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Abstract: Passive infrared optical gas imaging (IOGI) is sensitive to toxic or greenhouse gases
of interest, offers non-invasive remote sensing, and provides the capability for spatially resolved
measurements. It has been broadly applied to emission detection, localization, and visualization;
however, emission quantification is a long-standing challenge for passive IOGI. In order to facilitate
the development of quantitative IOGI, in this review, we summarize theoretical findings suggesting
that a single pixel value does not provide sufficient information for quantification and then we
proceed to collect, organize, and summarize effective and potential methods that can support IOGI to
quantify column density, concentration, and emission rate. Along the way, we highlight the potential
of the strong coupling of artificial intelligence (AI) with quantitative IOGI in all aspects, which
substantially enhances the feasibility, performance, and agility of quantitative IOGI, and alleviates
its heavy reliance on prior context-based knowledge. Despite progress in quantitative IOGI and
the shift towards low-carbon/carbon-free fuels, which reduce the complexity of quantitative IOGI
application scenarios, achieving accurate, robust, convenient, and cost-effective quantitative IOGI
for engineering purposes, interdisciplinary efforts are still required to bring together the evolution
of imaging equipment. Advanced AI algorithms, as well as the simultaneous development of
diagnostics based on relevant physics and AI algorithms for the accurate and correct extraction of
quantitative information from infrared images, have thus been introduced.

Keywords: infrared optical gas imaging (IOGI); emission quantification; artificial intelligence (AI)

1. Introduction

Toxic emissions from thermal engines in the power generation sector have been
the cause of serious societal concern [1], especially as they relate to greenhouse gases
contributing significantly to global warming [2], which is currently the main focus of
international environmental protection policies. Accurate measurement is the foundation
of effective emission control and, consequently, the development of advanced, smart, and
convenient emission quantification tools emerges as a pressing technical necessity [3].

Pursuing such measurements in the infrared (IR) band offers the advantage that they
can directly quantify the global warming potential of gaseous emissions. Most interesting
combustion species, such as hydrocarbons and species containing the C-H bond in general,
including carbon oxides and nitric oxides, all have strong signals in the infrared range [4],
as shown in Table 1. It is also noted that nitrogen and oxygen, which make up the majority
of air, do not have IR activity because they are homonuclear diatomics, meaning there is no
such interference. On the other hand, it is true that, especially in a combustion environ-
ment, IR signals are vulnerable to broad-band black body emission from high-temperature
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particles [5,6], whereas the puzzling emission spectrum of water vapor constitutes another
source of interference [4,7].

Table 1. Absorption bands of several pollutants at the International Standard Atmosphere (ISA).

Molecule Absorption Wavebands (µm) Molecule Absorption Wavebands (µm)

CO 2.29–2.48 4.36–5.05 NO 2.63–2.78 5.03–5.78
CO2 2.66–2.81 4.07–4.43 NO2 3.38–3.53 5.92–6.57
CH4 3.07–3.71 6.67–9.09 SO2 3.94–4.07 6.94–9.44

Infrared optical gas imaging (IOGI), which involves the use of infrared imagers or
infrared spectral cameras in order to generate images [4,8–10], has attracted consider-
able attention since the recent advances in the development of cost-effective, IR-sensitive
chips [11–14]. Contrary to the well-developed field of infrared spectroscopy [15], IOGI is
a multidimensional, spatially resolved measurement. This kind of optical-field measure-
ment provides the possibility for the determination of the geometrical characteristics
of pollutant dispersion. From an engineering application perspective, laser-based spec-
troscopy measurement has a higher cost and requires complex data interpretation by highly
skilled users [16], which makes its application to industrial practice challenging. As a result,
a recent comparative assessment of various optical measurements by the U.S. Environ-
mental Protection Agency (EPA) [17] recognizes only OGI as a work practice that can be
a potential alternative for the Leakage Detection and Repair (LDAR) techniques, which are
currently dominant in industrial practice and are based on sampling (through “sniffers”)
and ex-situ gas analysis with ionization detectors.

IOGI has now been applied in emission detection, location, and visualization. De
Almeida et al. [18] reported using portable infrared cameras to detect and visualize the
volatile organic compounds (VOC) leakage of four floating production, storage, and offload-
ing facilities of a deep-offshore field in Angola. Moreover, Lyman et al. [19] used both aerial
and ground-based IOGI to detect hydrocarbon emissions of more than three thousand oil
and gas facilities in the Uinta Basin and reported that aerial scanning could observe the
emission of 81% of gas wells, while the ground-based method could reach up to 90%. In
addition, Furry et al. [20] assessed the performance of IOGI by detecting the fugitive gas
leakage of six refineries which had a total of 110,000 components. In their test, they were
able to scan 4500 components per hour on average and detect leakages with a minimum
detection limit of 11 g per hour. They concluded that IOGI had comparable accuracy to
conventional LDAR but was more efficient [21]. Because of its potential advantages in
terms of high efficiency and remote sensing, IOGI has been termed a “smart” LDAR [22].

Despite these successful detection applications, the potential of utilizing IOGI for
emission quantification is only starting to be explored. Some initial registries of related
work have already appeared. For example, the EPA has collected information from various
types of spectral cameras and recorded applications of spectral imagers for measurements
of emission concentrations [23]. Additionally, Fox et al. [24] suggested the utilization of
dispersion models to measure emission rates. More recently, Hagen [25] has summarized
various technologies based on spectral imagers to measure column density, concentration,
and emission rates. However, these reviews mainly focused on the use of spectral imagers
and did not address the use of conventional IR cameras, because of reservations as to
whether IR images can yield quantitative results. This constitutes a substantial shortage.
Furthermore, the data processing methodologies mentioned in these reviews were limited
since they are oblivious to the methods of artificial intelligence.

In this paper, we address the shortages by first analyzing the difficulties impeding
IOGI emission quantification, then pointing to the fundamental fact that the value of
a single pixel signal cannot provide sufficient information to retrieve the quantitative values
of emission, and ultimately collecting, organizing, and analyzing the effective and potential
methods for quantifying emission. In particular, we highlight the power and contribution
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of machine learning algorithms, which broaden substantially the toolbox of IOGI emission
quantification and consequently improve the feasibility of such measurements.

2. Challenges in IOGI Emission Quantification

Using IR cameras to quantify emissions is recognized as a tough task. In [23], EPA
claimed that the “thermal IR camera’s major drawback is its inability to measure the quantity or
concentration of gas present in a gas plume”. Fox et al. [24] stated that “most current OGIs only
present a qualitative (visual) flux estimate”. Hagen [25] also mentioned that “while infrared
cameras have proven useful in detecting leaks, their use in quantifying leaks has only recently been
analyzed, and is the subject of ongoing research”. Even the newest AI-assisted OGI system
developed by FLIR, one of the top infrared camera manufacturers, can only be used for
intelligent gas detection and segmentation [26].

On this condition, EPA recommends using ancillary devices for emission quantification
after OGI detects and locates the emission [27]. Following this idea, Ravikumar et al. [28]
used the emission factor method [29] and the Hi-Flow sampler [30] to calculate the emission
rate. Almeida et al. [18] adopted an infrared gas analyzer to analyze the gas composition
and concentration, Al-hilal et al. [31] utilized flame ionization detectors (FID) or photoion-
ization detectors (PID) for gas concentration measurement, while Gal et al. [32] utilized
multiple devices, i.e., infrared gas analyzer, micro-chromatography, and the accumulation
chamber technique, to quantify gas concentrations and flux. In addition to utilizing sniffer
and ex situ gas analyzers, Englander et al. [33,34] applied laser absorption spectroscopy
(LAS) [15] to quantify column concentration. Furthermore, Lev-On et al. [22] summarized
all these OGI-assisted quantification methods into five categories, i.e., the average expected,
leak/no leak, random sample screening, periodic screening, and high leaker sniffing.

