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Abstract: Bio-jet fuels prepared by the thermochemical conversion of triglyceride can be used as
complete substitutes of jet fuels. A bio-jet fuel prepared as a substitute of the RP-3 jet fuel and the
RP-3 jet fuel itself were, respectively, used to fuel a small aviation piston engine. The characteristic
tests of the engine were carried out, and the performances of the power, economy, emissions, and heat
release law of the engine fueled with the two fuels were analyzed. The feasibility of the bio-jet fuel
as a substitute for the RP-3 jet fuel was proved by the experimental results, which show that when
the engine is fueled with the bio-jet fuel, the power and economy performance do not deteriorate;
however, the HC emissions increase at small and medium throttle openings, while at large throttle
openings, the performances of power and economy decreases, the emissions of HC and NOx increase,
and the CO emission decreases. The bio-jet fuel is more prone to spontaneous combustion than the
RP-3 jet fuel, so knock combustion would be more likely to occur at large throttle openings, and large
cooling air flux is required to cool the cylinder because spontaneous combustion would increase
heat release.

Keywords: bio-jet fuel; RP-3 jet fuel; thermochemical conversion of triglyceride; aviation piston engine

1. Introduction

Converting waste bio-oils into liquid biofuels has been gaining attention from all
over the world. On one hand, biofuel is environmentally friendly, because it is potentially
carbon neutral. The CO2 released from burning biofuel would be recycled and reused
by existing plants which could be used to prepare biofuels, while the CO2 released from
burning fossil fuels would be directly released to the atmosphere [1]. On the other hand,
the stock of fossil fuels is limited, while the raw material of preparing biofuels is sustainable.
Therefore, the liquid biofuel is an effective way to achieve carbon neutrality and solve the
energy crisis.

Studies about liquid biofuels at present mainly focus on biodiesels. Many studies have
proved that fueling internal combustion engines with a mixture of biodiesel and fossil fuel
could help to stabilize combustion, decreasing the ignition delay time and reducing the
emissions of hydrocarbon and soot [2–5]. Fueling with biodiesel may also lead to higher
fuel consumption, higher emissions of nitrogen oxide (NOx), and lower thermal efficiency
and power output [5–7], which could be improved by adjusting the portion of biodiesel in
the mixture, using new types of biodiesel and developing preparation technology [8–10].
Biodiesel has been widely used, and related industrial devices have been established in
Europe, America, and other regions [11,12].

Energies 2022, 15, 3246. https://doi.org/10.3390/en15093246 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15093246
https://doi.org/10.3390/en15093246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-1484-8171
https://doi.org/10.3390/en15093246
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15093246?type=check_update&version=1


Energies 2022, 15, 3246 2 of 13

However, biodiesel is mainly applied in vehicle engines and other non-aviation gas
turbines at present because it has not met the standard of jet fuel [13]. Jet fuels have stricter
requirements for physicochemical properties than vehicle fuels due to the strict security
requirements of aircrafts. The main composition of biodiesels is fatty acid methyl esters,
which is quite different from fossil jet fuels, whose main component is hydrocarbon, in-
cluding chain hydrocarbons (alkanes, alkenes), cyclanes, and arenes with carbon molecular
weight between C9 and C15. The content and the molecular structure of the components
of jet fuels have significant influence on a fuel’s physicochemical properties, for example,
straight-chain hydrocarbons affect almost all kinds of physical properties, and cyclanes
and arenes affect density, heating value, freezing point, and aniline point [14]. In addition,
the components of jet fuels also affect the operational performance of an aircraft. For exam-
ple, alkanes and alkenes help to improve engine starting performance, and arenes increases
the sealability of fuel systems. Therefore, the jet fuels have stringent requirements for the
molecular structure and the content of their components.

