA) and Deng et al. [34]
used deep principal component analysis (DePCA) to improve the adverse effects of tradi-
tional PCA on feature selection.

Onel et al. [35,36] proposed a Nonlinear Support Vector Machine-based feature se-
lection algorithm, and the nonlinear support vector machine model outperforms existing
support vector machine models in the literature in terms of detection accuracy and latency.
It also uses feature selection techniques with minimal information loss compared to feature
extraction techniques such as PCA.

The random forest was introduced by Breiman [37] in 2001. Random forest is a classi-
fication tree-based algorithm that can be used for multivariate classification and regression.
RF methods have several advantages over other more commonly used multiple regression
or classification methods. For example, it can account for interactions and non-linearities
between variables. In addition, it can provide information about the statistical weights of
each variable in the overall results [38–40].
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The GBDT algorithm was of interest to researchers for its powerful predictive perfor-
mance when it was proposed with the gradient boosting principle by Friedman [41], but the
GBDT algorithm is an extremely memory-consuming algorithm and speed became the
most criticized aspect. After years of development, XGBoost was proposed by Chen [42],
which is an efficient implementation of the GBDT algorithm with many algorithmic and
engineering improvements. xGBoost has been widely used in major contexts. For example,
in 2015, 17 of the 29 winning solutions posted on Kaggle’s Blog 3 used XGBoost. Eight
of these solutions used XGBoost alone to train their models, while most others combined
XGBoost with neural networks. Further, the second most popular method, deep neural
networks, was used in 11 solutions in the same year.

We felt it necessary to investigate the guiding implications of optimizing the KELM
fault diagnosis feature selection sequence using the XGBoost algorithm, and the results
of XGBoost, random forest tree bagger (RFTB) and Nonlinear Support Vector Machine
(NSVM) feature extraction are later compared.

The Tennessee Eastman (TE) simulation platform is an open access, widely used
platform to test control and troubleshooting models for complex industrial processes.
Inspired by previous work, we propose a new method for chemical process fault diagnosis
based on TE data. The method consists of three steps: feature extraction based on XGBOOST,
the optimization-seeking algorithm AVSSA, and AVSSA-KELM fault detection based on
fused depth features. The method flow is as follows:

(1) Facing the time-varying, strongly coupled and nonlinear chemical dataset, we use
XGBOOST to remove redundant information while retaining most of the intrinsic and
discriminative information to prevent features of different classes from overlapping
in some regions of the feature space;

(2) A new algorithm AVSSA is proposed by introducing the adaptive variation process
based on t distribution into SSA, which has a strong global search capability in the
early iteration and a strong local search capability in the late iteration. We combine
the AVSSA and KELM classifiers to automatically adjust the optimal network hyper-
parameters of KELM;

(3) Using the advantages of integrated learning and multi-core learning, AVSSA-KELM is
proposed as the top classifier for fault diagnosis based on fused multi-domain features.
The method has high generalization performance with good diagnostic capability and
diagnostic speed.

This paper is structured as follows. Section 2 introduces the use of XGBoost for feature
selection. Section 3 presents the methodology that introduces the principle of the AVSSA.
Section 4 presents the methodology that introduces the principle of the KELM. Section 5
details the xgboost-based AVSSA-KELM fault diagnosis method. Section 6 describes the
application of the proposed method to the TE process for verification. Section 7 compares
the proposed method with other methods in terms of multidimensional indicators to
demonstrate the superiority of the method. Section 8 provides a summary of this study.

2. eXtreme Gradient Boosting

Xgboost [43] (eXtreme Gradient Boosting) is a gradient-enhanced decision system
whose base learner can be either a linear classifier or a tree, and in this paper we use the
features of its tree model as a basis for quantifying the importance of each feature for
feature selection.

2.1. Tree Model

For a given dataset, in the process of tree model construction, each layer greedily
selects a feature segmentation point as a leaf node to maximize the gain of the whole tree
after segmentation, which means that the more times a feature is segmented, the greater
the benefit of the feature to the whole tree and the more important the feature is. Similarly,
the greater the average gain of the feature each time it is segmented, the more important
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the feature is. The weight of each leaf node in the segmentation process can be expressed
as w(pi, qi), pi and qi are:

pi = ∂ẑ(t−1) l
(

zi, ẑ(t−1)
)

qi = ∂2
z̃(t−1) l

(
zi, ẑ(t−1)

)
, (1)

where the training error l(zi, ẑi) represents the difference between the target value zi and
the predicted value ẑi. In order to minimise the cost of the segmented tree, based on the
weights of all leaf nodes and considering the gain of each feature as a segmentation point,
there is:

Gain = ∑
left

w + ∑
right

w− ∑
nosplit

w. (2)

Equation (2) illustrates that, for each split point, its ground benefit can be expressed as
the total weight after the split (the sum of the total weight of the left subtree of the leaf node
and the total weight of the right subtree) minus the total weight of the leaf node before
the split.

2.2. Combination of Tree Models

As a non-parametric supervised learning model, the decision tree model is commonly
used for classification, regression and feature extraction. The model does not require any
a priori assumptions about the data and can quickly find decision rules based on the
characteristics of the data. XGBoost uses an integration strategy based on the decision
tree, using a gradient lift-off algorithm to continuously reduce the loss of the previously
generated decision tree. XGBoost adds one tree at each iteration, and constructs a linear
combination of K trees as:

ẑ(t)i =
K

∑
k=1

fk(xi) = ẑ(t−1)
i + ft(xi), fk ∈ F, (3)

where F denotes the function space containing all trees, and fk(xi) denotes the weight of
the ith sample in the kth tree that is assigned to the leaf node where it is located.

