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Abstract: Solar power has rapidly become an increasingly important energy source in many countries
over recent years; however, the intermittent nature of photovoltaic (PV) power generation has a
significant impact on existing power systems. To reduce this uncertainty and maintain system
security, precise solar power forecasting methods are required. This study summarizes and compares
various PV power forecasting approaches, including time-series statistical methods, physical methods,
ensemble methods, and machine and deep learning methods, the last of which there is a particular
focus. In addition, various optimization algorithms for model parameters are summarized, the
crucial factors that influence PV power forecasts are investigated, and input selection for PV power
generation forecasting models are discussed. Probabilistic forecasting is expected to play a key role in
the PV power forecasting required to meet the challenges faced by modern grid systems, and so this
study provides a comparative analysis of existing deterministic and probabilistic forecasting models.
Additionally, the importance of data processing techniques that enhance forecasting performance
are highlighted. In comparison with the extant literature, this paper addresses more of the issues
concerning the application of deep and machine learning to PV power forecasting. Based on the
survey results, a complete and comprehensive solar power forecasting process must include data
processing and feature extraction capabilities, a powerful deep learning structure for training, and a
method to evaluate the uncertainty in its predictions.

Keywords: solar power generation; forecasting; ensemble method; machine learning; deep learning;
probabilistic forecasting

1. Introduction

Over the past few years, in a fight against global warming, the development of
renewable energy has become the goal of the joint efforts of all countries. Along with wind
energy, photovoltaic (PV) is one of the most popular types of renewable energy resources
because it is environmentally friendly, limitless, and cost-effective. PV is developing
vigorously on a large scale, and it is one of the green energies that will be focused on in
the future. However, the nature of PV power intermittency and the uncertainty related
to forecasts are difficult problems that must be overcome to maintain the stability of the
power system [1]. If PV output cannot be predicted accurately, power system security will
face a large challenge [2]. Although energy storage devices can save excessive energy for
turnover, its high cost is not suitable for most users. Therefore, an accurate forecasting of
PV power generation becomes very crucial for industry applications [3].

To solve the natural intermittency and uncertainty, forecasting methods can effectively
play an important role. In the literature, prediction methods can be roughly divided into
three categories: physical methods [4], statistical methods [3], and hybrid methods [5]. The
physical methods use atmospheric parameters, such as temperature, pressure, or wind
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speeds. Both time series and machine learning models belong to statistical approaches. The
hybrid methods include the combination of the above-mentioned methods, which would
provide better prediction results.

From a methodological point of view, renewable power prediction is considered as
a big-data application; thus, the data’s quality that determines the input and output is
critical. Through various products of numerical weather prediction (NWP), meteorological
information can give essential data for photovoltaic prediction [6]. In addition, data
pre-processing and post-processing are critical for prediction [7], and these processes
help predictors extract the most important features and filter out noises from original
data. Consequently, data pre- and post-processing can improve forecasting performance.
Classification, regression [8], clustering [9], and dimension reduction [10] are currently
the most commonly used methods for data preprocessing. Deterministic forecasts cannot
provide information about uncertainty; by contrast, probabilistic forecasts can provide
confidence intervals to quantify uncertainties, which would be useful for stochastic unit
scheduling and other power system operations [11].

Numerous studies have reviewed various PV power forecasting methodologies. For
instance, R. Ahmed [12] reviewed various technologies about PV power generation. In
addition, many preprocessing methods for PV power forecasts are also discussed [13].
In terms of the training algorithms, Adel Mellit [14] made an overall evaluation for the
application of artificial intelligent (AI) technologies on forecasts. Muhammad Naved
Akhter [15] and Manzor Ellahi [16] summarized the advantages and disadvantages of
various machine learning methods for predictions. Those reviews have evaluated the
problems and methods in different aspects of PV forecasts in detail; however, those studies
were only focused on deterministic predictions, which is insufficient for future renewable
power forecasts.

The structure of this study is organized as follows: Section 2 presents an overview
of learning models for PV power generation. Section 3 points out the importance of
data preprocessing methods. Section 4 examines different PV power forecasting methods.
Section 5 demonstrates the important factors influencing the prediction of PV power
generation. A summary of various hybrid forecasting approaches is provided in Section 6.
Section 7 summarizes several recent probabilistic forecasting models. Finally, conclusions
are drawn in Section 8.

2. Learning Techniques for PV Power Forecasting Models

Machine learning models can be classified into four major types that are shown
in Figure 1: supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement learning. For PV power forecasts, supervised learning and unsupervised
learning are most used. Figure 2 shows a tree diagram that describes four major types of
machine learning algorithms for solar power forecasting models.
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2.1. Supervised Learning

In supervised learning, the algorithm is trained from labeled datasets, they then
classify or predict the corresponding value accurately. Supervised learning can be divided
into two categories: classification and regression. Regression explores the relationship
between independent variables (target values) and dependent variables (predicted values),
which is very common in predictions and other analyses.

Regression can be divided into several types, the purpose of which is to minimize the
distance between the data and the regression line. As the residual between the predicted
value and the actual value decreases, then the sum square error (SSE) of the data is close
to zero, which is called the least squares method. However, the outliers in the data affect
the linear regression, and would lead to inaccurate predictions. Simple linear regression
has only one independent variable and one dependent variable, and the regression line is a
straight line. Multiple regression [17] also discusses the relationship between independent
variables and dependent variables, but a multiple regression has more than two inde-
pendent variables, so there is the problem of multicollinearity. Since not all independent
variables and dependent variables are linearly related, a polynomial regression [18] with
a higher-order nonlinear function can be used to obtain a lower error. In addition, logis-
tic regressions [19] are supervised learning and classification algorithms that are used to
determine the state of an event, then can predict the probability of a target variable. They
provide other methods to deal with nonlinear functions. Most of the above regressions
minimize the sum square error, but logistic regression generally uses the maximum likeli-
hood estimation (MLE) to obtain its coefficients. To solve the problem of multicollinearity
in multiple regression, two methods have been proposed: Lasso regression [20] and Ridge
regression [21]. Lasso regression uses L1 regularization to normalize the loss function. This
method can be used for feature selection because it is easy to generate a sparse matrix.
Ridge regression uses L2 regularization to normalize the loss function, which can be used
to prevent overfitting problems. An elastic net is the combination of Lasso regression and
Ridge regression, which can handle feature selection and overfitting problems.