The two main methods of preparing bio-jet fuels are high-pressure hydrogenation of
bio-oils and chemical transformation of wood fiber. The first method takes bio-oils as raw
material. It firstly removes the carboxyl from the raw oil to form chain alkanes, then sepa-
rates the chain alkanes by distillation and rectification, and finally synthesizes straight-chain
alkanes whose chain lengths match the requirements for jet fuel [15,16]. The main defect
of high-pressure hydrogenation is that the production contains no aromatic hydrocarbons
or cycloalkanes, so biofuels prepared by this method can only partly substitute jet fuels.
The second method takes wood fiber as raw material. It firstly degrades the wood fiber to
sugar, then translates the monosaccharide derivative to organic synthetic intermediate and
increases the length of the carbon chains by chemical recombination, finally removing the
oxygen by high-pressure hydrogenation to obtain straight-chain alkanes [17]. A technology
frequently used in this method is the Fischer–Tropsch synthesis [18]. The main defect of the
chemical transformation of wood fiber is that there are key technical issues and application
issues still unsolved because of the big difference between the structures of the wood fiber
and those of fossil fuel.

Engine tests of fueling with bio-jet fuels prepared by the two methods have been
carried out. For example, Bester et al. [19], Bulzan et al. [20], and Klingshirm et al. [21]
compared the performances of aviation gas turbines fueled with Jet A/JP-8, bio-jet fuels
prepared via the Fischer-Tropsch synthesis, bio-jet fuels prepared via the hydrogenation
method, and blends of JP-A/JP-8 and bio-jet fuels. The results show that the emission perfor-
mance is improved by the bio-jet fuel, while the engine operation performance is influenced
slightly. The bio-jet fuels they used have few aromatics, which is thought to be responsible
for the emission improvement. Similar results were obtained by Khandelwal et al. [22] and
Badami et al. [23]; although, they used bio-jet fuels whose aromatics contents were about
half and two thirds, respectively, of Jet A.

The studies above reflect two things, one is that the bio-jet fuels studied have a lack
of arenes, and the other is that the application objects are mainly gas turbines. Studies
about applying bio-jet fuels that can completely substitute fossil jet fuels on small avia-
tion piston engines are relatively rare. Small aviation piston engines are mainly used to
drive unmanned aerial vehicles, whose application scenarios frequently include forests,
reef islands, and oceans. These places are generally in remote areas and lack transportation,
so fuel supply is a problem, which could be resolved by preparing bio-jet fuels through
daily waste oils.

Xu’s team proposed a method to prepare bio-jet fuels via the thermochemical con-
version of triglyceride [24–26]. In this method, the bio-oil is pyrolyzed and distilled to
obtain straight-chain hydrocarbons with chain lengths similar to those of jet fuels. Then,
parts of the straight-chain hydrocarbons are turned to arenes using molecular sieve cata-
lysts, and parts of the arenes are further turned into cyclanes. The method is highly efficient,
and the production contains all the key components of jet fuels, including alkanes, arenes,
and cyclanes, which potentially makes it able to completely substitute fossil jet fuels. Li [26]
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prepared a bio-jet fuel to substitute RP-3 jet fuel using the thermochemical conversion
method, and the bio-jet fuel was proved to be able to completely substitute RP-3 jet fuel
through an analysis of the components and physicochemical properties of the jet fuel.

Based on the works of Xu and Li, this study carried out an experimental investigation
to figure out the feasibility of the bio-jet fuel prepared by Xu and Li as a complete substitute
of RP-3 jet fuel to fuel a small aviation piston engine. In the experiment, the bio-jet fuel
and the RP-3 jet fuel were, respectively, used to fuel a small, two-stroke, spark-ignition
(SI) aviation piston engine. The characteristic tests of the engine, equipped with pro-
pellers, were carried out, and the performances of power, economy, and emission, and the
heat release law of the engine fueled with the two fuels at different throttle openings,
were analyzed.

2. Experimental Methods
2.1. Bio-Jet Fuel Preparation

The soybean was chosen as the raw material to prepare the bio-jet fuel. The com-
position of soybean is relatively simple, so the bio-jet fuel transferred from soybean was
relatively easy to analyze, and relatively fewer interference factors were introduced into
the experiment from the preparation process. This does not mean that waste oil is not able
to be used as a raw material for bio-jet fuel preparation. In fact, transferring waste oils into
bio-jet fuels was an important motivation for developing the thermochemical conversion
method, and the feasibility and applicability of transferring waste triglyceride into jet fuels
via the thermochemical conversion method have been proved in Ref. [27].