2.3. Importance Metrics

Importance metrics are a way to assess the importance of each feature in the feature
set to which it belongs, and XGBoost constructs importance metrics based on the number
of feature splits, FScore, the average gain value, AverageGain, and the average coverage of
features, AverageCover. For the above three importance measures, there are:

Weight = |X|, (4)

Gain = ∑ GainX , (5)

Cover = ∑ CoverX , (6)

where X is the set of the requested features classified to the leaf nodes: Weight is the node
gain value at segmentation for each leaf node in X obtained from Equation (2), and cover is
the number of samples falling at each node in X.

2.4. XGBoost Feature Extraction Algorithm
2.4.1. Algorithm Construction

We classify each dataset according to XGBoost , which is constructed as follows.

(1) Starting from the root node. Traverse all features for each node;

(2) For feature ai ∈ A, first sort by sample value
{

a(1)i , · · · , a(n)i

}
,linearly scan a to

determine the segmentation point with the best gain
(

a(k)i , gaini

)
;
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(3) Select the feature with the highest gain from all the selected feature segmentation

points to segment max Gain
(

a(ki)
1 , · · · , a(kn)

m

)
and update the mapping relationship

from the samples to the tree nodes;
(4) Segment all the way to the maximum depth, and calculate the residuals for construct-

ing the next tree;
(5) Integrate all the generated trees to complete the construction of the final tree model;
(6) Derive the importance of the feature variables based on the number of decisions.

Pseudo-code for the basic steps, as shown in Algorithm 1.

Algorithm 1: XGBoost.
Input: Original set of features (X)
Output: Weight arrays of features (A), Gain array of features (B), Cover array of

features (C)
1 depth ← 0
2 Initialize arrays A, B, C
3 Initialising the importance metric
4 Create root node
5 while depth < Maximum tree depth do
6 for for each x ∈ X do
7 Calculating the best split point xk;
8 Create child nodes;
9 end

10 depth ← depth + 1;
11 end
12 Adding the created tree to the tree model according to equation (xxxx)
13 for each tree do
14 for each segmentation nodes do
15 Calculate the gain value (gain) and the number of samples (cover) that

would have been generated by the split node
16 Update the importance metric for each feature
17 Weight ← Weight + 1, Gain ← Gain + gain, Cover ← Cover + cover.
18 end
19 end

2.4.2. The XGBoost Parameter and the Segmentation Criterion

The feature selection hyperparameters mainly include the XGBoost parameter and the
segmentation criterion, which are specified as follows:

XGBoost parameter (default value if not specified):
max_depth: 7, this parameter is controlled as the maximum depth of the tree. This

value is used to control overfitting. the larger the max_depth, the more specific the
model learns.

n_estimators: 80, this parameter controls the maximum number of trees generated,
and also the maximum number of iterations. This value has an effect on the number of
features selected in feature selection, but this is largely avoided by the selection criteria of
this algorithm.

learning_rate: 0.1, this parameter controls the step size of each iteration, too large for
accuracy and too small for slow operation.

subsample: 1.0, this parameter controls the proportion of random samples for each
tree. By decreasing the value of this parameter, the algorithm will be more conservative
and avoid overfitting. However, if this value is set too small, it may lead to underfitting.
In this paper, it is very easy to underfit with a smaller value, so we set it to 1.

colsample_bytree: 0.5, which controls the proportion of columns (each column is
a feature) that are randomly sampled per tree.
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Partitioning method:
The partitioning method uses weight arrays of features (A), gain arrays of features (B),

and cover arrays of features (C) as the data source, with weight as the core and gain and
cover as the auxiliary. The features are sorted by weight from highest to lowest, and the
top N features with 80 percent of ∑ Weight are taken as set A1 . Then, gain and cover are
sorted from smallest to largest, and the features with the lowest five percent of each are
taken as sets B1 and C1.

Feature sequences after feature selection = (A1 ∧ B̄1)V(A1 ∧ C̄1).

3. Adaptive Variation Sparrow Search Algorithm

The Sparrow Search Algorithm (SSA) is an intelligent bionic optimization algorithm
proposed by Xue J and Shen B. In their study [44], they concluded that SSA has global
search ability and strong adaptability by comparing SSA with algorithms such as GWO,
PSO, GSA, etc. They also pointed out that most of the sparrows in most of the experiments
on the tested functions clustered towards the global optimum and did not fall into local
extremes. However, for example, with the Damavandi function, most of the sparrows
converge on local minima. In order to increase the population diversity and avoid the
algorithm easily falling into the local optimum, we can make the sparrow jump out of
the local optimum position and improve the global search ability of the algorithm by
introducing the mutation process of adaptive t-distribution. Thus, we propose our new
algorithm called the Adaptive Variation Sparrow Search Algorithm (AVSSA).

3.1. Algorithmic Bionics Principles

SSA is a new group intelligence optimization algorithm inspired by the foraging and
anti-predatory behaviors of sparrows, and its bionic principle is as follows:

The sparrow population during foraging is divided into two parts: discoverers and
followers, while scouts are also set up as an early warning mechanism. Discoverers are
highly adapted and has a wide search range, guiding the population to search and forage.
Followers follow the discoverers to forage for better adaptability. Meanwhile, sparrows
also have anti-predatory behavior. When a sparrow searching on the periphery encounters
a natural predator or other organism threatening the entire population, it will provide an
early warning to the population to avoid the area and adjust its search location.