As outliers are in the data, the straight line/curve of linear regression would be
affected, resulting in inaccurate predictions. Thus, Robust regression [22] can be used to
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replace the least-squares method. It uses a parameter of breaking point to set how many
outliers can be accepted in the data without affecting the regression curve. Therefore,
outliers outside the acceptable range are excluded from the training data.

Support vector machines (SVM) [23] can be used to solve both regression and clas-
sification problems. When the training data are in the same plane (hyperplane), SVM
algorithms aim to find the decision boundary of the pre-classified data and maximize the
boundaries between the pre-classified data. SVM performs well when the amount of inputs
is less. However, large input data and outliers affect the classification results. SVM has been
proven to have good performance in PV forecasting. JG da Silva Fonseca Jr. et al. [24] used
SVM to pre-process input data that included normalized temperature, relative humidity,
low level cloudiness, mid-level cloudiness, upper-level cloudiness, and Extraterrestrial
insolation. The results show that SVM provides better forecasting results.

The K-Nearest Neighbors (K-NN) algorithm [25] is also a kind of supervised machine
learning algorithm that takes classification and regression into account. It classifies the
data through the similarity of recognition markers (such as the distance function) and
then predicts the category of new data. K-NN belongs to the multi-classification method,
and its classification performance is better than SVM. The calculation of K-NN becomes
significantly heavier as the amount of input data increase. However, outliers in the data
create little effect on the results, so it is suitable to classify rare events. X Luo et al. [26] used
K-NN to classify weather types, which effectively improved the accuracy of predictions.

A Naive Bayes Classifier (NBC) [27] uses Bayes’ theorem to calculate the probability
of each specific event, and takes the highest probability as the category. The equation is
shown as follows.

P(A|B) = P(B|A)P(A)

P(B)
(1)

where P(A) is the probability of occurrence of event A, P(B) is the probability of occurrence
of event B, P(A|B) is the probability of event A when event B occurs, and P (B|A) is the
likelihood that is the probability of predictor given class. The NBC model is simple, fast,
and useful for big data. However, the algorithm judges the content of events; thus, the way
to state events has a great effect on training performance.

Decision trees is a classification algorithm, which consists of root nodes (original
data), internal nodes (feature judgment), and leaf nodes (decision result) [28]. The internal
nodes decide the features to judge the original data, and then select the data with a high
correlation of features. This method easily causes overfitting. Using decision trees to filter
and obtain results is faster, and it can also deal with the problems caused by outliers.

2.2. Unsupervised Learning

In unsupervised learning, AI algorithms distinguish and classify the datasets con-
taining non-labeled data. The common unsupervised learning includes clustering and
dimension reduction algorithms.

K-means clustering [29] is one of the simplest and popular unsupervised learning
algorithms. First, the data are divided into several groups, and the positions of each
group are randomly assigned in the data. The data close to each group are classified
into the same group, and the above actions are repeated until the positions of each group
remain unchanged. K-means clustering may cause convergence to the local minimum. If
outliers exist in the data, it is easy to produce deviations. To deal with large-scale data, the
convergence speed by K-means clustering would be slow. H Zhang et al. [30] proposed a PV
forecasting method with K-means clustering and can reduce the mean absolute percentage
error (MAPE) by approximately 10%.

Principal component analysis (PCA) is a dimension reduction algorithm [31]. Through
spatial mapping, the dimension of original data is mapped to a lower dimension, such as
two or one dimensions. The dimension reduction method can extract the main information,
and then remove noises, making the data easier to learn. Although reducing the amount of
data is useful, information loss is a necessary part of PCA. Pierro et al. [32] used PCA to
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retain the relative humidity information of the weather forecasts and effectively reduced
the space of the model inputs.

Singular value decomposition (SVD) is also a dimensionality reduction algorithm [33].
It used matrix operation to find individual eigenvalues and eigenvectors. Its target is also
to achieve the feature decomposition in the dimension reduction algorithm.

3. Pre-Processing Methods

While collecting data, historical measurement data from PV sites may contain signifi-
cant numbers of outliers, noises, or missing data. The input data directly affect forecasting
results; as a result, the preprocessing of datasets is a critical step in PV forecasts that can
improve the models’ performance. The methods of data pre-processing are summarized in
Figure 3.
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3.1. Data Cleaning

Abnormal data will lead to the deviation of the prediction results. The technique of
data cleaning is mainly to fill or remove unnecessary information from a database [34]. If the
missing rate is high and the importance is low, the data can be deleted. The linear internal
difference method or the average method were widely used to handle missing values.

3.2. Normalization

Normalization is used to scale the original data to [0, 1] without changing its dis-
tribution [35]. The advantage of this method in data processing is that it can get rid of
the limitation of data units on the model, speed up the convergence, and shorten the
training time.

3.3. Z-Score Standardization

Standardization can transform the data into a normal distribution, in which the average
value is zero and the standard deviation is unity [36]. The advantage of this method in
data processing is to improve the convergence speed and forecasting accuracy. If a data
distribution is close to the normal, the standardization is meaningful. However, if a data
distribution is not close to the normal, the standard deviation causes the deviation of
standardization. In addition, the influence of outliers can be reduced through Z-score
normalization when the maximum and minimum outliers of the data cannot be determined.
The formula is shown as follows.

z =
(x− xmean)

xstd
(2)
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where x is the original data, xmean is the average value of data, and xstd is the standard
deviation value of data.

3.4. Wavelet Transform (WT)

Typical time series can be handled by time domain-based or frequency domain-based
methods. Based on time domain methods, a time series is regarded as the sequence
of ordered points, and then the correlation among those points is analyzed. Based on
frequency domain methods, the time series is converted to spectrum, and then the spectrum
is analyzed as features. WT is a method to transfer data into time domain and frequency
domain features, and then forward to the mother wavelet [37]. WT can indicate existing
frequencies with the corresponding frequency occurrence. In addition, the outliers in
the data have little effect on the forecasting results. However, once the basis function
is determined, the whole calculation process cannot be replaced, indicating the lack of
adaptability. M Zolfaghari et al. [38] used WT to decompose the input data into high-
frequency and low-frequency sequences, and the prediction result shows that WT can
improve the prediction performance.