Figure 1 shows the main steps of the preparation technology route, as follows:

1. Hyperthermia catalytical pyrolysis:

Mix the soybean oil with the catalyst and then pyrolyze the mixture at a high tempera-
ture to produce pyrolysis oil, whose composition is similar to the RP-3 jet fuel.

2. Distillation:

Distill the pyrolysis oil to separate it into light oil and heavy oil. The light oil mainly
contains alkanes and alkenes, whose carbon chains are mainly C9–C15, like the RP-3 jet fuel.

3. Molecule structure adjustment:

Turn part of the alkanes and the alkenes of the light oil into arenes by HZSM-5-type
molecular sieve catalysts, and then hydrogenate part of the arenes under high pressures
to produce cyclanes; therefore, a bio-jet fuel containing alkanes, arenes, and cyclanes can
be obtained.

The detailed preparation process can be found in Li’s work [26].
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Figure 1. Technology route of the bio-jet fuel preparation.

The key physical properties for jet fuels are measured at 20 ◦C. Table 1 compares the
properties of the bio-jet fuel with those of RP-3 jet fuel. It shows that the properties of
the bio-jet fuel meet the standards of RP-3 jet fuel. Notice that the viscosity of the bio-jet
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fuel is almost twice the standard limit of RP-3 jet fuel. The viscosity has great influence
on the fuel atomization performance. In our previous experiment, the particle Sauter
mean diameters of the two fuels, atomized by a centrifugal nozzle at different atomization
pressures, were measured, and the probability density distribution of the particle diameters
at atomization pressure of 4 bar are shown in Figure 2 [28]. The figure shows that the bio-jet
fuel forms much larger particles than the RP-3 jet fuel.

Table 1. Physical properties of fuels at 20 ◦C.

Properties Bio-Jet Fuel Standard Limit of RP-3 Jet Fuel

Density/kg·m−3 808 775~830
Heat value/MJ·kg−1 44.4 >42.8
Viscosity/mm2·s−1 2.11 ≥1.25

Acid value/mg KOH·g−1 0 <0.015
Freezing point/◦C −48 ≤−47
Sulphur content/% <0.0001 ≤0.2

Closed-cup Flash Point/◦C 38 ≥38
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2.2. Experimental Details

The small, two-stroke, SI aviation piston engine is shown in Figure 3. The engine has
two horizontally opposed cylinders and uses a leaf valve to control inflow air. The engine
is able to be fueled by a variety of fuels by adopting the port fuel injection strategy and
crankcase preheating technology. Listed in Table 2 are the main performance parameters of
the engine.
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Table 2. Engine performance parameters.

Parameters Values

Rotating speed 3000 rpm~7000 rpm
Rated power 3.6 kW

Compression ratio 10.2:1
Displacement 75 cc

Assembled propeller JXF 22 × 12

The tests were carried out on our homemade PTT30 propeller test bench, as shown in
Figure 4. The test bench is mainly composed of a bearing housing and a rigid connecting
support, attached with the bearing shaft. The engine is fixed on the rigid connecting support
and the propeller is installed on the engine output shaft. When the engine drives the
propeller, the torque is transferred via the rigid support to a torque sensor that is installed
on the bearing shaft. An encoder used to measure the crankshaft position was attached
on the engine output shaft through a synchronous drive belt. A Kistler 6052C pressure
sensor was plugged into the cylinder to measure the cylinder pressure, and a Kistler
SPC 2852A signal conditioning system was used to amplify the cylinder pressure signal.
An NHA-506 exhaust gas analyzer was used to measure and analyze the compositions of
exhaust gas. A UEGO sensor was plugged into the exhaust manifold to monitor the excess
air coefficient. A fuel consumption meter was connected with the fuel tank to measure the
fuel consumption. When the engine worked, an ECU was used to adjust the fuel injection
to control the excess air coefficient, a servo was installed on the intake valve of the engine
to adjust the throttle opening, and a capacitor discharge ignition system was used to ignite
the engine.
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All tests were carried out at normal temperature and pressure. The temperature,
pressure, and humidity of the environment were 7 ◦C~10 ◦C, 102 kPa~103 kPa, and 56~65%,
respectively. The excess air coefficient of the fuel–air mixture was controlled at around 1.0.
The throttle openings were from 30% to 75%, which corresponds to speeds from 4500 rpm
to 6500 rpm. The load of the engine was to drive the propeller, so the engine speed increases
as the throttle opening increases, and the spark timing was adjusted correspondingly to
maintain stable operation of the engine. The relationship between the spark timing and
the engine speed was pre-set, as shown in Figure 5. BTDC in the figure means before top
dead center.
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The main test procedures were as follows:

1. Preheat the cylinder to 70 ◦C.
2. Start the engine and run the engine at idle speed until the cylinder temperature

reaches 135 ◦C.
3. Adjust control parameters to make the engine work on the specified working conditions.
4. Measure the data when the cylinder temperature stabilizes at 170 ◦C and the rotating

speed is steady.

In the tests, the temperatures of the two cylinders were maintained automatically at
170 ◦C by using a cooling fan and a frequency converter to avoid damaging the engine.
To avoid mutual mixture of the bio-jet fuel and the RP-3 jet fuel, the entire oil circuit was
replaced with a new one before changing the fuel.

3. Results
3.1. Performances of Power and Economy

The brake powers and speeds of the engine fueled with the RP-3 jet fuel and the
bio-jet fuel at different throttle openings are presented in Figure 6. The figure shows that
the brake power and speed increase as the throttle opening increases. At small throttle
openings, the brake power and speed of the bio-jet fuel were very close to those of RP-3 jet
fuel, and became slightly higher than those of RP-3 jet fuel at medium throttle openings.
As the throttle opening increased to over 60%, the brake power and speed of the bio-jet
fuel became smaller than those of RP-3 jet fuel. At 75% throttle opening, the brake power
and speed of the bio-jet fuel were smaller than those of RP-3 jet fuel by about 5% and
1.7%, respectively.
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Figure 6. Variation of brake power and speed against throttle opening.

Figure 7 shows the variation of the brake specific fuel consumption (BSFC) of the
engine against the throttle opening. The curves show that the BSFC first decreased and
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then increased, and it reached a low plateau from throttle opening of about 35% to 60%.
The load of the engine is to drive the propellor, so the speed increased as the throttle
opening increased. Large throttle opening leads to small pumping loss, while at the same
time, large speed leads to large friction loss and large scavenging loss, caused by the
short-circuiting of the scavenge duct and the exhaust duct. Under the combined effects
of these factors, the BSFC presented a trend of decreasing first and then increasing as
the throttle opening increased. The throttle opening of 35–60% corresponds to the most
economic working condition of the engine. The range of the economic condition of the
engine remained consistent when the fuel was changed from RP-3 jet fuel to the bio-jet fuel,
and the BSFC of the bio-jet fuel was comparable to that of RP-3 jet fuel under the economic
condition. When the throttle opening increased to over 55%, the BSFC of the bio-jet fuel
became higher than RP-3 jet fuel, and it was about 10% higher than RP-3 jet fuel at 75%
throttle opening.

Energies 2022, 15, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 6. Variation of brake power and speed against throttle opening. 

Figure 7 shows the variation of the brake specific fuel consumption (BSFC) of the 
engine against the throttle opening. The curves show that the BSFC first decreased and 
then increased, and it reached a low plateau from throttle opening of about 35% to 60%. 
The load of the engine is to drive the propellor, so the speed increased as the throttle 
opening increased. Large throttle opening leads to small pumping loss, while at the same 
time, large speed leads to large friction loss and large scavenging loss, caused by the short-
circuiting of the scavenge duct and the exhaust duct. Under the combined effects of these 
factors, the BSFC presented a trend of decreasing first and then increasing as the throttle 
opening increased. The throttle opening of 35%–60% corresponds to the most economic 
working condition of the engine. The range of the economic condition of the engine re-
mained consistent when the fuel was changed from RP-3 jet fuel to the bio-jet fuel, and 
the BSFC of the bio-jet fuel was comparable to that of RP-3 jet fuel under the economic 
condition. When the throttle opening increased to over 55%, the BSFC of the bio-jet fuel 
became higher than RP-3 jet fuel, and it was about 10% higher than RP-3 jet fuel at 75% 
throttle opening. 