3.2. Sparrow Search Algorithm

Discoverers are responsible for determining the direction and area of search for food,
while foraging, and have a larger search area than followers and a larger proportion of
the population, typically 60–70% of the population. Whether all sparrows can find food
preferentially depends on the value of the fitness function of each individual. At the same
time, discoverers are mostly at the periphery of the population and are responsible for early
warnings about the surrounding environment, namely, when a predator is discovered, the
discoverers need to lead the followers to a safe location to continue the search.

Discoverers’ position updated:

xt+1
id =

{
xt

id · exp( −i
α·T ), R2 < ST

xt
id + Q · L, R2 ≥ ST,

(7)

where t is the current number of iterations; T is the maximum number of iterations; α is
a uniform random number of (0, 1]; Q is the random number that obeys the standard normal
distribution number of randomizers; L is a matrix with 1× d elements of 1; R2 ∈ [0, 1] and
ST ∈ [0.5, 1] denote the warning value and safety value.

All remaining sparrows in the population acted as followers. If a discoverer has less
food, namely a low fitness value, its current location is a poor foraging location, indicating
that the current search direction is not suitable and it needs to change direction to another
location. At the same time, as the followers follow the discoverer, when the discoverer
finds food, followers can obtain some of the food or forage around the location.
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Followers’ position updated:

xt+1
id =

 Q · exp( xwt
d−xt

id
i2 ), i > n

2

xbt+1
d +

∣∣∣xt
id − xbt+1

d

∣∣∣ · A+ · L, i ≤ n
2 ,

(8)

where xt
id is the position of the sparrow in the ith dimension at the tth iteration; xwt

d is the
worst position of the sparrow in the dth dimension at the tth iteration; xbt+1

d is the optimal
position of the sparrow in the dth dimension at the t + 1th generation of the population; A
is a 1× d matrix, where each element is randomly assigned to −1 or 1; A+ = AT(AAT)−1;
L is a matrix with 1× d elements of 1.

Some of the sparrows at the edge of the population are responsible for scouting,
and they generally account for 10% to 20% of the population. In the face of the arrival
of a threat, scouts can foresee the danger in time and send an alert to the population,
at this time either the discoverers or followers need to adjust the search position away from
the danger, into the safe area to search. At the same time, sparrows in the center of the
population will move randomly, and when the alarm is issued, they will move closer to
other sparrow positions to reduce the possibility of predation.

Scouts’ position updated:

xt+1
id =

{
xbt

d + β(xt
id − xbt

d, fi 6= f g)

xt
id + K xt

id−xwt
d

| fi− fw |+ε
, fi = fg,

(9)

where β is the control step parameter, obeying N(0, 1) random numbers; K is a random
number and K ∈ [−1, 1], which indicates the orientation of the sparrow’s movement, and is
also a step control parameter; ε is a very small number to prevent the denominator from
being 0; fi denotes the fitness value of the ith sparrow; fg and fw are the optimal and worst
fitness values of the current sparrow population.

3.3. Adaptive Variation Process Based on t-Distribution

The probability density function of the t-distribution is as follows:

pt(y) =
Γ
(

n+1
2

)
√

nπΓ
( n

2
)(1 +

y2

n

)− n+1
2

,−∞ < y < ∞, (10)

where n is the degree of freedom.
In evolutionary planning, the Cauchy operator and Gaussian operator are the most

commonly used variance operators, and the Cauchy and Gaussian distributions are special
distributions at two boundary positions of the t-distribution. The standard Gaussian
distribution density N (0, 1) has an expectation of 0 and a variance of 1. The standard
Cauchy distribution probability density C (0, 1) has no expectation and the variance is
infinite. According to the probability function of t distribution, t(n)→N(0, 1) when n→ ∞,
namely, when n→ ∞, t-distribution is standard Gaussian distribution; t(n)→C(0, 1) when
n = 1, namely, when n = 1, t-distribution is the standard Cauchy distribution. So the
advantage of t-distribution is that the t-operator ϕ can be constructed, and the advantages
of both types of operators can be exploited by bridging the Gaussian operator and the
Cauchy operator through the t-operator.

In the variation operation, the original parameter values are replaced by a random
number that fits a t-distribution with degrees of freedom equal to the number of iterations
k. The variation formula is:

x
′
i = xi + xi · ϕ(k), (11)

where x
′
i and xi are the positions of the ith sparrow before and after the t-distribution

variation, respectively; k is the number of iterations; ϕ(k) is the t-operator with the number
of iterations k as the degrees of freedom.
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The adaptive t-distribution mutation-based sparrow search algorithm takes the num-
ber of iterations k of the sparrow algorithm is used as the degree of freedom of the
t-distribution.

(1) When k is small in the early iteration, the t-distribution is similar to the Cauchy
mutation. The offspring produced by the Cauchy mutation have greater variability
compared to the parent and are more perturbed than the Gaussian mutation, with
a wider range of mutations, thanks to the Cauchy density function having a longer
step length and a longer distribution at both ends giving it a higher probability of
allowing the individual to escape the local optimum [45–47];

(2) When k is large in the later iteration, the t-distribution resembles a Gaussian mutation.
Since the peak of the Gaussian distribution curve is located where the mean value is,
the search focuses on the local area near the original individual to enhance the local
search capability [48–50].