3.5. Empirical Mode Decomposition (EMD)

EMD is based on the time-domain processing [39]. WT needs to select the mother
wavelet first and cannot be replaced. In contrast, EMD can directly decompose the original
time series into several intrinsic mode functions (IMFs) and a residual. The IMFs represent
frequency components in the original time series, and they are arranged in order from high
frequency to low frequency. This method is self-adaptive and can decompose non-linear
and non-stationary signals directly without selecting basis functions. However, there is
a problem about mixed modes in the IMF components. For instance, if the same IMF
components appear at different times, it leads to the loss of physical significance of IMF.
Shibo Wang et al. [40] used EMD to decompose wind speeds into IMFs with different
proportions, and then built a prediction model for each sub-sequence.

3.6. Singular Spectrum Analysis (SSA)

SSA is a method to deal with nonlinear time series [41]. It can embed, decompose,
group, and reconstruct the long-term trend, periodic signal, and noises of time series. In
the process of analyses, embedding arranges a time series into a trajectory matrix, and
SVD is used to decompose the time series to obtain the component matrix correspond-
ing to each singular value. Finally, each group of components is reconstructed into a
new time series. SSA was widely used in the fields of climate, environment, finance,
etc. Yachao Zhang et al. [42] used SSA technology to obtain the hidden features of wind
power generation.

Notably, data collection is a large challenge in solar power forecasting. One reason
for this is that many solar sites do not install meters to measure solar irradiance, and even
when measuring devices have been installed on site, instances of missing and incomplete
data continue to occur. Therefore, strategies and practical methods to overcome these issues
need to be proposed. The problem of missing data must be addressed at the preprocessing
step by incorporating missing data imputation. The use of satellite imagery can also help
to evaluate solar irradiance in real time, which could rectify to some degree the limited
data collection possible at PV sites where irradiance meters have not been installed.

4. Classification of PV Power Forecasting Methods

Several methods and algorithms have been developed in the field of PV forecasts.
They include two main categories: physical methods and statistical methods. The methods
of PV forecasts are as summarized as Figure 4.
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4.1. Physical Methods

Physical methods provide forecasts through the values of the atmospheric factors that
are directly related to solar power generation [43]. These methods use meteorological data
from NWP such as solar irradiance, rainfall, temperature, humidity, air pressure, wind
speed, topography, etc. NWPs can be obtained by different forecasting modes, including
the Weather Research and Forecasting Ensemble Prediction System (or called WEPS),
Deterministic Weather Research and Forecasting (or called WRFD), or Radar Weather
Research and Forecasting (or called RWRF) [11]. NWP is suitable for forecasting weather
within a few hours or days and does not require any historical data. However, NWP is
dependent on the stability of meteorological conditions, and physical models for NWP are
difficult to be established.

4.2. Statistical Methods

Statistical approaches use historical data to define the correlation among them. These
approaches do not need to provide atmospheric physical parameters. Therefore, the
most important factor for such a forecasting model is the quality of the historical data.
Subcategories of these methods include timeseries-based approaches and machine learning-
based approaches.
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4.2.1. Time Series-Based Methods

Time series-based methods investigate data features and regular patterns of historical
data. The advantage of these methods is that they are not affected by external factors, but
when the input data are unstable, the forecast error becomes larger.

The exponential smoothing method is a kind of weighted average method. This
method gives a large weighting to the historical data that are closer to the forecasting data.
In turn, the more distant historical data have less weights, and the weighting increases
exponentially from far to near. These methods were commonly used for short-term or
medium-term forecasts [44].

The autoregressive integrated moving average model (ARIMA) is a mixture of an
autoregressive model (AR model) and a moving average model (MA model). The AR
method uses the relationship between historical and real-time data to calculate a weighted
average of past data to predict itself [45]. If the autocorrelation coefficient is less than 0.5,
the prediction result would be inaccurate. The MA method is a weighted average of the
random errors in AR. The random error is related to the random error generated in the
past, which effectively eliminates the random fluctuation in the prediction. In the ARMA
method, the errors ignored in the AR method are added to the MA method to make further
adjustments. The ARIMA model converts a non-constant sequence into a constant sequence
through the differential processing method [46], and then predicts it through the ARMA
model, expressed as ARIMA (p, d, q), where d is the number of differences.

4.2.2. Machine Learning

Machine learning (ML) is a related AI application. Some popular ML forecasting
models used in solar power applications are an artificial neural network (ANN), a long
short-term memory (LSTM), a random forest (RF), a K-NN, an SVR, etc. An ANN is the
most basic architecture of machine learning [47]. An ANN is based on a set of connected
artificial neurons, like human brain neurons, and each connection can transfer signals
to other neurons. A basic ANN structure comprises input, hidden, and output layers,
also known as a multi-layer perceptron neural network (MLPNN). Neurons at the input
layer pass information to neurons at the hidden layer by activation functions. A nonlinear
training function is used to process information and interconnects each layer. The signal at
each layer of neurons can only move forward, so it is called feed-forward neural networks.
ANNs are often use in meteorology, finance, physics, engineering, and medicine. However,
ANNs have the problems of parameter expansion, the phenomenon of overfitting, and the
inability to model the changes in time series. An ANN has been developed to derivative
methods to make the forecasting methods more suitable in different fields, for example: a
radial basis function neural network (RBFNN), a convolutional neural network (CNN), a
recurrent neural network (RNN), an LSTM, an extreme learning machine (ELM), and an
online sequential extreme learning machine (OS-ELM).

An RBFNN has three layers: an input layer, a hidden layer with a non-linear activation
function, and a linear output layer [48]. The training speed of an RBFNN is fast because of
few hidden layers. However, the radial basis function graph is attenuation on both sides
and radial symmetry. Thus, as the input data are very close to the center of data selection,
it has a real mapping effect on the input, which is called local approximation.

A CNN has a good ability in spatial recognition; thus, many image recognition tech-
nologies are based on CNNs. A CNN uses a convolution kernel as a mediator [49]. The
same convolution kernel is weight sharing in all images. By using a CNN, the number
of network parameters (parameter expansion) and the complexity of the network can
be reduced. Since the input data of CNNs have filters for defects, fault tolerance, and
self-learning, it is helpful to obtain the correct feature values [50].

