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Abstract: Work processes and sociological structures can differ significantly between organizations.
These organizational aspects determine user behavior, which in turn exerts considerable influence
on the key performance indicators of artificial lighting systems. Accordingly, the use of generalized
assumptions about user behavior in the building design phase can lead to large discrepancies
between design and operation. In the following work, the possible influences of different occupancy
schemes, an essential aspect of user behavior and shaped by the organization, on energy demand
and workplace-related daylight dose are evaluated. For this purpose, calculations are made based on
real measurement data of an open-plan office with zoned lighting. Multi-level calculation models
are used to determine improved user distributions in the room to ensure optimization according
to the desired target criteria. The results show that occupancy schemes have a significant impact
on energy demand, contributing significantly to overall building performance, but only slightly to
workplace-related light exposure rates in terms of total daily light dose. A correlated influence on
the target criteria could not be demonstrated, but given the minor influence on daily light dose, the
optimization of planning and operation can be focused on energy efficiency.

Keywords: energy efficiency; daily light dose; artificial lighting; occupancy schemes; blossom
algorithm; Hungarian algorithm; assignment problems

1. Introduction
1.1. Work Interruptions as an Organizational Cultural Aspect

Depending on the profession, the time periods associated with activities at the office
workplace and activities at another work location vary greatly. One of the most common
work activities that contributes to this dynamic and has received increasing attention in
recent years is meetings [1–4]. It is estimated that the number of meetings that occur
daily in the United States is around 11 million [5]. Meetings are firmly entrenched in
most organizational cultures as a tool for problem solving [6], critical reflection [2,7,8],
information sharing [9–11], and idea generation [3], among others, in order to operate
profitably in competitive environments [6]. Managers invest a large part of their daily
business in meetings [12,13]. The associated time use increases with the position held
and can consume a quarter of the working time for project managers, half for business
executives and even define three quarters of the daily business for company managers [14].
In particular, people tend to underestimate the time spent on meetings [13].

The high mobility of users, e.g., caused by the follow-up of meetings, can have a
decisive impact on the operational behavior of the building systems:

Planning and simulation as well as the derived control definition are currently based
on generalized parameters (e.g., generalized presence time models and generally valid user
comfort criteria) and concepts (e.g., interconnection of luminaires in larger groups) in order
to compensate for missing information during the building design phase and to achieve
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the high applicability of controls. Organization-specific processes and sociological aspects
resulting from the target application can be considered as frameworks and boundaries
by which user behavior, and thus presence at the workplace, is significantly determined.
However, organization-specific processes and their influences on user behavior only usually
reveal themselves after building commissioning and may change over time. Therefore, it is
not surprising that general assumptions about user behavior can be named as a major cause
of existing discrepancies between expected and actually measured values [15,16]. One
basic assumption of general-purpose models fails in particular when the social structure
leaves open spaces, such as the indeterminacy associated with events such as meetings
(specifically in terms of frequency, temporal extent, and number of participants [13]). The
following figure illustrates this using the example of three workplace-related attendance
profiles over time of day (Figure 1).
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Figure 1. Representation of three exemplary presence profiles at the workplace in an open-plan
office of Bartenbach, averaged in the course of the day over the period from 2 Septermber 2020–3
November 2020; The yellow-green representation represents high presence, the blue- to gray-colored
representation represents low presence, and transparent areas are periods without presence; core
working hours in the object of observation: Monday to Thursday 9:00–12:00 and 14:00–17:00 and
Fridays 9:00–12:00.

The previous example (Figure 1) shows clear differences regarding the start and
end of work, as well as with regard to the temporal characteristics of the probability of
workplace occupancy. User 1 and User 3 have time windows of high presence in the
morning and afternoon hours (strongly yellowish representation, Figure 1), while User 2
has consistently low attendance at the workplace (green to bluish representation, Figure 1).
The more freedom the organizational structure allows and the more dynamic and complex
work-specific processes are, the greater the variability in identifiable occupancy patterns.

1.2. The Influence of User Mobility on Concepts of Human-Centric Lighting

Besides the extrinsic light–dark cycle, the achieved light exposure during the day influ-
ences sleep quality, an essential part of circadian rhythmicity [17–19]. In turn, sleep quality
significantly determines cognitive performance the following day. Given that humans
spend about 90% of the daytime indoors [20–22], the task of controlling one of the most
substantial zeitgebers of circadian rhythms falls to artificial lighting. Although artificial
lighting systems offer comparatively much lower intensities than daylight, they can still
produce non-visual light effects [23]. Accordingly, it is recommended to aim for higher
daily light exposure to support health, especially circadian rhythmicity. In addition to
illuminance, in the context of daytime sleepiness and sleep quality, the color temperature
of light is also crucial [24–28]. Therefore, human-centric lighting (HCL) concepts aim to dy-
namically vary color temperature and intensity based on the time of day to take advantage
of the non-visual effects of light. Additionally, subjective well-being also increases slightly
as a result of higher light exposures [29].