This makes the t-distribution adaptive due to the change of iterations. Thus, we named
this method the Adaptive Variation Sparrow Search Algorithm (AVSSA).

Based on the idealization and feasibility of the above model, the basic steps of the
AVSSA can be summarized as the pseudo code shown in Algorithm 2.

Algorithm 2: The framework of AVSSA.
Input: G: the maximum iterations
ND: the number of discoverers
NS: the number of scouts
R2: the alarm value
n: the number of sparrows
Initialize a population of n sparrows and define its relevant parameters.
Output: Xbest, fg

1 while t < G do
2 Rank the fitness values and find the current best individual and the current

worst individual.
3 R2 = rand(1)
4 for i = 1 : ND do
5 Using Equation (1) update the sparrow’s location;
6 end
7 for i = ND + 1 : n do
8 Using Equation (2) update the sparrow’s location;
9 end

10 for l = 1 : NS do
11 Using Equation (3) update the sparrow’s location;
12 end
13 Get the current new location;
14 If the new location is better than before, update it;
15 for i = 1 : n do
16 Using Equation (5) update the sparrow’s location;
17 end
18 Get the current new location;
19 If the new location is better than before, update it;
20 t = t + 1
21 end
22 return Xbest, fg.
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4. The Kernel Based Extreme Learning Machine
4.1. Extreme Learning Machine Overview

A typical single implicit layer feedforward neural network structure consists of an in-
put layer, an implicit layer and an output layer, with the input layer fully connected to the
implicit layer and the implicit layer to the output layer neurons [51]. The input layer has n
neurons corresponding to n input variables, the hidden layer has l neurons, and the output
layer has m neurons corresponding to m output variables. For the sake of generality, let the
connection weights ω between the input and hidden layers be:

ω =


ω11 ω12 . . . ω1n
ω21 ω22 . . . ω2n
. . . . . . . . . . . .
ωl1 ωl2 . . . ωln,

 (12)

where ω denotes the connection weight between the ith neuron in the input layer and the
jth neuron in the hidden layer.

Let the connection weight between the implicit layer and the output layer be β :

β =


β11 β12 . . . β1n
β21 β22 . . . β2n
. . . . . . . . . . . .
βl1 βl2 . . . βln,

 (13)

where self β jk denotes the connection weights between the jth neuron in the hidden layer
and the kth neuron in the output layer.

Let the threshold value b of the neuron in the hidden layer be:

b =


b1
b2
. . .
bl .

 (14)

Let the input matrix X and output matrix Y of the training set with Q samples be:

X =


x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . . . . . . . .
xn1 xn2 . . . xnQ

 (15)

Y =


y11 y12 . . . y1n
y21 y22 . . . y2n
. . . . . . . . . . . .
ym1 ym2 . . . ymQ.

 (16)

Let the activation function of the neurons in the hidden layer be g(x), the output T of
the network is :

T =
[
t1 t2 . . . tQ

]
n×Q (17)

tj =


t1j
t2j
. . .
tm j

 =


∑t

i=1 βi1g(ωixj + bi)

∑t
i=1 βi2g(ωixj + bi)

. . .
∑t

i=1 βimg(ωixj + bi)


m×1

. (18)

4.2. Kernel Based Extreme Learning Machine

The Kernel Based Extreme Learning Machine (KELM) [52,53] is an improved algorithm
based on the Extreme Learning Machine (ELM) combined with a kernel function.
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ELM is a single implicit layer feedforward neural network whose learning objective
function F(x) can be represented by the matrix:

F(x) = h(x)× β = H × β = L, (19)

where x is the input vector, h(x), H is the output of the hidden layer nodes, β is the output
weight and L is the desired output.

Turning the network training into a problem solved by a linear system, β is determined
according to β = H∗ · L, where H∗ is the generalised inverse matrix of H. To enhance
the stability of the neural network, the regularisation factor c and the unit matrix I are
introduced, so that the least squares solution for the output weights is:

β = HT(HHT +
I
c
)−1L. (20)

Introducing the kernel function into the ELM, the kernel matrix is:

ΩELM = HHT = h(xi)h(xj) = K(xi, xj), (21)

where xi, xj is the test input vector, then Equation (19) can be expressed as:

F(x) = [K(x, x1); . . . ; K(x, xn)](
I
c
+ ΩELM)−1L, (22)

where (x1, x2, . . . , xn) is the given training sample, n is the number of samples. K() is the
kernel function.

5. The Proposed XGB-AVSSA-KELM Method

We begin by utilizing the XGBoost to collect individual significance values to improve
the model’s efficiency and accuracy. Then, based on the results, features are selected
with redundant attributes deleted to reduce the number of network element nodes. Due
to the network structure, the configuration of the regularization coefficients c and kernel
function parameters S will have an impact on the classification performance of KELM.
AVSSA has a unique algorithmic structure compared to previous metaheuristics, which
provides a new method for balancing exploration and exploitation in the optimization
process, and it can retain a high population diversity while boosting convergence efficiency.
As a result, the AVSSA technique can be used to discover the best c and S to improve the
network’s performance.

The process of the model is presented in Figure 1, and is described as follows:
Step 1: For training and prediction, input simulation data from the TE process

into XGBoost;
Step 2: The importance values of XGBoost’s features are ranked;
Step 3: Select features and retrieve the dataset for the input network based on the

ranking results;
Step 4: Set up the Kernel-Based Extreme Learning Machine and input the random

regularization factor c as well as the kernel function parameter S;
Step 5: The optimal network hyper-parameters are obtained using the AVSSA algorithm;
Step 6: The optimal KELM diagnostic model is obtained by substituting the optimized

regularization coefficients c kernel function parameters S into the KELM for training;
Step 7: The test samples are fed into the trained network to obtain the predicted output.