An RNN is a kind of neural network used to process sequence data. It is especially
suitable for time series data. Different from a CNN, the output of an RNN in the hidden
layer is recycled to the next hidden layer for training together [51]. Such a function ensures
the correctness of input data. Since an RNN is a neural network that processes “time”, the
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problem of disappearance of the time gradient would occur when time is longer. However,
RNN has short-term memory problems, and it cannot handle long input sequence data.

LSTM neural networks with long-term and short-term memories are a special type
of RNN, which is a kind of architecture to prevent the gradient of long time series from
disappearing [51]. Through the state of gates, the LSTM controls whether the input data
transmit to the output, records the data that need to be memorized for a long time, and
forgets the unimportant data. LSTMs can solve the problem of gradient disappearance
caused by an RNN, but it fails to remove that problem completely. Moreover, an LSTM
requires a long time and a large number of resources, which makes the model training
more difficult.

A BRNN and a Bidirectional LSTM (BLSTM) are the continuations of RNN and LSTM
methods, respectively [52]. Both RNN and LSTM neurons transmit information forward.
However, bidirectional networks can pass forwards or backwards, indicating that the
results are related to historical and future information.

An ELM is a learning algorithm for single-hidden-layer feedforward neural net-
works [53]. Different from the traditional feedforward neural network, the process from
the input layer to the hidden layer of an ELM is random. There is no need to adjust the
algorithm in the process of execution. In an ELM, the process from the hidden layer to the
output layer only needs to solve a linear equation group; thus, the calculation speed can be
improved. An ELM is usually unable to handle complex tasks, but it could perform well
on simple tasks.

An OS-ELM is an advanced version of an ELM. An ELM needs to retrain and test new
data, but an OS-ELM does not need this action. As new data arrives, an OS-ELM does
not need to retrain the model with old data. It can insert data to the network to update
the model continuously. However, since the structure of an OS-ELM is a single hidden
layer network, it is difficult to effectively deal with complex applications even if a large
number of hidden layer nodes are set. An OS-ELM is suitable for short-time learning but
its performance for long-time learning is poor [54].

Most of the above models are suitable for short-term learning. However, many topics
require long-term learning, which pushes the current development of long-term learning by
statistical methods. Table 1 summarizes different types of artificial intelligence networks.

Table 1. Comparison of various AI methods.

RBFNN CNN RNN LSTM ELM OS-ELM

Types of input data Image,
Time sequence Image Time

sequence
Time

sequence

Image,
Time

sequence

Image,
Time

sequence

Weight sharing Yes Yes Yes Yes Yes Yes

Feedback connections No No Yes Yes Random Random

Gradient problem Yes Yes Yes No No No

Short term Yes Yes Yes Yes Yes Yes

Long term No No No Yes Yes No

Ensemble methods integrate multiple identifiers into an identifier group to obtain a
better and more comprehensive supervision model. The identifier can be trained separately,
and then integrate multiple identifiers for overall prediction and evaluation. Common
ensemble learning methods include Random Forests (RF), gradient boosting, bagging,
stacking, and others.

Bagging is the abbreviation of bootstrap aggregating [55]. It randomly extracts the
original data into several datasets, trains the datasets individually into a model, and finally
classifies each model by voting or regressing the results. Under ideal conditions, the
variance of the forecasting results is small.

An RF classifier is an integrated algorithm based on bootstrap aggregation (bagging)
and decision trees [56]. This forest model is composed of many decision trees, and there is
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no correlation between each decision tree in the random forest. A bootstrap method is used
to estimate the quantity of a population. This is done by the re-sample process to obtain the
distribution of statistics and the confidence interval. The input data is randomly sampled.
To avoid the overfitting problem, the data are randomly put into each decision tree to
increase the extra randomness; then, each decision tree is classified. The mode is selected
by voting, and the deviation is eliminated. In this way, the decision tree has diversity and
can obtain better forecasts.

Boosting trains the original data for several rounds [57]. In each training, the model
with a low error rate is given a higher weight. After sequential training, good classifica-
tion results can be obtained. There are great differences between boosting and bagging
training methods.

Gradient Boosting is a machine learning algorithm that integrates a weak learning
model to promote its learning performance [58]. The promotion uses weak classifiers to
reduce the last deviation. Unlike the bootstrap aggregation method, the lifting algorithm
takes each output as the input of the next classifier to form a series. Bootstrap aggregation
is a parallel training in each decision tree.

The bagging method extracts part of the data and uses the same method for training,
but stacking uses different classifiers to train the data and builds the results into a dataset,
which contains both a prediction and the actual results [59]. Then, the dataset is trained into
a meta-classifier individually. Finally, the final result is obtained from the meta-classifier.
Stacking can make the prediction better.

The summary of ensemble methods is shown in Table 2.

Table 2. Comparison of various ensemble methods.

Bagging Random Forests Boosting Gradient Boosting Stacking

Processing method Parallel Parallel Sequential Sequential Parallel

Overfitting No No Possible Possible Possible

Training dataset Random Random Fixed Fixed Fixed

Optimization Easy Easy Difficult Difficult Difficult

Depth of trees - Deep - Shallow -

Traditional ANNs have less hidden layers, also known as shallow neural networks.
Further, adding hidden layers and different algorithms makes the structure of ANNs more
complex. The model can learn from a large number of input data and become deep learning,
also known as a deep neural network (DNN). Common deep learning structures include
Boltzmann machines, restricted Boltzmann machines, a generative adversarial network
(GAN), a deep belief neural network (DBNN), and others.

A Boltzmann machine is an energy-based model [60]. The neurons of Boltzmann
machines are fully connected, which causes a huge amount of calculation, so it is not often
used. To reduce the computational complexity of Boltzmann machines, a new method
called Restricted Boltzmann machines was designed [61]. It has only two layers: the input
and hidden layers. The neurons in the same layer are not interconnected. The forward or
backward transmission between different layers is determined by stochastic decisions. In
this way, the data are continuously transmitted back and forth until the error between the
input and output data is minimized. This process is called reconstruction, which is very
suitable to put unlabeled data as inputs to obtain the characteristics of data, so an RBM is
also an unsupervised learning.

DBNNs [62] stack multiple layers of Restricted Boltzmann machines and add a classi-
fier to the last layer. Through this multi-layer unsupervised learning, a better forecasting
result by classifying the pre-processed data can be obtained.