Figure 1 shows the simple three-layer radiative transfer modeling for IR imaging [35].
The radiation sensed by the camera is the integrated emission from three layers: back-
ground, gas cloud, and foreground. Part of the radiation is also absorbed when crossing
these three layers. To simplify the analysis, scattering and reflection are ignored.
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Suppose each layer is homogenous, absorbs some radiation from the prior layer, and
emits radiation as well. The radiation intensity at the exit of each layer can be expressed
as follows:

Iv,o = Iv,e + Iv,t (1)

where I is the radiative intensity (W/
(
m2·sr

)
), the subscripts v, o, e and t represent the

frequency of the light wave, the output of the layer, emission of the layer, and transmission
of the layer, respectively.

According to the Beer–Lambert law, transmissivity can be expressed as:

tv = exp(−kvl) (2)
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where t is the transmissivity, kv is the absorption coefficient (cm−1), and l is the light path
length of the layer (cm). Meanwhile, the sum of transmissivity and absorptivity is 1 when
scattering and reflection are neglectable, that is:

tv + αv = 1 (3)

where αv is the absorptivity. Supposing all three layers are in thermal equilibrium, and
following Kirchhoff’s law of thermal radiation that emissivity equals absorptivity, we
substitute Equations (2) and (3) into Equation (1):

Iv,o = [1− exp(−kvl)]Iv,B + Iv,i exp(−kvl) (4)

where Iv,B is the black body radiation, Iv,i is the radiation intensity at the incident surface
of the layer. Blackbody radiation can be modeled by Plank’s law as:

Iv.B =
2hv3

c2
[
exp

(
hv

kBT

)
− 1
] (5)

where h is the Plank constant, kB is the Boltzmann constant, c is the light speed, and T is the
temperature. Then, the absorption coefficient, kv, of gas species j could be calculated from:

kv,j = sv,j(T)φv(T, P)
PXj

kBT
. (6)

where s is the line intensity per molecule (cm−1/
(
molecule·cm−2)), which is a function of

temperature, φv is the line shape function [36] (cm−1), which is a function of both pressure
and temperature, P is the local pressure (Pa), and X is a mole fraction. The total absorption
coefficient can be simplified as the sum of the absorption coefficients of each species:

kv = ∑ kv,j. (7)

In practice, a bandpass filter is used to select the target gas species, so Equation (7) can
be simplified as follows:

kv = kv,t (8)

where subscript t represents the target gas, therefore, combining Equations (4)–(8),
Equation (4) can be rewritten as:

Iv,o = f (P, T, Xtl, Iv,i) (9)

The mole fraction Xt is coupled with the light path length l. Using the ideal gas
equation of the state, Xtl, can be transformed as the product of concentration Ct and light
path length l, which is called column density [25,37] and can be expressed as follows:

CLt = Mt
PXt

kBT
l = Ctl (10)

where CLt, Mt and Ct are the column density, molecular mass, and concentration of target
gas, respectively. The final intensity at each pixel is a function of the camera characteristics
and double integration of the camera incident intensity at all wavelengths of the band and
the covered surface of the pixel, i.e.,

Ip = f (
x

Iv,cdvdA, D) (11)

where Ip is the pixel value, f symbolizes a functional relationship, Iv,c is the camera incident
light strength at the wavelength inside the filtered waveband, dA is a finite element of the
surface that a pixel covers, and D represents the camera characteristics of transforming
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radiation into pixel charge and includes chip-sensing efficiency, transforming efficiency,
and noise characteristics.

In most cases, pressure can be supposed to be constant along the optical path. After
accumulating the transmission and absorption of three layers, the pixel value can be
represented as follows:

Ip = f
(

Rb, CLg, CL f , Tf , Tg, D, ε
)

(12)

where Rb is the background radiation, CLg and CL f are the column densities of the target
gas substance in gas cloud and foreground, respectively, Tf and Tg are the temperatures of
the gas cloud and foreground, respectively, D is the device characteristics, and ε is the noise
that comes from the environment and devices, such as wind effect, scattering, etc., which can
be neglected and regarded as measurement uncertainty. Parameters Rb, CL f , Tf , D and ε
can be summarized as environmental factor εe as they are controlled by the environment
and measurement devices and are in general considered constant for the experimental
condition. Thus, for a given imager, Equation (12) can be simplified and rewritten as:

Ip = f
(
CLg, Tg, εe

)
(13)

Consequently, column density is the function of Ip, Tg, εe, that is:

CLg = f
(

Ip, Tg, εe
)

(14)

Equations (13) and (14) reveal two important insights. First, from the pixel value of an
IR image, we cannot decouple the concentration and light path length—they are represented
by column density. Second, the fundamental quantitative parameter, column density, is
a function of three parameters, i.e., pixel value, gas temperature, and environmental
factors (Rb, CL f , Tf , D and ε). Therefore, a single pixel value is not sufficient to retrieve
column density.

3. Column Density Quantification

Since extracting column density from a single pixel is impossible because the pixel
value is also affected by the temperature of the gas cloud and the environmental factor εe,
as we have just shown, additional information is needed in order to extract quantitative
information. Depending on what kind of information is added, existing column density
quantification methods can be divided into two classes, i.e., elimination and augmentation.

In the elimination method, the idea is to eliminate the influence of temperature and
environmental factors so that the relationship between column density and pixel value can
be fixed, that is,

CLg = f
(

Ip
)
; Given information about Tg and εe (15)

The concept of the augmentation method is to add spectral information to each pixel,
that is, spectral imaging, a combination of spectroscopy and imaging, so that the image
conveys temperature information as well, in a latent way. The problem then transforms to
column density quantification from the spectral information at each pixel, i.e.,

CLg, Tg = f (SP(v), εe), v ∈ Bg; (16)

where v is the frequency, Bg is the characteristic band for the target gas, and SP is the
spectrum obtained at a given pixel, which is a wavenumber function.

3.1. Elimination Methods

The most straightforward idea of the elimination method is controlling all environ-
mental factors and gas cloud temperatures, as suggested by Benson et al. [38]. Therefore,
a method was proposed, whereby background temperature was controlled as constant and
the gas cloud temperature was measured independently so that the recorded signal at each
pixel depended on column density. This method was initially designed to calibrate the min-
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imum detectable concentration of IR cameras with a known light path length. However, for
emission quantification purposes, the method was heavily constrained because controlling
the background characteristics proved unrealistic.

Zeng et al. [39,40] used differential pixel values instead of absolute pixel values,
defined as:

Idi f = Ig − Ie (17)

where Idi f , Ig, and Ie are the differential pixel value, pixel value of the gas cloud, and
the pixel value of the environment, respectively. This differential operation is similar to
the background subtraction method. With this method, the influence of environmental
factors can be filtered out partially, so that Idi f is only dependent on the column density
and the temperature difference between the environment and the plume. If we know
the temperature difference, the column density can be retrieved. Compared to Benson’s
method [38], knowledge of the temperature contrast is a much looser condition since there
is no need to control both background and gas cloud temperatures. Therefore, Zeng’s
method is more generalized and convenient to use.

Apart from using image processing to remove the influence of the background, gas-
correlation imaging [41] can also achieve the same outcomes through a suitable choice
of hardware settings. In short, the main principle of the gas-correlation method is image
subtraction. Two emission images are generated simultaneously through one gas filter
(correlation filter) and one transparent filter (reference filter). This function can be realized
by either a split pupil or two separate cameras, as shown in Figure 2. The gas filter is
constructed as a cylinder filled with the pure target gas that absorbs the transmission at
the exact absorption waveband of the target gas in the gas cloud. Thus, the subtraction
of these two images reflects the transmission or radiation of the target gas when the
background temperature is much higher than the temperature of the target gas and vice
versa, respectively.
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Figure 2. Typical setting of the gas-correlation method: (a) using two cameras to realize gas correlation
Reprinted with permission from Ref. [42], Copyright 2018, Optica Publishing Group; (b) using a split
pupil to realize gas correlation Reprinted with permission from Ref. [43], Copyright 2020, Optica
Publishing Group.