Energies 2022, 15, 3198 11 of 25

Figure 1. XGB-AVSSA-KELM algorithm flow chart.
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6. Experiment
6.1. Model Establishment

To detect and diagnose faults in the TE process database, the XGB-AVSSA-KELM
model is used. Table 1 shows the errors found in the TE process database. Step changes
in process variables, increased variability in process variables, and actuator faults are all
linked to these faults (e.g., viscous valves). As a result, using a model, the data from the TE
process simulation are utilized to diagnose and discover defects in the samples. In order
to reduce redundant data and improve time series, the following significant variables of
the TE process were chosen as assessment indicators for the diagnostic network in Table 4.
The AVSSA algorithm was then integrated with KELM to produce the diagnostic model,
which was trained using the optimized input data. We fed a test dataset into the trained
diagnostic model in order to obtain classification results and confirm the model’s accuracy.

Table 1. The faults description of TE process.

Variable Number Process Variable Type

IDV(1) A/C feed ratio, B composition constant (stream 4) Step
IDV(2) B comoosition, A/C ratio constant (stream 4) Step
IDV(3) D feed temperature (stream 2) Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser c4mting water inIet temperature Step
IDV(6) A feed loss (stream 1) Step
IDV(7) C header pressure loss-reduced availability (stream 4) Step
IDV(8) A,B,C feed composition (stream 4) Random variation
IDV(9) D feed temperature (stream 2) Random variation
IDV(10) C feed temperature (stream 4) Random variation
IDV(11) Reactor cooling water inlet temperature Random variation
IDV(12) Condenser cooling water inlet temperature Random variation
IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
IDV(16)–(20) Unknown Unknown
IDV(21) Valve (stream 4) constant position

6.2. Tennessee Eastman Process

The Tennessee Eastman model is a simulation model built by Tennessee Eastman
Chemical Company based on the actual chemical production process of the company [54].
Because it covers many typical phenomena in the actual complex chemical production
process and contains common production failures in the chemical process, it is often used
for troubleshooting studies in the industrial process field.

Figure 2 depicts the Tennessee Eastman process’s approximate schematic, which in-
cludes five primary units: reactor, condenser, compressor, stripper, and separator. The TE
process uses four reactants, A, C, D, and E, as well as two products, G and H. Inertia com-
ponent B and by-product F are also present. The specific meaning of manipulated variables
and process measurements in the legend of the picture can be found in Tables 2 and 3.

In the TE process, there are 12 manipulated variables and 41 process measurements.
The dataset used for this experiment contains all 52 variables except for agitator speed,
as this was not manipulated during the actual chemical process. Table 2 records the
remaining 11 manipulated variables except for the agitator speed. Table 3 records the
41 process measurements. There are 22 training sets in all, including normal settings,
for each fault. During a 24-h fault simulation, the fault training datasets were obtained.
A 48-h running simulation was used to create the test datasets, with the problem being
introduced at the 8-h mark. The sample time was set at three minutes. As a result, there
are 480 failure training sets, and, consequently, fault training sets have a total of 480, while
normal training sets have a total of 500. There are 960 samples in each fault test set, and the
161st sample is when they all start to fail.
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Table 2. Manipulated variables.

No. Manipulates Variables No. Manipulates Variables

1 D feed flow valve 7 Separator pot liquid flow valve
2 E feed flow valve 8 Stripper liquid product flow valve
3 A feed flow valve 9 Stripper steam valve
4 Total feed flow valve 10 Reactor cooling water flow
5 Compressor recycle valve 11 Condenser cooling water flow
6 Purge valve

Table 3. Process measurements.

No. Process Measurements No. Process Measurements

1 A feed 22 Separator cooling water
outlet temperature

2 D feed 23 A in reactor is feed
3 E feed 24 B in reactor is feed
4 Total feed 25 C in reactor is feed
5 Recycle flow 26 D in reactor is feed
6 Reactor feed rate 27 E in reactor feed
7 Reactor pressure 28 F in reactor feed
8 Reactor level 29 A in reactor feed
9 Reactor temperature 30 B in reactor feed
10 Purge rate 31 C in reactor feed
11 Product separator temperature 32 D in reactor feed
12 Product separator level 33 E in reactor feed
13 Product separator pressure 34 F in reactor feed
14 Product separator underflow 35 G in reactor feed
15 Stripper level 36 H in reactor feed
16 Stripper pressure 37 D in product flow
17 Stripper underflow 38 E in product flow
18 Stripper temperature 39 F in product flow
19 Stripper steam flow 40 G in product flow
20 Compressor work 41 H in product flow

21 Reactor cooling water outlet
temperature

Figure 2. The TE process diagram.

6.3. Feature Selection

Feature selection is a key topic in defect detection and classification, and it has an im-
pact on the model’s performance. The value of features in a model can be automatically
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evaluated using a gradient-enhanced decision system developed by Xgboost in order to
find non-linear feature interactions and consistently extract significant features. For feature
selection, the relevance score of an individual decision tree is generated using the tree
model’s attributes as the basis for evaluating the value of each feature.

The feature selection result in fault 15 and fault 17, which have a normalized scale of 1,
is shown in Figures 3 and 4.