GANs are mainly composed of two CNNs, namely, a discriminating network and
a generative network. The generative network randomly extracts data from the input,
and its output is similar to the real data in the training set as far as possible. The input
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of the discriminating network is the output of the generative network. The purpose is to
distinguish the output of the generative network from the real data as much as possible and
check whether the data are reasonable. GANs have been widely used for data generation,
such as image and video generation, synthesis, recognition, etc. [63].

4.2.3. Deep Learning

In classical machine learning models such as AR, feature engineering is performed
manually, and parameters of the models need to be optimized. Deep learning models learn
features directly from datasets, which can learn more complex patterns of data and improve
the training speed. The use of deep learning for PV generation forecasting overcomes the
traditional machine learning disadvantages.

The Gated Recurrent Unit (GRU) is a new generation of RNNs. Similar to LSTMs,
GRUs use an update gate and a reset gate to solve the vanishing problem of RNNs. These
gates can be trained to keep information from the previous time steps and to remove
information that does not affect the forecasting accuracy. GRUs can perform better than
LSTMs in terms of speed and the number of parameters [64]. In [65], a short-term PV power
forecasting based on GRUs is proposed, which can effectively consider the influence of
features and historical PV power on the future PV power output.

The encoder–decoder model for RNNs was introduced to simplify the seq2seq map-
ping models [66]. It uses a deep neural network such as an RNN or an LSTM to encode the
input into a fixed vector, and then uses another deep neural network to decode the fixed
vector into the sequence output. An encoder–decoder model can map sequences of different
lengths to each other. However, it only works well for small sequences as it is difficult to
transform a long sequence into one vector when the length of input sequence increase.

To solve the long input sequence problem of encoder–decoder models, an attention
mechanism is developed. The encoder–encoder with an attention mechanism first learns
the weight of each element from the input sequence, then recombines the elements by
weight. Attention mechanisms can drop the unimportant information and focus more on
the useful information from the input data. However, attention mechanism models are
mostly used in the field of image and natural language processing issues. In 2017, the
Google research team introduced a Transformer based on an attention mechanism [67].
The core of the Transformer is also an encoder–decoder. In PV generation forecasting,
the model is treated as a black box, input data are historical measured PV power and
other meteorological variables, and the output is forecasting a PV generation value. In the
Transformer, an encoder block contains a self-attention layer and a feed-forward neural
network. The decoder block has the same structure as the encoder block and has an
additional layer called the encoder–decoder-attention, which analyzes the relationship
between the current forecasting value and encoded feature vector.

To enhance the performance of self-attention-based models, there are some research
works such as: the Sparse Transformer [68], LogSparse Transformer [69], Longformer [70],
the Reformer [71], Linformer [72], Transformer-XL [73], and Compressive Transformer [74].
The structure of Informer includes the encoder part and the decoder part, with the main
purpose is to solve long time-series problems in forecasting tasks. The informer receives
a long sequence input, and the self-attention block of the Transformer is replaced by a
multi-head ProbSparse Self-attention [75]. To reduce the size of the network, Informer
uses self-attention distilling. The decoder also receives long sequence inputs, measures
the weighted attention composition of the feature map, then immediately forecasts the
output values through a fully connected layer. By using ProbSparse Self-attention and
self-attention distilling, the Informer can improve the computational complexity overall.

5. Major Factors Affecting Solar Power Forecasting

As discussed in earlier chapters, the input data quality has a significant impact on
forecasting accuracy. The range of the forecasting horizons, weather classification, missing
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data, and outliers contribute to the data quality. The input variables that influence solar
power predictions are summarized as follows.

5.1. Forecasting Horizons

Forecasting horizons refers to the time length for forecasting PV generation in the
future. The accuracy of a PV forecasting model depends on the forecasting horizons.
Therefore, according to the forecasting purpose, one can consider which model is suitable
with a certain forecasting horizon. The time range of short-term is generally defined
as several minutes or several hours. The application of short-term PV forecasts ensures
power system stability and security. The forecasting horizons of medium-term is generally
defined as one or several days. The application of medium-term PV power forecasts is for
maintenance plan. The long-term forecasting horizon is generally defined as more than
one week. Its applications are also for power system maintenance and operation. However,
the accuracy of long-term forecasts is relatively low because the consideration of factors in
this forecasting are more complex.

5.2. Weather Classification

The reason why solar energy is unstable is mainly due to the interference of the
weather. As the sun is shaded, the power generation drops sharply, causing troubles in
grid dispatching. Therefore, weather inputs play important roles in the forecasting model.
The factors that affect or are related to sunlight include sunshine amount, atmospheric
temperature, module temperature, wind speeds, humidity, atmospheric pressure, cloud
type, etc. Thus, some literatures analyzed the relationship between related factors and PV
power generation. However, solar irradiance is the most important variable that affects
solar power generation [76].

5.3. Optimization of Model Parameters

Various optimization algorithms have been used in PV forecasting models, and the
model inputs can be determined appropriately to improve the forecasting accuracy. Opti-
mizing algorithms can solve a wide range of problems by designing suitable algorithms for
different problems. Good quality and efficiency can be obtained when the complexity of
the problem is high, the scale is large, and the characteristics are not clear. Many literatures
proposed various optimization algorithms for PV power forecasts, which includes a genetic
algorithm (GA) [77], particle swarm optimization (PSO) [78], a grid-search [79], the firefly
algorithm (FF) [80], ant colony optimization (ACO) [81], the fruit fly optimization algorithm
(FOA) [82], the artificial bee colony (ABC) [83], the charged system search (CSS) [84], etc.