Based on the technology of gas-correlation imaging, several column density quantifi-
cation methods have been developed. In the work of Sandsten et al. [43,44], integrated
transmittance is first calculated. Similar to Zeng’s method [39], the column density can
be retrieved from the integrated transmittance when the temperature contrast between
the environment and the gas cloud is known. An example of this kind of relation table
is shown in Figure 3. Through this method, Sandsten et al. reached a detection limit of
Ammonia to 200 ppm ×m under a temperature contrast between background and gas that
was equal to 18 K.
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Publishing Group.

Instead of using an absolute differential pixel value after gas-correlation imaging,
Wu et al. [42] utilized the relative differential pixel value, which was termed normalized
correlation and defined as:

Ire =
I f ilt − Ire f

Ire f
(18)

where, Ire, I f ilt and Ire f are the relative differential pixel value, pixel value in the gas-filtered
image, and pixel value at the same position in the reference image, respectively. For CO
quantification, it was established that Ire was not sensitive to temperature in the 300–400 K
range at the waveband around 4.3 µm (Figure 4), so the column density was only dependent
on Ire. According to a delicate selection of filters and cameras, the detection limit of the
method reached 20 ppm×m. However, this temperature insensitivity interval of 300–400 K
is not suitable in several applications, including quantifying the emission of gas turbines,
which may have an exhaust temperature of 800–900 K [45]. Meanwhile, the temperature
insensitivity intervals of species such as CO2 and NO2 (if they exist) are different from the
one of CO, thus the quantification of these species needs further exploration.
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Figure 4. The temperature insensitivity of CO normalized correlation in the range of 300–400 K [42].
Reprinted with permission from Ref. [42], Copyright 2018, Optica Publishing Group.

A comparison between several elimination methods in terms of their advantages and
constraints is given in Table 2, in which we listed the necessary inputs, advantages, and
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constraints of these methods. The molecules tested in the original studies are also listed in
the table, but as universal methods, these methods can be applied to many other molecules.
Though Benson’s method is most straightforward, its application is highly limited, be-
cause three inputs are needed for a single column density measurement. The methods of
Zeng et al. [39] and Sandsten et al. [43,44] only need two inputs by using the temperature
contrast, instead of the exact temperatures of the gas cloud and the background, which
makes them more practical. Wu et al. [42] removed the need for temperature input by utiliz-
ing temperature-insensitive intervals of specific species. This process decreases the amount
of input, but this happens at the expense of adding more application constraints, such as
being applicable to specific species, and only in narrow temperature-insensitive intervals.

Table 2. Comparison between elimination methods.

Author Molecule Inputs Advantages Constraints

Benson et al. [38] Methane

Background
temperature;
Gas temperature;
Pixel value

Simple and
straightforward

Need to
control all
environmental
factors and the
temperature of
the gas cloud
to create an
exclusive
mapping
between pixel
value and
column density

Zeng et al.
[39,40]

Hydrocarbon
compound

(e.g., ethylene
or benzene)

temperature
contrast;
Differential
pixel value

No need to
control both
temperatures
of background
and gas cloud

Temperature
information
(temperature
difference) is
still needed

Sandsten et al.
[43,44] Ammonia

Temperature
contrast;
Effective
transmittance

No need to
control both
temperatures of
background and
gas cloud

Temperature
information
(temperature
difference) is
still needed

Wu et al. [42] Carbon
monoxide

Relative
differential
pixel value

Column density
can be obtained
without
knowing
temperature

Narrow,
temperature-
insensitive
interval for
specific species
impedes the
generalization
of the method.

3.2. Augmentation Methods

As we mentioned earlier, the idea of augmentation is to add spectral information
at each pixel by using spectral imaging. Quantification of species and temperature from
spectra has been extensively researched [15,46,47]. A major difficulty lies in the fact that IR
activity of the gases overlaps in a complicated way with black-body radiation, which makes
simplified approaches, such as two-color methods unsuitable for such measurements [48,49].
There are two technologies that can handle this complicated superposition, namely, inverse
modeling and, more recently, machine learning.

3.2.1. Inverse Modelling

Inverse modeling uses simulated spectra generated by radiative transfer models to
approximate the experimental spectrum in order to solve for both temperature and column
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density and, therefore, concentration, if the light path length is known. The procedures
of inverse modeling can be divided into two steps. The first step is forward modelling,
that is, building a radiative transfer model, which aims to simulate spectra as a function of
both temperature and column densities of gas species, which are called spectrum control
parameters θ. Moreover, the influence of environmental conditions should also be modeled
and included in the forward modeling process. The second step is inverse modeling by
iterating or directly solving for θ, based on the measured spectrum.

For forward modeling, the realization of high-fidelity synthetic spectra requires ra-
diative transfer modeling that accounts for multiple environmental factors, such as at-
mospheric attenuation [50] and measuring instrument function [51]. However, in some
conditions, the simple one-layer radiative transfer model which merely considers the emis-
sion of the gas cloud can obtain good agreement with the measured spectra [52]. In fact,
the modeling complexity depends on the conditions of the particular application condition.
Before using the forward model to approximate the measured spectrum, a background-
subtraction operation is usually necessary in order to “clean” the measured spectrum.
Commonly, such methods include the pixel-based method [52], where the pixel values of
the background are subtracted from the emission pixels, as well as principal component
analysis (PCA)-based methods [53,54]. PCA is used in order to get global background
features of reduced dimensionality that can then be subtracted from the acquired images.

The inverse modeling step can be pursued with several tools, e.g., maximum likeli-
hood estimation [55] from a statistical perspective, least-squares-based regression [54,56],
and Levenberg–Marquardt optimization [57]. Table 3 provides a comparative presentation
of these methods. Both maximum likelihood estimation and least-squares-based regression
need sophisticated considerations in model formulation, since maximum likelihood esti-
mation is a statistics-based algorithm, which requires the design of a model with a target
metric reflecting the posterior probability P(θ|SP) . The solution of maximum likelihood
estimation is aimed at finding the θ which has the highest posterior probability. Least-
squares-based regression needs to construct a linear relationship between θ or its variants
and the spectrum. Levenberg–Marquardt, on the other hand, only needs the design of a loss
function that embodies the difference between the synthetic spectrum and the measured
one in order to guide the optimization process.

To some extent, the probability used in maximum likelihood estimation is also a sort
of loss function, therefore, both maximum likelihood estimation and Levenberg–Marquardt
optimization are iterative techniques, and, consequently, they also need the definitions of
initial values, learning rate, and some regularization weights in the loss function [58]. On
most practical occasions, these methods take a long time to converge, and thus, the manual
parameter setting is often performed, which can have a detrimental effect on the model
performance [58]. Least-square-based regression is a single-step approach and does not
require a manual setting of parameters, however, it poses the challenge of transforming the
nonlinear relationship between the spectrum control parameters and the spectrum itself
into a linear relationship with reasonable simplifications and transformations, so that the
solution can be established.

Further from estimating the average temperature or concentration along the light path,
reconstructing the spatial distribution along the light path is a more ambitious objective
and has been extensively discussed [58–60]. One way is to assume that the light path dis-
tribution of temperature and concentration along the light path follows an approximately
known functional form, such as a Gaussian distribution of concentration and temperature as
a function of the radial component in a jet flame [59]. Similar ideas have also been used in
extracting quantitative information from laser-absorption spectra. As shown in Figure 5,
various types of profiles, such as two-T [61,62], parabolic [63], two-peak Gaussian [64], etc.,
have also been used. However, the choice of a distribution function requires prior knowl-
edge about the result of the measurement, which may be unavailable in some cases. In
other cases, a priori knowledge of the functional form of the solution can be replaced by
a more loose assumption, e.g., continuity of the distribution [58,60], which can be used as
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a regularization term in the loss function. The solution is then found by iterating on the
species distribution [65,66] in order to minimize the combined loss function.

Table 3. Comparison between different inverse modeling methods.