Figure 3. Feature selection for fault 15.

For each fault, XGBoost feature selection is performed, and we can obtain the feature
selection sequence corresponding to each fault.

The feature selection sequence corresponding to each fault is shown in Table 4.
The numbers 1 to 41 in the figure correspond to process measurements 1 to 41 in this
Table 3; the numbers 42 to 52 in the figure correspond to manipulated variables 1 to 11 in
Table 2.

Table 4. The result of feature selection.

Fault The Result of Feature Selection

1 1, 16, 18, 39, 7, 13, 4, 6, 3, 20, 44, 9
2 10, 20, 47, 5, 7, 41, 15, 16, 9, 3, 49, 1, 25, 24, 30, 46
3 21, 16, 7, 6, 1, 40, 17, 18, 9, 47, 33, 14, 38, 4, 35, 52, 50, 29, 51, 34, 20, 13, 32, 46, 45, 12
4 18, 11, 7, 30, 51, 40, 38, 34, 20, 1
5 52, 16, 17, 20, 7, 11, 39, 18, 43, 14, 19, 28, 37, 13, 50, 41, 33, 1, 25, 35, 38, 8, 49, 3, 48, 9, 45, 12,

40, 4, 32, 36, 47, 24, 2
6 21, 11, 1, 20, 2, 13, 9, 14, 7, 28, 10, 19, 29, 44, 22, 46, 23
7 19, 38, 45, 46, 50
8 29, 1, 41, 16, 20, 44, 40, 23, 10, 47, 39, 7, 38, 14, 35, 19
9 7, 20, 16, 13, 3, 29, 11, 21, 1, 36, 37, 2, 33, 40, 10, 30, 46, 18, 26, 41, 25, 50, 34, 32, 19, 9, 6, 38,

39, 24, 35, 15, 23, 45, 12
10 16, 19, 7, 18, 50, 6, 38, 3, 25
11 51, 16, 20, 7, 6, 9, 22
12 18, 3, 7, 19, 13, 16, 11, 20, 2
13 19, 21, 50, 39, 7, 32, 51, 16, 1, 38
14 21, 7, 51, 16, 6, 9, 34
15 16, 20, 7, 29, 6, 30, 19, 21, 25, 35, 11, 18, 40
16 16, 50, 20, 7, 19, 6, 32, 18
17 16, 7, 21, 6
18 16, 7, 18, 19, 41, 11, 3, 50, 22, 1, 25
19 16, 7, 5, 20, 30, 46, 18, 6
20 16, 7, 13, 21, 20, 46
21 18, 16, 30, 6, 11, 7, 19

In the figure, we can see that, in general, the number of features in the feature selection
sequence is generally in the range of five to fifteen. Comparing the fifty-two feature values
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in the original feature sequence, the redundant and irrelevant features are effectively
deleted and strongly correlated features are extracted, which reduces the computational
resources required for fault diagnosis.

Figure 4. Feature selection for fault 17.

For faults 3, 5 and 9, we can see in the figure that the number of features in their
feature selection sequence is much greater than for the other faults. It is well known that
the difficulties in the TE process fault diagnosis include faults 3, 5 and 9, which correspond
to the inability to effectively delete redundant and irrelevant features and extract strongly
relevant features, resulting in too many features being selected for faults 3, 5 and 9.

7. Experimental Results
7.1. The Performance of Purposed Method
7.1.1. Effect of Feature Selection

To emphasize the significance of feature selection, using the t-SNE dimensionality
reduction approach, the fault features were reduced to two dimensions and were visualized,
with the results presented in Figures 5 and 6.

Figure 5 shows fault 1, 2 and 3 selected by XGBOOST features. Faults 1 and 2 are barely
mixed with other faults and have high identifiability, corresponding to faults 1 and 2, while
faults 3 and 4 are completely mixed together, demonstrating that fault 3 without feature
selection has a high identification rate with other faults with a high degree of similarity,
corresponding to the ultra-low fault diagnostic rate of fault 3.

Figure 6 shows faults 1, 2, 3, and 4 selected by XGBOOST features, in which the faults
1, 2, 3 and 4 are not mixed together, indicating that fault identifiability has improved after
feature extraction, and that faults 1, 2, 3 and 4 are more closely aggregated, indicating that
data similarity within the faults has been improved by feature extraction, and that the
commonality of each fault data point has been well identified, which corresponds to the
increased fault diagnosis rate after feature extraction.

7.1.2. Fault Diagnostic Rate (FDR)

The values of true positive TP and true negative TN represent the number of observa-
tions representing the correct classification, while the false positive FP and false negative
FN represent the number of misclassifications. The specific meanings they represent are
shown in Table 5.
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Figure 5. TSNE visual output of faults 1, 2, 3, 4.

Figure 6. TSNE visual output of feature-selected faults 1, 2, 3, 4.

Table 5. Confusion Matrix.