The operation of a GA is similar to natural selection in terms of achieving the optimal
results, which means that the fittest survive and the unfit are eliminated. However, as
dealing with big data, the amount of calculation by a GA is quite large. An ACO algorithm
process is the same as ants searching for food by observing the footprints. When searching
for food, ants communicate which path is the most suitable through pheromones and
continue to update to the best path. Since ants can exchange information with each other
by using pheromones, ACOs would have a better ability to find the global optimal solution.
The PSO algorithm was developed by observing the behavior of birds looking for food.
Each particle represents a bird, which has memory and reference. Generally, the calculation
process by the PSO is based on experience, and it is difficult to avoid the problem of the
local optimal solution. The FOA was developed by observing the behavior of fruit flies
looking for food. This method is simple in the low dimension, but for data processing in
the high dimension, the convergence speed of iteration is slow, and the accuracy is low.
The grid search is a method to adjust parameters for optimization. In each case, exhaustive
searching is performed, and different parameters are tried to obtain the best result. This
method is suitable for a small number of parameters. A large number of parameters would
be very time-consuming for computation.
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The FF was developed through the characteristics that fireflies emit light and attract
each other. First, the algorithm sets the firefly position and brightness. In the definition,
the mutual attraction of fireflies is directly proportional to the luminous brightness, and
the brightness is inversely proportional to the distance; thus, the firefly with a brighter
brightness may attract other fireflies. However, if the brightness is the same, it moves
randomly. As the maximum number of iterations is reached, the final position of the firefly
is the result.

The ABC algorithm was developed by observing the behavior of bees looking for food.
The main parameters of this algorithm are leader, scout, follower, and food source. The
leader has a memory of food location, storage capacity, collection difficulty, etc. It will
have the opportunity to share the information to the follower. The follower selects food
sources to collect and updates the food source information. Finally, the scouter searches for
food locations nearby and updates honey source information. By iterating the above steps
repeatedly, the local optimal solution can be found through each bee, and then the global
optimal solution can be obtained.

The CSS is a randomized algorithm based on Coulomb’s and Newton’s theorem. Each
charged particle (CP) is assigned a random position, and the fitness values of each CP are
calculated. The best fitness values are arranged in order, and the first quarter of fitness
values are selected to store in charge memory storage (CM). Then, the probability of each
CP moving, and the resultant force can be calculated. This algorithm continuously updates
the new position and speed of CPs after moving until the maximum number of iterations is
reached. The final fitness values are the global optimal solution.

5.4. Performance of Forecast Models

Common indexes for evaluating deterministic forecasting performance include the
mean square error (MSE) [85], the mean absolute error (MAE) [86], the root mean square
error (RMSE) [86], the normalized root mean square error (nRMSE) [35], and the mean
absolute error percentage (MAPE) [87]. The mean square error squares all the errors
between the predicted values and the actual values, and then adds them together to obtain
the average value to evaluate the variability of the values. Compared with the mean square
error, the mean absolute error uses absolute values instead of the maximum outlier after
the square. Therefore, the mean absolute error could reflect the actual situation about
forecasting errors. The root mean square error, also known as the standard error, can reflect
the accuracy of the value very well if the error is not obvious. The normalized root mean
square error (nRMSE) normalizes the value of the root mean square error into (0, 1). It
is often used to evaluate the similarity between two signals and the overall deviation.
The mean absolute percentage error (MAPE) takes the absolute value of the MPE (mean
percentage error) and then adds the percentage. Since the actual value is the denominator,
the MAPE is generally used when the actual value is not zero. An appropriate error
measurement can be selected based on different conditions. The MAPE, for example,
cannot be utilized if the time series contains zero. Furthermore, the MAE, MSE, and RMSE
are the evaluation methods that are usually influenced by outliers.

6. Hybrid Models

If only one forecasting model is utilized, forecasting results would not be good enough.
Therefore, hybrid models have been applied in many forecasting works. The structure of a
hybrid model is a combination of two or more forecasting models that overcomes a single
model’s technical constraints and enhances the predicting accuracy. Table 3 summarizes
various hybrid methods in recent years.
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Table 3. Comparison of different hybrid models.

Authors
(Year) Input Data Pre-Processing

Methods
Input Data

Optimization
Forecasting

Model Accuracy Ref.

M Massaoudi, et al.
(2021)

T, Wd, GHI, RH,
PV power

Data cleaning
Normalization

Non-linear
auto-regressive
neural network
with exogenous

input
(NARX)-LSTM

nRMSE = 1.33% [35]

P Kumari, et al.
(2021) GHI, T, Ws, H, P Normalized - XGBF-DNN RMSE = 51.35 [58]

X Luo, et al.
(2021)

LW, RH, IW, SP, CC,
10U, 10V, 2T, SR, TR,

TS, T
Normalization - physics-constrained

LSTM

(Plant #1)
MAE = 2.95
MSE = 4.26
R2 = 91%
(Plant #2)

MAE = 3.51
MSE = 5.30
R2 = 89.9%

[85]

M Konstantinou, et al.
(2021) PV power Normalization - stacked LSTM RMSE = 0.11368 [88]

C Lyu, et al.
(2021) Si Kernel-PCAK-

means - Naive Bayes
Classifier nRMSE = 9.5% [89]

Z Qadir, et al.
(2021)

Si, Ws, Ta, H, R,
Pa, Wd

Data cleaning
RFECV

Linear regression
- ANN

MAE = 0.00083
MSE = 0.0000001

R2 = 99.6%
[90]

L Mazorra-Aguiar, et al.
(2021)

GHI
SZA,HA ARMA - Quantile

Regression Models - [91]

X Huang, et al.
(2021) Si, T, RH and Ws

Wavelet packet
decomposition

(WPD)
- CNN–LSTM-MLP RMSE = 32.1

nRMSE = 15.5% [92]

MA Hassan, et al.
(2021) GHI, Ws, AT, and RH Normalization GA NARX RRMSE = ~10–20% [93]

DR Dash, et al.
(2021) Power Empirical wavelet

transform (EWT) PSO

Robust minimum
variance Random
Vector Functional

Link Network
(RRVFLN)

- [94]

KZ Guo, et al.
(2021) Si, GHI, T, RH, CC, SP PCA ABC, PSO BP

(Sunny)
nMPAE = 1.563

nRMSE = 0.192(Cloudy)
nMPAE = 2.451

nRMSE = 0.187(Overcast)
nMPAE = 1.029
nRMSE = 0.332

[95]

G Li, et al.
(2020) PV power - - CNN- LSTM

(15min)
MAE = 4.134
RMSE = 7.104

(45min)
MAE = 12.068
RMSE = 20.401

[49]

B Ray, et al.
(2020)

PV power, GHI, DNI,
DHI, T

Data cleaning
Standardization
Normalization

- CNN-LSTM
RMSE = 3.89

nRMSE = 5.29%
MAPE = 2.83

[96]

H Zang, et al.
(2020)

PV power, Ws, T, H,
GHI, DHI

EMD
WT - CNN MAE = 0.152 [97]