 
Figure 7. Variation of BSFC against throttle opening. 

In terms of power performance, the bio-jet fuel is comparable to RP-3 jet fuel. The 
bio-jet fuel was better at medium throttle openings and worse at large throttle openings 
than RP-3 jet fuel, but the differences between them were quite small, less than 5%. In 
terms of economy performance, the bio-jet fuel was a little worse than RP-3 jet fuel. The 
differences between them occurred mainly at large throttle openings, where the BSFC of 
the bio-jet fuel was about 10% higher than RP-3 jet fuel. 

  

25 30 35 40 45 50 55 60 65 70 75 80
0

1

2

3

4
 RP-3 jet fuel
 Bio-jet fuel

Throttle(%)

Br
ak

e 
Po

w
er

(k
W

)

4500

5000

5500

6000

6500

7000

Sp
ee

d(
rp

m
)

25 30 35 40 45 50 55 60 65 70 75 80
300

350

400

450

500
 RP-3 jet fuel
 Bio-jet fuel

Throttle(%)

BS
FC

(g
/k

W
-h

)

Figure 7. Variation of BSFC against throttle opening.

In terms of power performance, the bio-jet fuel is comparable to RP-3 jet fuel. The bio-
jet fuel was better at medium throttle openings and worse at large throttle openings than
RP-3 jet fuel, but the differences between them were quite small, less than 5%. In terms of
economy performance, the bio-jet fuel was a little worse than RP-3 jet fuel. The differences
between them occurred mainly at large throttle openings, where the BSFC of the bio-jet
fuel was about 10% higher than RP-3 jet fuel.

3.2. Heat Release Law

Figures 6 and 7 show that there were some differences between the brake power and
BSFC of the engine fueled with the bio-jet fuel and RP-3 jet fuel at medium and large
throttle openings. The cylinder pressure and the apparent heat release rate (AHRR) at
throttle openings of 46% and 64% are plotted in Figure 8 to figure out the reasons for these
differences. The crank angle of 0◦ in the figures is the top dead center (TDC). The cylinder
pressure drawn in Figure 8 is an average of 200 cycles of cylinder pressures. The AHRR
is the heat released at each crank angle and is calculated using the cylinder pressure data
according to the following equation, via the software GT-Power:

AHRR = −p
dVtot

dt
− Qtot −

d(mtotetot,s)

dt
(1)

where the subscript tot means the total quantities of the burned and unburned gases in
the cylinder; t is time; p is the cylinder pressure; V is the cylinder volume; Q is the heat;



Energies 2022, 15, 3246 8 of 13

mtot is the total mass of gases in the cylinder; etot,s is the sensible energy of the gases in the
cylinder. The three terms on the right side of Equation (1) mean the energy change induced
by pressure, combustion, and the state of the gases itself, respectively.

Energies 2022, 15, x FOR PEER REVIEW 8 of 13 
 

 

3.2. Heat Release Law 
Figures 6 and 7 show that there were some differences between the brake power and 

BSFC of the engine fueled with the bio-jet fuel and RP-3 jet fuel at medium and large 
throttle openings. The cylinder pressure and the apparent heat release rate (AHRR) at 
throttle openings of 46% and 64% are plotted in Figure 8 to figure out the reasons for these 
differences. The crank angle of 0° in the figures is the top dead center (TDC). The cylinder 
pressure drawn in Figure 8 is an average of 200 cycles of cylinder pressures. The AHRR is 
the heat released at each crank angle and is calculated using the cylinder pressure data 
according to the following equation, via the software GT-Power: 

( ),AHRR tot tot stot
tot

d m edV
p Q
dt dt

= − − −  (1) 

where the subscript tot  means the total quantities of the burned and unburned gases in 
the cylinder; t  is time; p  is the cylinder pressure; V  is the cylinder volume; Q  is the 
heat; totm  is the total mass of gases in the cylinder; ,tot se  is the sensible energy of the 
gases in the cylinder. The three terms on the right side of Equation (1) mean the energy 
change induced by pressure, combustion, and the state of the gases itself, respectively. 