Method Inverse Modeling Process Advantages Constraints

Maximum
likelihood estimation

Determine the spectrum
control parameter vector θ
(temperature and column
density) that results to the
largest posterior
probability P(θ|SP)

Statistical assessment,
such as confidence

Need to construct reasonable
formulas to represent
probability; this is an iterative
process and potentially
time-consuming; initial values,
learning rate, etc. need
to be set manually

Least-squares regression

Formulate a linear explicit
model of spectrum control
parameter vectors θ, so that θ
can be directly retrieved by
linear fitting

One-step process,
easy to converge

Because of the nonlinear
intrinsic properties between
spectrum control parameters
and spectrum, the design of a
linear explicit model may
require considerable
development and expertise

Levenberg–Marquardt
optimization

Construct a loss function to
represent the difference
between synthetic spectrum
and experimental spectrum,
minimize the loss function by
updating the spectrum control
parameter vectors θ

It is straightforward enough
to be applied to all kinds of
models so long as a loss
function can be constructed

Also, an iterative
approach, and potentially
time-consuming; initial values,
weights of the various terms
of the loss function, learning
rate, etc. need to
be set manually
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3.2.2. Machine-Learning-Based Methods

Machine learning can waive the need for complex modeling, manual setting of pa-
rameters (e.g., initial values and weights of loss function), and domain knowledge. It can
retrieve temperature and column density (or concentration) directly from spectral data.
Ouyang et al. [67] applied Extreme Learning Machine (ELM) [68], Multilayer Perceptron
(MLP) [69] to quantify all NOx concentrations from the absorption spectra of automotive
emissions. Due to the high dimensionality of the data, they first used PCA or a conven-
tional autoencoder [70] to extract features from the spectra, and then fed these features to
the ELM or MLP. The best performance was achieved by the deep ELM algorithm—the
estimation Root Mean Square Errors (RMSE) for N2O, NO2, and NO were 1.45, 12.72, and
24.94 ppm, respectively.

In addition to quantifying average values along the light path, Ren et al. [64] quantified
the spatial distribution of species along the light path from flame radiation spectra. The
method is shown in Figure 6. Synthetic spectra of mixtures of CO, CO2, and H2O were fed
to MLP directly without any preprocessing and the spatial distributions of CO, CO2, and
H2O were used as labels to train the model. The performance of the model was excellent,
and by using the waveband of 1800–2500 cm−1, the Prediction RMSEs of mole fraction of
CO, CO2, and H2O were less than 0.07, 0.06, and 0.04, respectively.
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Although the studies above have demonstrated excellent performance and the ca-
pability of machine learning models to produce quantitative species measurements, the
exploration of diverse machine-learning tools is missing from this field. Methods such
as Support Vector Regression (SVR) [71], decision trees [72], radial basis function net-
works, [73], and the currently popular deep learning algorithms of Convolutional Neural
Networks (CNN) [74], as well as transformers [75,76] for species and temperature measure-
ments, have not as yet found wide application. Moreover, feature engineering [77], which
is an inevitable prerequisite for applying conventional machine learning algorithms, has
not yet been systematically explored. As we will see below, the application of machine
learning in this field is still nascent and there are major challenges and opportunities. From
our review, we have come to the conclusion that the potential of machine learning for
extracting quantitative species and temperature information from IR data is substantial.

3.2.3. Hardware Limitations

The hardware of spectral imaging data collection has an influence on spectral imag-
ing quality, which consequently affects quantification performance. In general, spectral
imagers can be categorized as spatial-scanning imagers, spectral-scanning imagers, and
non-scanning imagers.

Spatial-scanning imagers use “whiskbroom” or “push-broom” scanning to acquire
a whole spectrum from a point or a line and then generate the spectral image by scanning
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the whole field of view [78]. Different technologies have been developed for spectral-
scanning devices. Filtered cameras use the intuitive method of changing filters for data
collection in several spectral bands [79]; Image Multi-spectral Imaging (IMSS) realizes
spectral imaging by coupling optical dispersion and moveable detectors [80]; Fourier
transform infrared imaging [81] can also be classified as a spectral-scanning imager [82].
A serious issue with scanning devices is that scanning can take from several seconds to
30 min in order to capture a spectral image of a gaseous IR emission [35], which makes
the application of the technique very problematic in intensely unsteady flows. In lab-scale
experiments, the problem is tackled using laser excitation and performing instantaneous,
spatially resolved fluorescence or Raman spectroscopy [15,83].

Non-scanning imagers, also called snapshot cameras [25], can generate spectral im-
ages without scanning. A comparison of the imaging mechanism between scanning im-
agers and snapshot cameras is shown in Figure 7. A spectral image has three dimen-
sions, i.e., two spatial dimensions, x and y, and a spectral dimension, λ. So spatial scanning
imagers (whiskbroom spectrometers or pushbroom spectrometers) capture a vector or
a matrix of spectral dimensions with or without one spatial dimension from one imaging,
so several shots (scans) are needed to cover the whole cube and generate a complete spectral
image. Spectral-scanning devices capture the 2D spatial domain but need to scan spectral
dimensions in order to generate a complete spectral image. A snapshot camera can capture
the whole 3D space in one shot. Because the snapshot does not need scanning, it can reach
video rates [84]. This speed advantage is vital for high dynamical flow analysis. Although
blurs may exist in snapshot images for dynamical scenes, they are easier to process than
motion artifacts [84]. The main disadvantages of snapshot cameras are complex optical
architecture, heavy computations for image reconstruction, and, of course, higher cost [85].
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3.3. A Comparison of Elimination and Augmentation Methods

The overview of elimination and augmentation methods points to the following
limitations of elimination:

1. The need to generate lookup tables or fitting functions from calibrating massive
combinations of temperature information, pixel values, and column density, which
is time-consuming.

2. The requirement for prior knowledge of temperature from ancillary devices, which
raises the question of why not directly use ancillary devices instead of IOGI in order
to quantify the emissions, such as all kinds of laser diagnostics.

3. Acquisition of ancillary information requires access to the emission sites, which
cancels the remote sensing advantage of IOGI.

4. Since the infrared image captures black-body and rotational/vibrational emission
from all molecules in the utilized bandwidth, in order to measure the column density
of a specific molecule, a particular narrow-bandpass filter is necessary. The conse-
quence is the elimination method cannot quantify several molecules simultaneously.



Energies 2022, 15, 3304 13 of 32

On the contrary, because of the previous knowledge of spectral information, the
augmentation method can avoid this weakness, as shown in Ren et al. [64].

It is probably for these reasons that spectral imaging is gaining momentum as an effec-
tive tool for emission quantification. The gas cloud imager, a snapshot camera developed
by Rebellion Photonics, has been funded and recognized as one of the next-generation
measurement devices by the U.S. government [86]. Coupled with machine learning, it
shows excellent ability in leakage detection, location, and quantification [87]. Spectral
imaging has also been used to provide the quantification baseline for the Alberta Methane
Field Challenge of 2019 [88]. Besides, successful applications in the quantification of gas
leakage [89], flame [90], and engine exhaust [91], prove the quantification feasibility and
reliability of spectral imaging. Of course, the hardware needed for augmentation methods
based on spectral imagers is much more costly than IR cameras, which makes ultimately
the choice between the use of elimination and augmentation approach, one that relies on
a cost-benefit analysis in the context of the particular application.

It is worth noting at this stage that there are various means where ordinary IR cameras
can be modified to act as spectral imagers. One intuitive way is to use a filter wheel in
order to select bandpass filters in sequence [92], thus effectively converting the IR camera
into a filter camera [79] with the simple mechanism of Figure 8. Fast-changing filter wheels
are available on the market, but a typical changing frequency is only about 17 frames
per second (fps) [93]. Unusual filter shapes based on Archimedean spirals have been
developed in order to improve frequency, but the improvement is limited [94]. Similar
to other spectral-scanning devices, this handcrafted spectral imager is not suitable for
intensely unsteady flow.
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Generating multiple images at the camera aperture and deploying filters in order to
generate multiple images on the camera chip has also been attempted. In such
a configuration, the filters are arranged in a plane and generate sub-images as shown
in Figure 9 [96]. Beam splitters divide the incident light, and four optical filters generate
images at different wavebands. This design can be categorized as a kind of snapshot
camera [82]. The main problems are low light efficiency and low resolution; the more
filters used, the more serious these problems could be, so balancing spectral resolution and
spatial resolution is the core problem. In particular, for IR, identifying a sufficient number
of commercial filters to split into the wavebands of interest for the measurement of specific
emissions may also be difficult.