However, light exposure, measured in lux hours (lxh) as the product of illuminance at
the eye (Ev) and time, are highly dependent on many factors. Spatial position, the user’s
orientation in the room and, associated with this, the room geometry, the facade system,
glazing proportion and window transmittance, as well as the reflective properties of object
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surfaces in the room and the outdoor situation have a decisive influence on the direct and
indirect light input [30,31] and thus on the achievement of certain spectral irradiances at
eye level, which are necessary as a light stimulus to generate non-visual lighting effects [32].
These criteria can be taken into account when designing an HCL concept in the workplace.
It is more difficult to plan the time users spend within an HCL concept during the workday.
The described mobility of users, e.g., due to an increased follow-up of meetings, can affect
the effectiveness of human-centric lighting concepts. For this reason, the influence of
occupancy times at the workplace must be investigated in more detail.

1.3. Energetic Significance of User Distributions in the Room

Long-term, objectively oriented control concepts can usually only insufficiently or
incompletely represent such user behavior at a lower level, which leads to the user influence
on the energetic system performance being correspondingly high. Analogously, user
behavior and the associated distribution of users in space can have negative effects on the
utilization rates of circuit concepts. For example, the field measurements and data collection
initiated by Kawamoto et al. in a Japanese office show a high level of unused on-time for
electrical loads [33]. Naylor et al. and Nguyen and Aiello confirm that occupant activities
and behaviors of building occupants exert significant influence on the energy demand of
equipment used in the heating, ventilation, air conditioning (HVAC), and lighting trades,
as well as on the operating times of individual electrical loads [34–36]. In view of the fact
that the building sector is responsible for around one-third of the world’s energy demand
and thus also for a corresponding proportion of greenhouse gas emissions [37,38], and that
consideration of user behavior and occupancy patterns promises energy savings of up to
60% [39,40], it is important to give greater consideration to user behavior.

Based on this problem, the International Energy Agency (IEA) is dealing with the
simulation of user behavior in buildings within the framework of Annex 66 [41]. In princi-
ple, this can reduce the gap between planning and operation, but despite more complex
modulators, simulations are always based on assumptions about subsequent operating
behavior. It is not forgotten that building controls have to be adjusted subsequently after
initial definition. However, conceptual designs, such as the interconnection of the actuators,
cannot easily be adjusted afterwards.

1.4. Derivation of the Study Objectives

While the influence of the technologies used on the energy demand and the daily light
dose can be planned, the user behavior, which is determined by the corporate culture con-
cept, is difficult to calculate [42]. Long-term data collection, as the basis of post-occupancy
evaluations (POEs), offers the possibility to reflect and analyze the real building situation
well. A key parameter in this context is presence at the workplace. Thus, the data collection
of presence at the user level allows the identification of trends, such as periods of the day
with a high probability of presence or periods of frequent user vacancy (cf. Figure 1). In
this paper, the authors show the influence of occupancy behavior at the workplace on the
artificial lighting energy demand and the achievable lux hours and how user distributions
in the room can support or impair the effectiveness of artificial lighting installations. In
this context, the ranges of the influence of the user distribution in the room on the energy
demand and on the daily light dose are listed via suitable mathematical procedures. Finally,
synergies between the target criteria, if they exist, are examined depending on the selected
user distribution in the room.

The focus of this study is on lighting in office applications. The data basis is formed by
presence data, illuminance data as well as operating times and energy consumption data
of an artificial lighting system, which originate from the real operation of an open-plan
office. Through this work, the energetic relevance of organization-specific aspects and
post-occupancy evaluations is highlighted.
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2. Materials and Methods
2.1. Study Object

The R&D office building of Bartenbach GmbH in Aldrans, Austria (Figures 2 and 3)
was chosen as a case study. A workstation-zoned lighting system was installed on around
200 m2 of office space. The office space comprises an open-plan office (28 workstations
in 161.7 m2, 24 occupied), two individual offices (head of research: 15.6 m2; head of
development: 14.7 m2) and a meeting room (9.7 m2), which are separated from each other
by transparent glass walls (Figure 2). The focus of this study was on the occupancy pattern
of the open-plan office, since the occupancy of the individual offices by the two R&D
managers is fixed.
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Figure 3. View through the open-plan office looking towards the west-facing individual office
(cf. section B marking from the building floor plan, Figure 2); north-facing skylights on the right,
south-facing facade with closed external screen on the left; photo: Bartenbach GmbH.