  
(a) (b) 

Figure 8. Variation of cylinder pressure and AHRR against crank angle at (a) 46% throttle opening 
and (b) 64% throttle opening. 

The cylinder pressure curves in Figure 8 show that the bio-jet fuel has larger maxi-
mum cylinder pressure than RP-3 jet fuel. At the 46% throttle opening, the crank angles 
of maximum cylinder pressure of the bio-jet fuel and RP-3 jet fuel were about 14°and 
10.9°after the TDC, respectively. As the throttle opening increased to 64%, the crank angle 
of the maximum cylinder pressure of the bio-jet fuel moved forward to about 8.8°, while 
that of RP-3 jet fuel remained almost unchanged. The AHRR curves show that the bio-jet 
fuel had larger maximum AHRR than RP-3 jet fuel. From the spark time to the time when 
the AHRR of RP-3 jet fuel reached the maximum, the AHRR developments of the bio-jet 
fuel and RP-3 jet fuel are basically the same. When the AHRR of RP-3 jet fuel began to 
drop from the maximum, the AHRR of the bio-jet fuel maintained a rapid upward trend 
until it reached the maximum, and then it declined with a much greater rate than RP-3 jet 
fuel. 

Statistic calculations were made to find the reason for the difference between the cyl-
inder pressure and AHRR of the two fuels. According to the calculation results, the prob-
ability of knock combustion occurrence of the engine fueled with the bio-jet fuel was about 
72% at the 64% throttle opening, while the corresponding probability of RP-3 jet fuel was 
only about 4%. Figure 9 shows the cylinder pressure and the corresponding AHRR of the 

0

10

20

30

40
 RP-3 jet fuel
 Bio-jet fuel

Crank angle (°)

Cy
lin

de
r p

re
ss

ur
e 

(b
ar

)

−100 −50 0 50 100
0

1

2

3

 A
H

RR
 (J

/°
)

0

10

20

30

40

50

60
 RP-3 jet fuel
 Bio-jet fuel

Crank angle (°)
Cy

lin
de

r p
re

ss
ur

e 
(b

ar
)

−100 −50 0 50 100
0

2

4

6

8

 A
H

RR
 (J

/°
)

Figure 8. Variation of cylinder pressure and AHRR against crank angle at (a) 46% throttle opening
and (b) 64% throttle opening.

The cylinder pressure curves in Figure 8 show that the bio-jet fuel has larger maximum
cylinder pressure than RP-3 jet fuel. At the 46% throttle opening, the crank angles of
maximum cylinder pressure of the bio-jet fuel and RP-3 jet fuel were about 14◦ and 10.9◦

after the TDC, respectively. As the throttle opening increased to 64%, the crank angle of
the maximum cylinder pressure of the bio-jet fuel moved forward to about 8.8◦, while that
of RP-3 jet fuel remained almost unchanged. The AHRR curves show that the bio-jet fuel
had larger maximum AHRR than RP-3 jet fuel. From the spark time to the time when the
AHRR of RP-3 jet fuel reached the maximum, the AHRR developments of the bio-jet fuel
and RP-3 jet fuel are basically the same. When the AHRR of RP-3 jet fuel began to drop
from the maximum, the AHRR of the bio-jet fuel maintained a rapid upward trend until it
reached the maximum, and then it declined with a much greater rate than RP-3 jet fuel.

Statistic calculations were made to find the reason for the difference between the
cylinder pressure and AHRR of the two fuels. According to the calculation results, the prob-
ability of knock combustion occurrence of the engine fueled with the bio-jet fuel was about
72% at the 64% throttle opening, while the corresponding probability of RP-3 jet fuel was
only about 4%. Figure 9 shows the cylinder pressure and the corresponding AHRR of the
bio-jet fuel of one cycle at the 64% throttle opening. It can be seen in the figure that the
cylinder pressure presented high-frequency vibrations near the peak point, and the AHRR
curve also shows a significant spike at the corresponding time, which suggests that knock
combustion occurred. It can be noticed that the vibration amplitude of the cylinder pressure
was not large, which means the knock combustion was not intense enough to damage
the engine. In the experiment, it was found that, once the throttle opening increased to
over 75%, the knock intensity would increase significantly, which would make the cylinder
temperature rise sharply, and the engine would be damaged.
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Figure 9. Variation of cylinder pressure and AHRR of one cycle for the bio-jet fuel at 64% throttle opening.