Confusion Matrix
Prediction

Positive (p) Negative (N)

Real True(T) TP FN
Flase(F) FP TN

FDR =
TP + TN

TP + TN + FN + FP
(23)

As shown in Figure 7, the average FDR for the training dataset is 0.9992. This diagnos-
tic model has exceptionally high diagnostic rates (above 0.99) for all faults in the training set,
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demonstrating the algorithm’s ability to spot the training set’s characteristics. The average
FDR in the test dataset was 0.9100, demonstrating that the model works not just with
the training dataset, but also with the test dataset. Faults 3, 9, 15, and 16 have long been
recognized as long-standing issues in process diagnosis. Except for faults 3, 9, 15, and 16,
the diagnostic rate for all faults in this paper is above 85%, with an average diagnosis rate
of 94.61%. For fault 16, the algorithm used in this research improves the diagnosis rate to
0.9177, which is a significant improvement to fault 16. This study additionally improves
the diagnostic rate for faults 3, 9, and 15 to 0.7677, 0.7296, and 0.6167, respectively, while
retaining the total diagnostic rate. One of the superiorities of this method is the increase in
diagnosis rate.

Figure 7. Fault diagnosis rate of XGB-AVSSA-KELM.

7.2. Performance Comparison
7.2.1. Convergence Speed Comparison

Figure 8 shows a comparison of the iteration curves for AVSSA (black line), Runge–
Kutta [55] (red line), Hunger Games [56] (green line), African Vulture [57] (blue line) and
Chameleon [58] (yellow line) for 21 faults. The data for all iteration curves are normalized
using MAX-MIN and are presented in the figure as a line graph. Since the initial iteration
curve was a straight line, it could not be normalized and is therefore assigned to a straight
line with y = 0 in this work.

In Figure 8, it is clear that Chameleon (yellow line) and African Vulture (blue line)
both use more iterations to find the optimal solution; Runge–Kutta (red line), AVSSA (black
line), and Hunger games (green line) are all algorithms that find the optimal solution in
fewer iterations, but they are all mixed together and difficult to see. Sparrow (Figure 9)
and Hunger Games (Figure 10) are the fastest, Dragon Kuta (Figure 11) is in the center,
while Chameleon (Figure 12) and African Vulture (Figure 13) are the slowest in terms of
convergence speed. The AVSSA algorithm has a smoother iteration curve and fewer lines
than the others (see Figures 9–11), which reflects the fact that the AVSSA algorithm has
more cases of reaching the optimal value in the first iteration and demonstrates the AVSSA
algorithm’s unique advantage in terms of convergence speed.
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Figure 8. The iteration curves for the five methods.

Figure 9. The iteration curves for AVSSA.

Figure 10. The iteration curves for the five methods.
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Figure 11. The iteration curves for AVSSA.

Figure 12. The iteration curves for the five methods.

Figure 13. The iteration curves for AVSSA.
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7.2.2. Feature Selection Algorithm Comparison

NSVM-AVSSA-KELM, RF-AVSSA-KELM and XGB-AVSSA-KELM were the three sets
of experiments in which NSVM did not provide feature extraction for faults 3, 9 and 15,
marked with *.

The results of the comparison of the three different feature selection algorithms are
shown in Table 6, where the XGB-AVSSA-KELM algorithm is the best of the three, proving
the superiority of XGB in the feature selection algorithm.

Table 6. The feature selection algorithm comparison table.

Fault NSVM-AVSSA-KELM RF-AVSSA-KELM XGB-AVSSA-KELM

1 0.9979 0.9969 1.0000
2 0.9729 0.9750 1.0000
3 * 0.5479 0.7677
4 1.0000 1.0000 1.0000
5 0.9687 0.9844 1.0000
6 1.0000 0.9844 1.0000
7 1.0000 1.0000 1.0000
8 0.9072 0.8198 0.9406
9 * 0.5198 0.7240
10 0.6625 0.7333 0.8938
11 0.8197 0.8354 0.9469
12 0.8375 0.8969 0.8969
13 0.7395 0.7896 0.9167
14 0.9114 0.9990 1.0000
15 * 0.5365 0.6167
16 0.7093 0.7594 0.9177
17 0.7437 0.8469 0.9479
18 0.9031 0.8823 0.9021
19 0.8000 0.8688 0.9063
20 0.7958 0.7969 0.8635
21 0.9708 0.6760 0.8698
Average 0.8745 * 0.8309 0.9100

7.2.3. Ablation Experiments

In order to verify the relative importance of both XGBOOST and AVSSA relative to
the XGB-AVSSA-KELM algorithm, and the superiority of XGB feature selection, six sets of
experiments are set up in this paper. They are KELM, AVSSA-KELM, NSVM-AVSSA-KELM,
RF-AVSSA-KELM XGB-KELM, and XGB-AVSSA-KELM. NSVM and RP are the two feature
selection methods used by Xie [59] and Onel [35] respectively, where the results of feature
selection are cited and combined with AVSSA-KELM for fault diagnosis in this paper.

Table 7 shows the experimental outcomes. Overall, the KELM algorithm has the lowest
FDR of the six sets of tests, with the rest of the algorithms being higher, demonstrating that
all of the methods performed have improved the FDR to some extent.

First, we explore the effect of the AVSSA algorithm on the combined model. According
to Table 7, when KELM is compared with AVSSA-KELM, the FDR of AVSSA-KELM is
improved by 9.63% compared with KELM; when XGB- KELM is compared with XGB-
AVSSA-KELM, the FDR of XGB-AVSSA-KELM is improved by 15.61% compared with XGB-
KELM. This indicates that the network hyperparameters of AVSSA-optimized KELM can
effectively improve the correct rate of fault diagnosis.

Then, we explore the role of XGBOOST (XGB) feature selection on the combined model.
According to Table 7, when XGB-KELM and KELM are compared, the FDR of XGB-KELM
is improved by 4.21% compared with KELM; when XGB-AVSSA-KELM and AVSSA-KELM
are compared, the FDR of XGB-AVSSA-KELM is improved by 10.19% compared with
AVSSA-KELM. This indicates that XGBOOST for feature selection can effectively improve
the correct rate of fault diagnosis.
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Table 7. Results of ablation experiments with preserved KELM.