KJ Nam, et al.
(2020) GHI EMD - LSTMGRU

LSTM
TRAIN MAE = 0.38

Test mae = 2.03
GRU

Train mae = 0.47
Test gru = 1.8

[98]

YK Wu, et al.
(2018) PV power, NWP

Data cleaning
Standardization
Normalization

CSS ANN - [11]

Si: Solar Irradiation; Ws: Wind Speed; Wd: Wind direction; T: temperature; AT: ambient temperature; H: humidity;
RH: relative humidity; GHI: global horizontal irradiance; SZA: solar zenith angle; HA: hour angle; LW: Total
column liquid water; CC: Total cloud cover; IW: Total column ice water; SP: Surface pressure; 10U: 10-m U wind
component; 10V: 10-m V wind component; 2T: 2-m temperature; SR: Surface solar radiation downwards; TR:
Surface thermal radiation downwards; TS: Top-net solar radiation; and TP: Total precipitation.
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7. Probabilistic Forecast Techniques

Recently, numerous studies have focused mostly on deterministic forecasts, often
known as a single-value forecasting. Since PV generation is intermittent energy and full of
uncertainties, deterministic forecasts could not satisfy the requirement of power system
operations. To estimate PV power generation with a possible range, probabilistic predic-
tions must be applied. The methods of probabilistic forecasts include lower upper bound
estimation (LUBE) [90], probability density function (PDF) [99], cumulative distribution
function (CDF) [100], prediction interval coverage probability (PICP) [101], prediction
interval normalized average width (PINAW) [101], coverage width criterion (CWC) [7],
continuous rank probability score (CRPS) [102], and CRPS skill score (CRPSSS) [103], etc.

PDF is one of the core concepts in probability theory, which is used to describe the
probability distribution of the corresponding output. It allows users to fully understand all
potential ranges and probabilities of future-observed data, and then present a more accurate
forecast. However, in the application of continuous data, typical probability distributions
include continuous uniform distribution, normal distribution, gram distribution, etc., in
which statistical data are based on known samples to set a group of parameters. Continuous
uniform distribution means that the probability of values in an interval is equal, and the
probability of values falling outside the interval is zero. Normal distribution is also known
as Gaussian distribution. A normal distribution indicates that the probability of data
is the largest in the mean value, and the distribution is almost within three standard
deviations. Gramma distribution is used for data with an asymmetric distribution. As the
shape parameter is larger, the gramma distribution tends to be a normal distribution. The
larger the scale parameter is, the more divergent its distribution is. The nonparametric
method means that the statistical data are not clear, so the parameters cannot be fixed. The
nonparametric methods are used when the parametric methods cannot be used.

The integral of probability density function that may completely capture the probabil-
ity distribution of a real random variable is known as CDF. Both CDF and PDF are capable
of being converted to each other.

The evaluation of probability forecasting results typically includes two components:
reliability and sensitivity. The ability of the forecasted lower upper bound estimation to
cover the actual confidence interval is represented by reliability, and its evaluation index is
called PICP. To archive good reliability, PICP should be as close as possible to the actual
confidence interval. In addition, sensitivity denotes the accuracy with which the lower
upper bound is estimated, and its evaluation index is called PINAW. A small PINAW
represents that the forecasting model is more accurate. Using CWC, one can evaluate PICP
and PINAW together and obtain the model’s performance score. A small CWC represents
that the performance of the prediction model is better.

CRPS is evolved from the Brier score, which calculates the prediction error with
probability. CRPS is regarded as a score to predict the accuracy of CDF by integrating the
difference between all possible thresholds and probabilities. CRPSSS further evaluates
the prediction ability of CRPS. To compare with CRPS, a reference CRPS (RCRPS) is also
required. RCRPS can be used in deterministic forecasts. If CRPSSS is bigger than zero, the
system has prediction ability. If CRPSSS is equal to unity, it is the best case.

8. Discussions
8.1. Important Findings from Literature Reviews

Forecasting models make use of a variety of parameters. For instance, an ARIMA
model includes different order AR or MA parameters. These parameters can be obtained
using optimization algorithms; however, there is no single algorithm that can be used in
all forecasting cases. Different optimization methods can be applied suitably to different
statistical or machine learning models. The major factors that affect forecasting accuracy
include the selection of the input variables, the type of data processing employed, the ap-
propriateness of the learning models, and the weather classification. In recent years, several
data preprocessing techniques have received a large amount of attention, especially those
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related to data cleaning and normalization. Several feature extraction technologies have
also been used, including Wavelet Decomposition and Empirical Mode Decomposition,
which are the most commonly used methods. It has also been observed that supervised
learning methods have been used more frequently than unsupervised methods, and that
there is a trend towards the mainstream use of novel deep learning structures, despite
some studies still using time-series based methods. Weather classification is significant for
day-ahead PV forecasts, and the concept is analogous to that in the Similar Days short-term
load forecast. Finally, it is remarked that hybrid models that integrate physical models with
statistical methods remain the primary forecasting tool for PV power forecasting.

Different input data and models should be selected for different forecasting purposes;
however, it is exceedingly difficult to compare the forecast performance that results from
the selection of these different forecasting models, PV sites, input variables, and forecasting
lead times because the environmental characteristics of each PV site, the selected input
variables, and the lead time of the forecasts are completely different. Nevertheless, several
significant findings can be summarized as follows:

• The forecasting horizon has a strong influence on forecasting accuracy. When the lead
time is shorter, the average forecasting error is smaller.

• The majority of PV forecasts use the inputs of solar irradiation, atmospheric tem-
perature, and wind speed, but some use advanced input variables such as global
horizontal irradiance, diffused horizontal irradiance, diffused normal irradiance, and
total cloud cover.

• Site-related parameters such as the solar zenith angle are also considered in some papers.
• Different statistical methods can be used to evaluate the performance of the forecasting

models, among which the MAE, the MSE, and the RMSE are the most popular indexes.
• Machine learning-based methods that employ optimization parameter searching have

been the most popular methods in recent years. Optimizing the model parameters and se-
lecting appropriate input data effectively improves the accuracy of the forecasting model.