Knock combustion is a strong, spontaneous combustion. It indicates that the difference
between RP-3 jet fuel and the bio-jet fuel should be attributed to the fact that the bio-jet fuel
has a higher tendency to spontaneously combust. The velocity variation of the cylinder
cooling air could also prove the occurrence of spontaneous combustion. Figure 10 shows
the cooling air velocity. At conditions of throttle opening less than 40%, the velocity of
cooling air of the bio-jet fuel was close to that of RP-3 jet fuel. At throttle openings over
40%, the cooling air velocity of the bio-jet fuel became larger than the RP-3 jet fuel, and the
difference between them rose with the increased throttle opening. This was because, as the
throttle opening increased and the cylinder pressure and cylinder temperature increased,
so did the possibility of spontaneous combustion. When the throttle opening increased to
over 40%, spontaneous combustion of the mixture of bio-jet fuel and air occurred, so the
cylinder temperature rose, and the cooling air flux was turned up to prevent the cylinder
from being damaged. As the throttle opening continued to increase, the intensity of
spontaneous combustion increased, and knock combustion was triggered, which made the
cylinder temperature rise sharply and therefore the cooling air velocity increased rapidly.
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Figure 10. Variation of cooling air velocity against throttle opening.

The distributions of the cylinder pressure, the AHRR and the cooling air velocity
indicate that the bio-jet fuel has higher tendency of spontaneous combustion and knock
combustion than the RP-3 jet fuel. According to the preparation technology of the bio-jet
fuel [24,26], the bio-jet fuel contains no branched alkanes, and its alkanes are mainly in the
form of straight-chain alkanes, while about 20% of RP-3 jet fuel’s composition is branched
alkanes [29]. The straight-chain alkanes are more active than the branched alkanes [30],
so the bio-jet fuel is more prone to spontaneous combustion. The poor atomization perfor-
mance of the bio-jet fuel is another important reason for the high tendency of spontaneous
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combustion. The experiment about piston engine fueled by jet fuels proved that, as the
excess air coefficient of the fuel–air mixture becomes larger than 1.0, the possibility of knock
combustion increases, and the highest knock intensity occurs at an excess air coefficient
of 1.2 [31]. According to Figure 2, the bio-jet fuel would distribute more unevenly in the
cylinder than the RP-3 jet fuel, and there are more areas where the excess air coefficient is
over 1.0, which increases the tendency of spontaneous combustion.

Theoretically, spontaneous combustion increases the burning rate, and rapid combus-
tion would increase the maximum cylinder pressure and the power, as shown by the case
of 46% throttle opening. Meanwhile, too rapid combustion would release heat too fast,
and the energy would largely be dissipated through the cylinder wall instead of being
transferred into the kinetic energy of the piston, so the power would decrease, as shown by
the case of 64% throttle opening.

3.3. Emission Performance

Figure 11 compares the volume fractions of NOx and unburned intermediate reactive
products CO and HC in the exhaust gas. It shows that the engine exhaust emitted more
HC when burning the bio-jet fuel than when burning RP-3 jet fuel under all test conditions,
and the difference between them increased from about 30% to 100% as the throttle opening
rose from 30% to 75%. For throttle openings smaller than 50%, the volume fractions of NOx
and CO of the bio-jet fuel were close to those of RP-3 jet fuel, while for throttle openings
larger than 50%, the volume fractions of NOx and CO of the bio-jet fuel became larger and
smaller, respectively, than those of RP-3 jet fuel. At 75% throttle opening, the NOx volume
fraction of the bio-jet fuel was almost 3.53 times larger than that of RP-3 jet fuel, and the
CO volume fraction of the bio-jet fuel was about 63% of that of the RP-3 jet fuel.
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Figure 11. Volume fractions of the (a) CO, (b) HC, and (c) NOx in the exhaust gas against throttle opening.