Using dispersing elements instead of filters is also a possibility. In their work,
Yang et al. [97] and Olbrycht et al. [98] proposed a similar method to spatialize the spec-
trum into images. In [97], a linear variable filter (LVF) was designed, which contained
two distributed Bragg reflectors (DBR) with a wedge between them. The DBR was com-
posed of stacks of high and low reflective index layers. As a result, the thickness of the
resonance air cavity changed continuously along one direction of the device. Consequently,
the transmission wavelength varied linearly across the LVF. Thus, the image pixel along
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the LVF direction contains spectral information. Figure 10 shows the structure of LVF and
images generated after dispersion by LVF. Clearly, the images of C2H2 and CH4 have totally
different intensity distributions, which reflects their spectral characteristics. However, we
can also see some flow patterns mixed with these spectrum signals, and it is hard to isolate
between the two, which limits the application of the method to only homogenous gases.
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4. Concentration Quantification

According to the definition of column density, concentration can be decoupled from
the column density estimated with the methods discussed in Section 3 once the light path
length is known. In other words, coupling gas cloud geometry information with column
density can provide a pixel-level concentration measurement. Those techniques where
the emphasis is to acquire light-path length are categorized as geometry acquisition-based
methods. On the other hand, machine learning algorithms can be used in order to estimate
concentration from images captured from a designated object, such as a burner or a flare.
Using machine learning, light path information can be acquired implicitly rather than
explicitly as in geometry-acquisition-based methods, since the 2D information (images) of
the gas cloud also conveys the 3D geometry of the gas cloud for a given object. Indeed,
machine learning methods can learn inverse projection mapping, thus granting access to
3D information. Methods using machine learning algorithms to estimate the emission
concentration of a given object directly from 2D images are categorized as machine-learning-
based methods.

4.1. Geometry Acquisition-Based Methods

At the first level of simplicity, the geometry of the emitted plumes can be very ac-
curately known in the vicinity of emission nozzles. Gross et al. [52] applied this idea to
emission measurements from an industrial smoke flare, where the smoke-cloud size was
approximated as the size of the cylinder exhaust. From the column density of the gas cloud
just above the exhaust nozzle, the concentration was calculated. Although the idea was
simple, the performance was acceptable: the volume fractions of CO2 and SO2 measured
by this method were 8.6 ± 0.4% and 320 ± 23 ppmv, respectively, which were close to the
in-situ measurement of 9.40 ± 0.03% and 383 ± 2 ppmv.
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The precondition for the application of this method is that the geometrical information
of the exhaust nozzle is known or calculated in advance. However, in many practical
applications, it is hard to access this kind of data, for example, in the case of on-road vehicle
emission monitoring. Obviously, the method can only estimate the concentration at the
location of the emission nozzle, but it is incapable of estimating the far-field geometry
of the plume, which is basically determined by the flow field; consequently, we cannot
retrieve concentration far from the nozzle due to the lack of knowledge of the geometry of
the plume.

A more advanced technique is 3D reconstruction. There are two kinds of technologies
that have already been applied for gas cloud reconstruction, i.e., stereovision and tomo-
graphic reconstruction. In stereovision, two cameras are needed in order to formulate
a stereo camera. The gas cloud is imaged from two viewpoints. Then, the data is processed
in a manner that can be outlined as follows. First, a geometrical model is constructed that
transforms the location of the same point between two images. Second, feature points are
located and matched. Usually, the feature points are corner points that can be selected
by algorithms such as the SUSAN corner detector [99] or the Harris detector [100]. Then,
using a combination of correlation-based and feature-based algorithms, the feature points
are matched in the images from two different viewpoints. Third, a 3D surface is recon-
structed. From the disparity information at the location of feature points in the images of the
two views, the 3D spatial position of the feature points can be calculated, and the surface of
the gas cloud can be interpolated.

Stereo-vision has been applied to the 3D reconstruction of both emission plumes [101]
and fire fronts [100,102]. The reconstruction of a fire front is shown in Figure 11. With the
light-path length estimated from the reconstructed 3D geometry, the average concentration
along the line of sight can be calculated if the column density is known through the methods
outlined above.
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In addition to stereo vision, monocular vision and multi-view have also been widely
developed in computer vision research to realize 3D reconstruction [103]. In fact, using
machine learning, especially deep learning, is becoming mainstream nowadays [104]. Since
machine learning methods do not need complex 3D modeling, which requires substantial
domain knowledge, convenient end-to-end networks, and data collection to liberate engi-
neers while assuring good performance [104]. To some extent, stereo vision and related
work is a kind of “surface” reconstruction method, since they usually suppose the object
is opaque and the observed light comes from emission or reflection off the surface of
the object. Although this assumption is not strictly correct for emission clouds, it does
not hinder using these methods for 3D surface reconstruction, with the understanding,
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of course, that information inside the gas cloud, e.g., the distribution of species, cannot
be retrieved.

Tomography, on the other hand, can reconstruct the surface and internal distribution
of the gas cloud. Conventional tomography methods include single-step methods such
as filtered back-projection [105] and iterative methods such as algebraic reconstruction
technology (ART) [106]. A detailed review of conventional tomography reconstruction
methods in energy applications has been reported in [107]. As for studies using IR imaging
technologies, both Donato et al. [108] and Watremez et al. [109] used infrared spectral
imaging and were able to reconstruct SO2 volume cloud [98] and 3D methane concentration
distributions [99]. Tancin et al. [110] used IR Laser Absorption Imaging (LAI) in order
to reconstruct the CO mole fraction in a flame. Because the flame was assumed to be
axisymmetric, a single image was sufficient for reconstruction. Conventional tomography
methods have the shortcoming that they may need massive reconstruction computations
that involve solving large-scale super-rank-deficient inversion problems [111]. In the case
of iterative algorithms, these are computation-intensive and time-consuming, especially
when massive numbers of images are utilized in order to generate projections.

Machine-learning-based reconstruction algorithms can address the shortcomings of
conventional methods and have been applied to tomographic reconstruction from laser
absorption spectroscopy and visual images. The algorithms developed in these applications
can be adapted to the IR-based tomographic reconstruction [112–119]. Published works
use supervised learning algorithms, which need previously reconstructed 3D geometries as
ground truth data. In these studies, summarized in Table 4, images or spectra from multiple
views are used as model inputs and reconstructed 3D parameter distributions inside the
gas cloud are used as the targets. The pairs of inputs and targets are fed to a machine
learning model, then the model is trained by minimizing a loss function that measures the
difference between the 3D structures generated by the model and targets.

Table 4. Machine-learning-based tomography reconstruction of flames.