Fault KELM AVSSA-KELM XGB-KELM XGB-AVSSA-KELM

1 0.9938 0.9990 0.9927 1.0000
2 0.9781 0.9813 0.9813 1.0000
3 0.5938 0.6354 0.4844 0.7677
4 1.0000 1.0000 1.0000 1.0000
5 0.4813 0.7146 0.9708 1.0000
6 0.9958 0.9958 0.9958 1.0000
7 1.0000 1.0000 1.0000 1.0000
8 0.6417 0.8635 0.6115 0.9406
9 0.7229 0.7240 0.6198 0.7240
10 0.6042 0.6552 0.5667 0.8938
11 0.5521 0.7865 0.6125 0.9469
12 0.4781 0.7375 0.4438 0.8969
13 0.6000 0.7031 0.6156 0.9167
14 0.8135 0.9552 0.9927 1.0000
15 0.4396 0.4865 0.6427 0.6167
16 0.6177 0.7291 0.6604 0.9177
17 0.6833 0.7625 0.6979 0.9479
18 0.9052 0.8990 0.8771 0.9021
19 0.6031 0.8333 0.7552 0.9063
20 0.7302 0.7385 0.7406 0.8635
21 0.5135 0.7698 0.5698 0.8698
Average 0.7118 0.8081 0.7539 0.9100

7.2.4. Fault Diagnostic Rate Comparison

Table 8 and Figure 14 compare the performance of the proposed technique to that of
other fault diagnostic methods in the TE process. Other methods are M-KFDA-SVM [60],
EDBN-2 [61], GA-DCNN and RF-GA-CNN [62]. Because EDBN-2 does not include diag-
nostic rate data for faults 3, 9, and 15, and because faults 3, 9, and 15 are all difficult to
diagnose in chemical processes, the FDR for all three is set to 60% in this work.

When compared to other fault diagnosis approaches, the model in this research
performed the best, as shown in Table 8. AVSSA-KELM had the best overall classification
performance based on XGBOOST feature selection, with a score of 0.91. The overall fault
diagnosis rate in this paper was greater than 0.6.

Figure 14. Comparison of FDR with other algorithms.
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Table 8. Comparison of FDR with other algorithms.

Fault M-KFDA-SVM EDBN-2 GA-DCNN RF-GA-CNN Proposed Method

1 0.9980 1.0000 0.9931 0.9956 1.0000
2 0.9987 1.0000 0.9825 0.9906 1.0000
3 0.4333 0.6000 0.9356 0.9581 0.7677
4 0.9589 1.0000 0.9938 0.9981 1.0000
5 0.9950 1.0000 0.8962 0.6206 1.0000
6 0.9602 1.0000 0.9786 0.9893 1.0000
7 0.9944 1.0000 0.9988 1.0000 1.0000
8 0.9581 0.9829 0.9356 0.9269 0.9406
9 0.5156 0.6000 0.6788 0.7762 0.7240
10 0.9399 0.8081 0.9644 0.9706 0.8938
11 0.9538 0.9974 0.9831 0.9875 0.9469
12 0.9563 1.0000 0.9700 0.9788 0.8969
13 0.9524 0.9198 0.9462 0.9456 0.9167
14 0.9805 1.0000 0.9906 0.9950 1.0000
15 0.6474 0.6000 0.4775 0.4350 0.6167
16 0.9780 0.7556 0.4325 0.2069 0.9177
17 0.9732 1.0000 0.9431 0.9488 0.9479
18 0.9515 0.9343 0.9325 0.9456 0.9021
19 0.9687 0.9553 0.9856 0.9900 0.9063
20 0.9363 0.9317 0.9256 0.9356 0.8635
21 0.8764 0.8344 0.8500 0.8930 0.8698
Average 0.9013 0.9009 0.8950 0.8804 0.9100

8. Conclusions

In this paper, a deep learning-based fault diagnosis method for chemical processes
is proposed. The method combines feature selection and dataset optimization strategies
with a KELM classifier. First, the dataset is optimized by removing redundant features
using the XGBOOST model. Second, a new optimization algorithm, AVSSA, is proposed to
automatically adjust the network hyper-parameters of KELM to improve the performance
of the fault classifier. Finally, the optimized feature sequences are input into the proposed
classifier to obtain the final diagnosis results. The proposed diagnosis method is applied to
the TE process, and the experimental results verify the applicability and effectiveness of
the model. Compared with several other deep learning models, this method has higher
accuracy and achieves the same accuracy with fewer iterations.

The method has achieved some results, but there are still some limitations that need to
be improved in future work. Our optimization of a large number of network hyperparame-
ters of KELM has led to a significant improvement in the diagnostic performance of KELM,
but the upper limit of the accuracy of the KELM classifier is still limiting the diagnostic
accuracy. Future work is needed to carry out a deeper structural optimization of the classi-
fier. It is also necessary to detect faults in real plants, compare the “time” required to solve
them with traditional fault diagnosis processes and explore comprehensive optimization
for practical applications. In addition, for the extracted features, compared with the pure
data-driven diagnosis method, we can combine the characteristics of the chemical process
itself and consider the characteristics of the TE process to explore the chemical connection
between the feature variables, which will be a new cross-optimization direction.
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