Compared with the RP-3 jet fuel, the bio-jet fuel had higher HC emissions at all
throttle openings, and higher NOx emissions and lower CO emissions at throttle openings
over 50%. The large HC emission is due to the fact that the bio-jet fuel is not burned as
fully as RP-3 jet fuel, because of the poor fuel atomization performance. At large throttle
openings, the fuel injection quantity increased, so the bio-jet fuel could not be atomized
uniformly and there were both high fuel concentration and low fuel concentration areas in
the cylinder, which resulted in local rich fuel combustion and knock combustion. The local
rich fuel combustion led to higher HC emissions, and accordingly, lower CO emissions.
Local rich fuel combustion would form local high-temperature zones, and the occurrence of
knock combustion would also significantly increase the cylinder temperature, which creates
conditions for the production of NOx.

4. Discussion and Conclusions

To study the feasibility of the bio-jet fuel prepared via the thermochemical conversion
of triglyceride as a complete substitute of RP-3 jet fuel, characteristic tests of a small aviation
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piston engine, fueled, respectively, with bio-jet fuel and RP-3 jet fuel, were carried out.
Conclusions below were obtained based on the experimental results:

1. When the cooling requirement of the cylinder was satisfied, the performances of the
power and the economy of the engine were not degraded by burning the bio-jet fuel at
small and medium throttle openings, and the performance even increased slightly at
medium throttle openings. For throttle openings larger than 60%, the performances of
power and economy degraded. At 75% throttle opening, the brake power decreased
by about 5%, and the BSFC increased by about 10% when the engine was fueled with
the bio-jet fuel.

2. The bio-jet fuel is more prone to spontaneous combustion than RP-3 jet fuel. Sponta-
neous combustion helped to increase the maximum cylinder pressure and the power
at medium throttle openings but led to knock combustion and thus decreased the
performances of power and economy at large throttle openings. Spontaneous combus-
tion also increased heat release and then increased the cylinder temperature, so larger
cooling air flux was required when the engine was fueled with the bio-jet fuel.

3. Burning the bio-jet fuel leads to higher HC emissions than burning the RP-3 jet fuel.
The emissions of CO and NOx from burning the bio-jet fuel were close to those from
burning RP-3 jet fuel at small and medium throttle openings, but for throttle openings
larger than 50%, burning the bio-jet fuel significantly increased the NOx emissions
and decreased the CO emissions.

According to the conclusions, it is feasible to fuel a small aviation piston engine with
bio-jet fuel as a complete substitute of RP-3 jet fuel; however, cooling requirements should
be enhanced for medium and large throttle openings, and the load boundary should be
limited to avoid the occurrence of knock combustion.

The differences between the engine performances from burning the bio-jet fuel and
burning the RP-3 jet fuel should be attributed to the fact that the bio-jet fuel is more prone to
spontaneous combustion than RP-3 jet fuel. One reason is that the alkanes in the bio-jet fuel
are mainly straight-chain alkanes, while the alkanes in RP-3 jet fuel are mainly branched
alkanes. Another reason is the bio-jet fuel is more viscous than RP-3 jet fuel, which results in
poor performance of fuel atomization. Therefore, to completely substitute RP-3 jet fuel with
bio-jet fuel, it is not enough to adjust the contents of alkanes, arenes, and cyclanes; it is also
necessary to adjust the contents of straight-chain alkanes and branched alkanes. In addition,
the atomization performance of a bio-jet fuel should be improved. In our future research,
we are going to study the influence of alkane structure on the combustion performance
of bio-jet fuels, and we will aim to improve the preparation technology, to prepare bio-jet
fuels with better physical properties.

Furthermore, according to Ref. [26], there are some differences between the content
ratios of compositions, with different carbon molecular weights between bio-jet fuel and
RP-3 jet fuel. For example, RP-3 jet fuel has higher content of carbon chains with molecular
weights between C10 and C12 compared with bio-jet fuel. This may be a potential reason
for the above differences, on which our planned future works will focus.
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