Author Methodology Input Target

Cai et al. [112] CNN+
Super SloMo

2D low FPS
visual video

3D kHz visual
video of flames

Huang et al. [113,114] CNN Visual image 3D flame structure

Deng et al. [115] DBN
RNN

Nonlinear
Tomographic
Absorption

spectroscopy

Section distribution
of temperature and
mole concentration

Huang et al. [116,117] CNN

Nonlinear
Tomographic
Absorption

spectroscopy

Section distribution
of temperature

Huang et al. [118] CNN+RNN Visual image Prediction of
flame 3D structure

Wei et al. [119] CNN
Pixel layers

of infrared laser
absorption image

Section distribution
of Methane

As shown in Table 4, individual methodologies may differ. Most studies adopted
machine learning algorithms based on Convolutional Neural Networks (CNN), which can
extract features from high-dimensional data automatically, thus decreasing the computation
cost and time. In a CNN, images from multiple views can be used directly instead of being
decomposed into pixel layers as in conventional tomography methods. Moreover, methods
such as Recurrent Neural Networks (RNN) [120], which process sequence data, and Deep
Belief Networks (DBN) [121], which can extract features in an unsupervised way, have been
used. Furthermore, the introduction of machine learning also provides extra functionalities
aside from reconstruction. For instance, Cai et al. [112] added the Super SloMo model [122]
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to their CNN model, which helped interpolate low-fps reconstructions into high-fps video.
The interpolation performance is shown in Figure 12, in which the first row is the targets,
original 3D cubes of flame, and the second row is the predictions by SloMo model. It
can be observed that the interpolated reconstructions are visually identical to the targets.
Huang et al. [118] added a Long-Short-Time Memory (LSTM) model, a type of recurrent
network, to their CNN architecture, so that the integrated model can predict the 3D
dynamics of flames. As shown in Figure 13, the first row shows the ground truth images
at different times, reconstructed from the experimental images, while the second row is
the predicted dynamical behavior by the model. It is shown that the predicted images are
similar to the ground-truth ones.
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Figure 13. The application of coupling CNN with RNN on predicting flame dynamics. Panels
(a–c) show the ground-truth flames at three different times during the phenomenon, whereas panels
(d–f) show the corresponding result of the model proposed in [118]. Reprinted with permission from
Ref. [118], Copyright 2019, Cambridge University Press.

Machine learning methods rely on data, which implies a requirement for a substantial
amount of data, i.e., input and output pairs, to produce a model capable of producing
high-quality reconstructions. However, it is very difficult to acquire 3D experimental data,
and thus, the most feasible way to obtain target data is by utilizing conventional methods
to realize reconstruction first, which, in turn, implies a long data preparation time. With
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this “data expense” in advance, once the machine learning model is tuned well, it offers
substantial advantages in reconstruction speed compared to conventional methods. It
should also be emphasized that since the output training data needed in the training of
machine learning methods are often produced by conventional methods, the quality of
the resulting machine learning models cannot exceed that of the conventional methods.
Alternatively, new methods to produce training targets, or approaches that require a smaller
number of training data, or even no training data, e.g., unsupervised or self-supervised
learning, should be developed.

4.2. Machine-Learning-Based Methods

For an object of defined geometry, one can assume that each 2D projection of the 3D
object on a particular plane is unique. Thus, it is possible for a data-driven model to learn the
relationship between 2D projections and 3D structure, and subsequently, determine 3D structures
from recorded projections, ultimately leading to the estimation of concentration directly from
a single image. These kinds of methods are termed machine-learning-based methods.

As we mentioned earlier, merely one pixel does not provide sufficient information for
emission quantification. Thus, ancillary information of temperature or spectral information
is needed. In the context of this approach, the additional information is spatial distribution, i.e., the
IR image. For the methods considered here, it is important that reference must be made to
a particular object because different objects may generate similar patterns for substantially
different concentration distributions. Also, patterns generated by a different object may
exceed the domain of validity of the model trained on the given dataset.

To avoid these problems, machine-learning-based methods are usually trained and
deployed on a given object, which can be represented as the equation:

Co = fo(TSO); (19)

where C is the concentration, f is the inference function, i.e., the machine learning model,
and TS is the tensor, which represents a set of images or image stacks. The subscript o
represents the given object.

This kind of machine-learning-based method has been applied to many image-based
representations of flames, such as visual images or radical chemiluminescence images
obtained with certain filters [123–130]. Although similar work has not been reported with
IR images, the machine-learning-based methods and ideas developed in [123–130] can be
readily extended to IOGI. Table 5 summarizes the related work, where classical machine
learning models are very popular, and various algorithms have been adopted, such as
Gaussian Process Regression (GPR) [131], Radial Basis Function Network (RBFN), SVR, and
MLP. To assure good performance of these machine learning algorithms, feature engineering
is necessary, which decreases the input dimensionality and selects the most interesting
features. Feature engineering methods may include extraction of statistical features such
as the values of higher-order moments, Principal Component Analysis (PCA) [132], and
unsupervised learning models, e.g., DBN.

Using CNNs can waive the process of feature engineering since features are ex-
tracted automatically and embedded into the concentration estimation. For instance,
Rodríguez et al. [123] used the U-Net [133], a fully convolutional network to estimate the
2D distribution of soot concentration. As shown in Figure 14, the whole network uses
an encoder–decoder architecture that is full of convolution layers but without any dense
layers. The whole work was in end-to-end style with the input and output being images.
Usually, in such concentration quantification applications, target data (i.e., the ground truth
of concentrations) are collected through chemical analysis. The concentration data obtained
in this way are typically averages, rather than the spatially resolved concentration data
for the whole emission cloud, i.e., scalars instead of matrices. This can then support the
learning by networks with a single output so that they predict average concentration. The
success of [123] in retrieving the 2D distribution of soot comes from the fact that simulated
soot 2D distributions were used as labels, thus, every single visual image had an output
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target matrix of the same size as the original visual image to map to. U-net, which has the
same size of input and output, is appropriate for this case.

Table 5. Machine-learning-based methods for concentration quantification.

Authors Input Format Feature
Extraction Methodology Target

Chen et al. [124] Flame
visual images PCA GPR O2

concentration

Li et al. [125] Flame
radical images

Non-negative
matrix

factorization
and texture

analysis

Fast sparse
regression

NOx
concentration

Li et al. [126] Flame
radical images

Zernike
moments

RBFN
SVR

NOx
concentration

Liu et al. [127] Flame
visual images DBN SVR O2

concentration

Ögren et al. [128]
Flame

visual images
Statistical
features GPR, MLP

H2, CO, CO2
and CH4

concentration

Golgiyaz et al. [129] Flame
visual images

Statistical
features MLP

Temperature,
SO2, O2, NOx,
CO2 and CO
concentration

González-
Espinosa et al. [130]

Flame
radical images Mean MLP NOx

concentration

Rodríguez et al. [123]
Flame

visual images
(simulated)

- U-Net
Soot 2D

concentration
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The main drawback of these machine-learning-based methods is a poor generaliza-
tion. The resulting models are only applicable to a given object and they may be entirely
inappropriate for other objects. To tackle this, data collection, labeling, and training need
to be carried out repeatedly for application to a new object, which increases the cost of
utilizing the methods. Even for an object that has been “learnt”, the model still needs to be
updated since the object characteristics may change with time. For example, deterioration
of a gas-turbine combustor happens all the time due to erosion, carbon deposition, or
deformation. So far, there has been no work reported on adaptive prediction using these
models, which makes this a promising direction for future research. Research in using
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transfer learning [134], meta-learning [135], and lifelong learning [136] may be offered as
solutions to tackle such generalization issues.

5. Emission Rate Quantification

In addition to concentration, the actual mass flow rate of emissions is also a technically
very relevant quantity. The methods to estimate emission rate can be roughly divided
into two categories: (i) propagation-speed-based method and (ii) minimum-detectable-
concentration-based method. If the concentration is known via the methods that we have
described in previous sections, the missing information in order to determine mass flow rate
is propagation speed, which is the focus of propagation-speed-based methods. However,
there are also technologies, the emphasis of which is on the use of the minimum detectable
concentration in order to replace the active measurement of column density/concentration,
and this parameter is further used to estimate the emission rate. These technologies are
categorized as minimum-detectable-concentration-based methods here.