8.2. Knowledge Gaps

The following knowledge gaps have been identified and require further research:

8.2.1. The Integration of Atmospheric Science with Renewable Power Forecasting

The adoption of atmospheric science for renewable power forecasting has historically
been fairly weak. Atmospheric science has traditionally focused on the forecasting of
extreme wind speeds (e.g., typhoons), rainfall, and temperature and paid less attention to
solar irradiance, and yet accurate forecasting of solar irradiance is essential for the accurate
forecasting of PV power. Therefore, the application of Numerical Weather Prediction (NWP)
to solar irradiance should be promoted. A first step in this direction has been the recent
development of the WRF-Solar NWP model for PV applications globally.

8.2.2. The Restricted Application of Novel AI Models

Novel deep learning and machine learning models are developing quickly; however,
these models have thus far been limited in their use to the fields of computer science
and image processing. Thus, there appears to be a large number of applications to which
these AI models have not yet been implemented and PV power forecasting is certainly one
application where they could prove very effective, although further research is required on
this matter.

8.2.3. The Selection of the Optimal Combination of Data Collection Tools

PV power forecasts rely on various tools to collect input data. These tools include solar
irradiance meters, numerical weather predictions, sky image meters, and even satellite
imagery. Different tools can be suitable for different purposes or for different lead times
during the forecasting process. Therefore, the selection of different combinations of these
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tools is an important step in the forecast process as employment of the appropriate tools
would significantly increase efficiency.

8.2.4. The Implementation of a Cross-Disciplinary Approach

The generation of PV forecasts requires a cross-disciplinary approach, combining
atmospheric science, mathematical statics, computer science, machine learning, and power
engineering to give one example. This combination of different fields of knowledge in the
construction of the forecasting engine is crucial in ensuring the quality of the forecasts it
can generate.

8.2.5. The Stability of Data Collection

Stable data collection is very useful in the establishment of a forecasting module;
however, most PV measurements are missing data or contain noise. Thus, enhancing
measurement stability, including the improvement of data-collection techniques and the
imputation of missing data, is a task that would yield considerable fruit.

8.3. Future Scopes

Tremendous progress has been made in the fields of atmospheric science, computer sci-
ence, measurement science, and artificial intelligence in recent years. Thus, the uncertainty
in renewable power generation can be greatly reduced by using accurate prediction tech-
nologies. Important issues in PV forecasting include numerical weather prediction, data
processing, and statistics-based and artificial intelligence-based training models. Numerical
weather prediction can predict a few hours or days in the future a variety of atmospheric
parameters such as wind speed, insolation, rainfall, temperature and humidity, air pressure,
etc. In addition to NWP, various auxiliary tools such as satellite imagery, sky imagery, and
wind speeds measured using lidar can also assist in obtaining important input data for
PV forecasting models. These selected inputs are the core data for prediction. During the
forecasting process, however, input data may be missing or contain significant noise, which
renders them inappropriate for direct use in model training. Thus, data preprocessing is a
vital step required to maintain high-quality data. It can reduce or filter noise to a significant
degree, fill in missing data, and extract the main features of the original data. Typical
preprocessing techniques include data cleaning and standardization, classification, regres-
sion, clustering, and dimensionality reduction. This last step is performed to complete the
forecasting model.

Previously, a variety of statistical methods and traditional neural networks have
been used to train forecasting models, but more recently many new AI models, and in
particular those incorporating machine and deep learning algorithms, have been proposed
and their popularity has continued to grow. The structure of a traditional neural network
has relatively few hidden layers or neurons, but deep learning increases the number of
hidden layers and the amount of feedback, thus creating a more complex learning structure.
Incidentally, the major difference between deep learning and machine learning is that
deep learning is a subset of machine learning that can learn valuable characteristics from a
dataset automatically and then reduce computational time using parallel processes. Many
new deep learning algorithms have not yet been used in solar power forecasting, for which
they may prove to be very beneficial.

Traditional deterministic forecasting methods only provide a single value prediction.
This means that they cannot offer flexibility to industrial applications, but an operating
range that takes uncertainties into account is important for power system operations. As
renewable power generation increases, the uncertainty of power generation in a system also
increases and thus, probabilistic forecasting, stochastic unit scheduling, and probabilistic
load flow become more important factors in power system operation. It is expected that
there will be a clear trend towards probabilistic forecasts for PV power generation, and that
these forecasting results will be applied to the decision making and risk management of
power systems.
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In summary, the complete process of solar power forecasting requires the collection
of a large amount of data, the implementation of multi-dimensional data processing and
feature extraction, and the application of a powerful deep learning structure for training.

9. Conclusions

PV power generation has an inherent problem of intermittency, which affects power
system reliability. Therefore, it is essential to design reliable forecasting models for such
systems. In this article, the techniques used for solar power forecasting are summarized
in a systematic and comprehensive manner. The key topics identified from the survey
were learning techniques, data processing, the classification of forecasting methods, major
factors that affect the forecasting performance, and the estimation of forecasting uncertain-
ties. It was observed that supervised learning methods were used more frequently than
unsupervised methods and also that most forecasting methods applied a data cleaning and
normalization process to reduce forecasting errors. Several feature extraction technologies
were also used, including Wavelet Decomposition and Empirical Mode Decomposition,
which were the most commonly used methods. Both statistical and hybrid models have
been widely preferred over purely physical models, and machine learning was the most
popular method used for PV forecasting. Of particular interest is the fact that various
machine learning models that employ optimal algorithms have received an increasing
amount of attention, with the more commonly used optimal algorithms being the PSO,
GA, and WOA. The major factors that affect the forecasting results were identified as solar
irradiance, wind speed, and temperature; and thus, they are naturally the more commonly
used inputs. Although probabilistic forecasts with uncertainty information are highly
useful for system operations, deterministic forecasts remain the primary methods used;
however, it is expected that the importance of the former will increase.

The main contributions of this paper are to provide a complete overview of potential
AI models for PV forecasting, and in particular an introduction to novel deep learning
models based on attention mechanisms. These new deep learning algorithms were initially
applied to image processing, and few have yet been used for PV power forecasting; thus,
there is a huge reservoir of untapped potential in the application of these new deep learning
models to time-series forecasts. In addition, the importance of data processing techniques
to forecasting is emphasized since their appropriate use significantly enhances forecast-
ing accuracy. Finally, this paper provides a comprehensive discussion of the suggested
future scope of PV forecasting research as well as an identification of several gaps in our
current knowledge.
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