5.1. Propagation-Speed-Based Method

The simplest way to obtain information about the emission propagation speed is to
assume emission propagation speed can be approximated by the local wind speed [137],
an assumption which is weak, given the strong diffusion in the gaseous phase, but it is
to some extent acceptable when the gas cloud measured is far from the point of leakage,
as shown in Figure 15. Using this assumption, Watremez et al. [109] developed a method
coupling 3D reconstruction with wind speed. In their work, they assumed that the emission
rate was constant and considered the gas cloud between two planes (labeled as P1 and P2
in Figure 15) perpendicular to the wind speed as the control body. Therefore, the emission
mass in the control body can be calculated from a known concentration and reconstructed
emission cloud volume, i.e.,

Q =
mU

L2 − L1
=

CVU
L2 − L1

(20)

where Q, m, C, V, U, L1, and L2 are the emission rate, emission mass of the control body,
concentration, reconstructed volume of emission cloud, emission propagation speed (wind
speed), and the distances of the two planes from the leak point shown in Figure 15, respectively.
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An improved version of Watremez’s method was proposed by Branson et al. [138],
which uses the product of column density and cross-sectional area of the emission cloud in
order to estimate the emission mass of the control body, that is,

m = AP ∑
i∈CS

CLi (21)
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where CL is the column density, AP is the area represented by the pixel, CS is the area of the
core section of the emission cloud, and subscript i refers to the pixel index.
Equation (21) assumes that the lengths Li are perpendicular to the cross-section Ap. Com-
pared to Watremez’s method [80], this method does not require the calculation of the
concentration and reconstruction of a 3D geometry.

Both methods should be used for gas clouds far from the emission location (leak point)
since the gas cloud propagation speed can be approximated by wind speed only when
the gas cloud is well-mixed with the atmosphere. However, as we have mentioned above,
this assumption is weak, which may cause huge estimation errors. Watremez et al. [109]
reported that the relative estimation error of the emission rate is between 7–92%. Specifically,
for the estimation of the methane flow rate of 50 g/s, the results of three measurements
were 15.4, 19.3, and 3.9 g/s, respectively, which were so far away from the ground truth.
However, the estimations were in modest agreement with the small emission rate of
1, 10 g/s with the maximum error of 3.4 g/s. A similar estimation error trend appeared in
the work of Branson et al. [138].

A more general way of estimating the propagation speed is through optical flow
algorithms [139], which calculate the apparent motion of individual pixels from consecutive
frames so that the gas-cloud propagation speed can be approximated. Nagorski et al. [140]
used the Horn–Schunck algorithm [139], the Lucas–Kanade algorithm [141], and the image
correlation velocimetry algorithm [142] to estimate the propagation speed of flare emission.
Sandsten et al. [143] utilized the correlation velocimetry algorithm and Rangel et al. [44]
used the Brox algorithm [144] to estimate the leakage speed of volatile organic compounds
of methane and butane.

The biggest advantage of optical flow algorithms is that they have the capability of
calculating the propagation speed at any section of the emission plume and do not require
the emission rate to be steady. This allows measurements of emission rate from any cross-
section and not only from the far-field gas cloud. In the work of Harly et al. [145], they used
optical flow to calculate the emission speed immediately above the stack exit. By coupling
with the prior knowledge of the exit shape and concentration, the emission rate at the stack
exit can be estimated. From their measurement, the mass flow rates of CO2 and SO2 were
13.5 ± 3.8 kg/s and 71.3 ± 19.3 g/s, respectively, which were in good agreement with in
situ rates of 11.6 ± 0.1 kg/s and 67.8 ± 0.5 g/s. The optical flow method is apparently more
reliable compared to the methods of [109,138].

All these methods are conventional optical flow algorithms, which follow the as-
sumptions that pixel values are constant in sequential frames captured in a short period
of time and the movement of the corresponding points/blocks is slow, in the sense that
there are no multi-pixel deformations in consecutive frames. However, these two assump-
tions are not satisfied in some real-world scenarios, such as high-speed or reactive flow.
Machine-learning-based optical flow algorithms can address these scenarios and have
recently received a substantial amount of attention in image processing and computer
vision. A number of both supervised [146] and unsupervised [147] algorithms have been
developed, and a good overview of the subject can be found in [148,149].

5.2. Minimum-Detectable-Concentration-Based Method

The minimum detectable concentration is one of the sensitivity characteristics of an
IOGI device. The existence of this sensitivity value can be utilized as a passive quantitative
measurement and used for emission rate estimation. The OGI-based emission factor
method [150] is a technique that is derived from the conventional leak/no leak emission
factor method [29] used for estimating leakages in refineries. The emission factor is defined
as the emission rate of each component in an installation. The concept of the original
leak/no leak method is to set a pair of standard emission factors corresponding to leak
or no-leak, respectively, for a component, such as a valve or a pump. One component
leaking or not is judged from a predefined emission rate threshold, and percentages of
leaked components and no-leak components can be calculated correspondingly. The
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average emission factor for every component in a refinery is calculated as the average of
two emission factors, weighted by percentages of leak/no-leak components.

In the OGI-based emission factor method, the predefined leakage threshold (in g/h)
is replaced by the recorded signal corresponding to the minimum detectable concentra-
tion [150], i.e., whether the component is in leakage or not depends on whether the IR
camera can “see” it or not. Thus, threshold definition, measurement and leakage deter-
mination are integrated into a single imaging operation. Through massive amounts of
simulations on a refinery with substantial components with various leakage levels, stan-
dard emission factors can be determined from the relationship between the percentages of
leak/no-leak components and the calculated average emission factors.

The statistical nature of the method introduces two significant shortcomings. First,
it can only be used in a region with massive amounts of components, otherwise, the
calculated emission rate may not be statistically meaningful. Second, the emission rate
is a time average value, which means that the method cannot be used in order to probe
emission dynamics.

Another minimum-detectable-concentration-based method is the OGI-based disper-
sion modeling method [151], derived from the conventional inverse-dispersion modeling
method [152]. In the original approach, the downwind measured concentration of the
emission plume and the local wind speed are used as inputs for gas dispersion modeling,
such as the Gaussian dispersion [153], and backward-Lagrangian stochastic simulation [17]
in order to infer the emission rate. In the OGI-based version, the gas cloud size outlined by
the minimum detectable concentration is used as a substitute for real concentration. Then,
this information is used in tandem with gas dispersion modeling and propagation speed in
order to retrieve the emission rate.

The main shortcoming of the method is that dispersion modeling has high uncertainty
since it is an inverse modeling process, and thus, the relative estimation error may be
up to 30%, compared to the actual emission rate [152]. To reduce the estimation error,
long-time averaging is used. Moreover, the method requires sufficient ancillary information
support, such as the structure of the emission nozzle and meteorological data, which limits
its application. In fact, both the OGI-based emission factor method and the OGI-based
dispersion modeling method have not yet been tested in real emission measurements, but
rather only in simulation studies.

Zeng et al. [40] proposed an interestingly different method, which can be regarded as
a variant of the OGI-based dispersion modeling method to some extent. In this approach,
they used the size of the gas cloud, outlined by the minimum detectable concentration,
and also pixel value levels to estimate the emission rate, while information related to the
speed of propagation and dispersion modeling was not used. One would intuitively think
that omission of the velocity term would render estimation of the emission rate impossible.
However, since these are images of specific objects taken from a fixed distance, the size
of the object and signal intensity can be related to the magnitude of the emission rate.
A further simplified version of this method only used the size of the gas cloud size outlined
by the minimum detectable concentration to classify the working mode of a truck [154],
implied by the emission levels. There are similarities to the machine learning methods
mentioned above in that the area and pixel value levels can be regarded as features selected
from the images to estimate the emission levels of a given object. However, In Zeng’s
method [40], the maximum error of the prediction result relative to the actual value reached
up to 43%, indicating that the selected features are not optimal for estimating the emission
rates of a given object.

A prerequisite for the methods described in this section to work is to acquire accurately
the value of minimum detectable concentration, i.e., detection limit. However, this detection
limit of passive OGI varies in different reports. Blinke et al. [155] reported that an ordinary
IR camera could detect 1–10 g/h leakage of hydrocarbon, while Ravikumar et al. [156]
reported that at a distance of 3 m, the detection limit of methane was about 20 g/h with
a 90% confidence by using a FLIR GF-320 camera. Some other studies [157,158] reported
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that if the natural gas emission rate is larger than 30 g/h (about 1.5 scfh [159]), the leakage
can be detected. This puzzling situation regarding detection limits is due to the fact that
they are affected by multiple factors, such as the ambiance, camera characteristics, and
molecular spectral characteristics.

It is intuitive that environmental factors such as temperature contrast between the
environment and plume [19,38], the imaging distance [156], and atmospheric dispersion
of the emitted plume (e.g., wind speed) [160] have an impact on detection limit. The
environmental effect can be regarded as uniformly affecting any species measurement.
However, the impact of the camera and the particular emission spectrum on the detection
limits of different molecules varies and can be optimized. The detection limit is affected by
the type of the detector (thermal detector, photodetector), the dark noise in the pixels of the
camera chip that essentially determines the dynamic range of the device, and the possible
existence of Peltier cooling for dark noise suppression. Also, the material of the detector,
such as HgCdTe or InSb, which determines the bandwidth of sensitivity of the camera, has
a strong influence on minimum detection limits [4].

Another one is the effect of molecular spectral characteristics, as shown in Table 1,
molecules, such as CO2 and CH4, have multiple and distinguishable characteristic bands of
varying intensity due to their multiple rotational–vibrational states [161]. The selection of a
band in measurement has a significant influence on the detection limit. For example, CH4
has a strong signal in the middle wave infrared (MWIR) [4]; however, other hydrocarbons
such as C2H6 also have a strong IR activity in this range, because this is due to the dynamics
of the C-H bond. At the same time, CH4 also has another characteristic band in long-wave
infrared (LWIR) which is separated from other hydrocarbons, so it is easier to isolate
a “clean” signal in this band, but the signal is weaker and of course easy to be disturbed
by noise.

As a result of these considerations, the camera response and filter bandwidth have
to be matched to the specific species that is to be measured [162]. Taking the work of
Wu et al. [42] as an example, in order to quantify CO, they first selected the 4.6 µm band
due to its strongest absorption signal; then, they selected a bandpass filter to isolate the
interference of CO2 and water; and, finally, a mid-infrared camera was selected according
to the filtered band. As a consequence of various combinations, the detectable limit of
different molecules varies, and of course, the same imaging device has different detection
limits for different molecules. For example, as mentioned in [16], an IMSS spectral imager
in a particular optical configuration had a detectable level of butane at 15 g/hr, but 36 g/hr
for ethylene. The detection limit is, therefore, application-specific [23], which means that
the emission factors that are used in the minimum-detectable concentration methods also
need to be recalibrated for each particular application.

6. Summary, Future Prospects, and Conclusions

A summary of current technologies of passive infrared imaging of gases as well as of
the methods for the extraction of quantitative information from such data is given schemat-
ically in Figure 16. This is divided into three parts, i.e., tasks, methods, and requirements.
Tasks include three core quantification tasks, namely, column density, concentration, and
emission rate. The methods part includes the techniques used to realize the tasks by IOGI,
while the requirements are the backbone technologies/hardware/principles supporting
the development and application of these methods.

According to the number of times a particular requirement relates to a method, the
rank of the importance of requirements is as follows, with the arbitrary assumption that
each link appearing in the Figure is equally important: IR camera (6 + 2 links in the figure),
prior knowledge about the particular application (4), application of artificial intelligence (4),
conventional image processing (3), IR spectral imager (2), spectroscopy analysis (2), and
classical LDAR methods (2).

Such an analysis would indicate the capabilities of the IR camera as the most impor-
tant tool for extracting data that can then be processed in order to extract quantitative
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information. In regard to the links highlighting this importance, we should probably also
add the ones relating to spectral imagers equipped with filters or dispersing elements.
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The “second” most important aspects in this ranking are prior knowledge and artificial
intelligence, notably of equal significance. By prior knowledge, we refer to the temperature
of the emission cloud and the background, exhaust geometry, wind speed, etc. The exten-
sive requirement of prior knowledge indicates that high-quality IR camera hardware is not
sufficient for high-fidelity quantitative information, which, in turn, constitutes the main
difficulty of realizing emission quantification via passive IOGI.

Artificial intelligence in IOGI can help alleviate the complexity of extracting quanti-
tative data from IOGI. For instance, it can solve the problem of extraction of quantitative
information, e.g., through machine-learning-based methods, when used in the augmenta-
tion methods of column density and concentration quantification. The significance of AI
exceeds that of conventional image processing technologies and offers potent alternatives,
such as AI-driven optical flow and 3D reconstruction. If one considers the links between
AI and image processing, there is a total of seven links, which shows that algorithms are
the vital component needed to realize quantitative IOGI.

IR spectral imager and spectroscopy analysis technology pair hardware and software
and, although they do not have a large number of links, we should keep in mind that
without them, augmentation methods cannot work. With this analysis, we do not mean to
underestimate the importance of the classical LDAR and spectroscopy methods that are
currently the gold standard in industrial practice, but rather to point to the potential of
combining IOGI with high-quality IR imaging and AI-driven modeling and analysis. In
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fact, in order to further promote the development of IOGI, it is necessary to learn from the
mature and diverse results of LDAR.

Figure 16 appears to imply a hierarchical relationship between the three main tasks
that IOGI can deliver in that the solution of column density supports the solution of
concentration and then the solutions for concentration/column density support the solution
for emission rate estimation. However, this hierarchical relationship is not needed since
machine learning and minimum-detectable-concentration-based methods can be applied
independently of this hierarchy.

Much as the extraction of quantitative information from IOGI is a formidable task,
there are three specific aspects that can make the case for increased relevance in the near-
term future of engineering practice:

1. The advent of carbonless fuels and fuels of reduced carbon trace. It is serendipitous
but also a matter of fact that such fuels (H2, NH3, light alcohols, and oxymethylethers),
which are increasingly considered indispensable parts of the energy portfolio dur-
ing the rapidly emerging energy transition, will generate flames and plumes that
will have substantially less complicated spectroscopy, mainly due to the complete
lack or the substantial decrease of soot and carbon oxides. The related fields of in-
frared emission can be very reasonably expected to be much simpler in terms of
quantitative interpretation.

2. The rapid progress in the field of AI algorithms, some of which can be transferred,
as we showed above from other applications to IOGI. It is true that this explosive AI
progress is on occasion non-uniform. For example, the machine learning algorithms
applied in augmentation methods are still under development, while the machine
learning algorithms used in 3D reconstruction or optical flow are very mature. It
is our expectation that AI algorithms will be able to break through the constraints
of their application specificity and heavy reliance on data. Transfer learning and
meta-learning offer substantial hope on this front.

3. The emergence of the “physics-guided” and “physics-discovered” AI [163–166]. Pow-
erful algorithms directly transferred from the field of computer science can be strength-
ened substantially if the physics underlying the acquisition of IOGI data is coupled
with the mathematics of machine learning. Currently, algorithms rely to a substantial
extent on prior knowledge of several features of the solution, shown in this review.
These requirements could possibly be alleviated if, e.g., the mathematics of the reac-
tive flow could be embedded into the models or learnt from the data. Meanwhile, it
is exciting that machine learning models can provide physical insights, which will,
in turn, stimulate further developments in theory and the systems themselves, e.g.,
through the application of symbolic regression [167,168]. Further improvements in
terms of IR-imaging hardware, such as sensitivity in the near-IR and availability of
relatively cheap band-pass filters, will also provide a boost to IOGI technologies.

The ultimate target is to develop technologies and systems of the accuracy, robust-
ness, convenience, and affordable cost that will make them appropriate for engineering
practice in a manner that will expand the capabilities of the currently used gas-analysis
and spectroscopic techniques. This will require interdisciplinary research that will combine
the necessary advances in terms of both reactive fluid mechanics and data science, extend
2D IR images to 3D spectral ones, coupled with spectroscopy, and utilize global structure
information via AI, in order to acquire column density, concentration, and emission rate
information from IR images.
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