For this study, the 28 workstations in the open-plan office were divided with their
respective adjacent workstations into separately controllable lighting zones (WZ1–WZ4:
per zone: artificial light and screen of the top light; WZ5–WZ9: per zone: artificial light;
WZ10–WZ14: per zone: artificial light and screen of the south facing window front; cf.
Figures 2 and 4). The artificial lighting solution was implemented with ceiling-integrated
LED luminaires, which are interconnected in three linear units and focused on the work-
station (Figures 3 and 4). Earlier studies of the lighting concept showed that this greater
user-centeredness can not only achieve a significant reduction in energy consumption,
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but also higher system acceptance by covering individual lighting preferences (details
in [43,44]).
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Figure 4. Overview of the sensor technology used in the building section of the study object
(cf. section A marking from the building floor plan Figure 2), as well as the maximum artificial
light-based illuminance levels.

The office building is characterized by high levels of daylight, which are realized by a
large south-facing window front and north-facing skylights. For the study object, an average
daylight autonomy DA500.8-18 of 81.56% could be determined with Radiance (version 5.2,
http://www.radiance-online.org, accessed on 28 March 2022) (Figure 5; calculation related
to the normative minimum illuminance of 500 lx according to EN 12464-1; reference time:
8:00 to 18:00, summertime not considered, calculated with necessary glare protection).
To avoid glare and thermal overheating, sun-tracking screens as well as external static
daylighting louvers were installed, the dimension and structure of which were specifically
optimized for the geographical location of the building. The created daylight environment
(with an average Eh > 1000 lx at midday) not only positively influences well-being (cf. [45]),
but also shifts the need for artificial light to the edges of the day (cf. [46]). Since these ranges
have high user dynamics, the use of artificial lighting control depending on presence is
significant for the energy demand [46]. This was implemented in the study object with
passive infrared sensors (PIR; ceiling installation: Thermokon® (Mittenaar, Germany), RDI;
occupancy information at the workstation: NodOn, PIR-2-1-01, Saint Cyr en Val, France).
Further energy savings are achieved in the study object through a daylight-dependent
adjustment of the artificial light intensity. For this purpose, there was one illuminance
sensor per workstation zone (Figure 2) on the horizontal work surface (Thermokon®, LDF
1000A). The target value in automatic mode was the normative minimum illuminance of
500 lx (EN 12464-1). The sensor positions are shown in Figure 4. In addition, a diurnally
dynamically adjusted color temperature control (from 5000 K in the morning to 2200 K
in the evening) was installed in the study object to support circadian rhythms (details of
circadian rhythms associated with light exposure in [47]). The control system on which
all this was based was a programmable logic controller (PLC; BECKHOFF, CX5140-0141,
Verl, Germany).

http://www.radiance-online.org
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Figure 5. Daylight simulation (DA500.8-18) of the study object, implemented with Radiance; simulation
related to the normative minimum illuminance of 500 lx according to EN 12464-1; reference time:
8:00 to 18:00, daylight savings time not considered, calculated with necessary glare protection, glare
protection with limit value Eh = 2000 lx in WZ12, (cf. Figure 2), staggered control: (1) closing of the
outer screen up to half, (2) complete closing of the outer screen, (3) closing completely and closing of
the hand screens.

2.2. Measurement Methodology

Since the sensitivity of a PIR sensor is greater at shorter distances [48], presence at
the workstation was recorded using table-bottom mounted PIR sensors (NodOn, PIR-2-
1-01; Figure 4). In addition to workplace presence data, workplace illuminance, lighting
dimming level, and actuator energy consumption were also collected. The data logging was
realized via the building control system (BECKHOFF-PLC) and converted into a machine-
processable data format (.csv). Presence data and information from the lighting system
were logged for changes in state. Illuminance was recorded cyclically per minute. An
overview of the data points and sensors used is shown in Table 1.

Table 1. Overview of the sensors relevant to the study, including a list of the measurement method-
ology and the number of data points collected; WZ1–WZ4: one illuminance sensor per zone, WZ5–
WZ14: one illuminance sensor for each two adjacent zones.

Measured Variable Product Name Quantity Measurement
Methodology Data Points Measuring Period

Presence at the
workstation NodOn, PIR-2-1-01 24 With change of

state 1,661,424 1 July 2021–19
November 2021

Illuminance,
horizontal

Thermokon®,
LDF 1000A

9 60 s 999,189 1 July 2021–19
November 2021

Energy meter for the
artificial light Eltako, FWZ12-16A 3 60 s 569,721 1 July 2021–19

November 2021

The daily light dose refers to the vertical illuminance at the eye throughout the day.
Since the horizontal illuminance at the workplace was recorded and logged by sensors
in the study object, a corresponding conversion from horizontal to vertical illuminance
was required. Since the required conversion factors from Eh to Ev were workplace-specific,
a simulation model was used. For this purpose, the study object was remodeled in a
high level of detail (exterior and interior elements) for a simulation with Rhinoceros®

(version Rhino 6) (Figure 5), and one measurement point at table height for horizontal
illuminance and one measurement point at eye level for vertical illuminance were provided
for each workstation (cf. [49]). Honeybee [+], a Grashopper plugin in Rhinoceros® that uses
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RADIANCE as a daylight simulation module, was used as the simulation platform. The
daylighting simulation followed the three-phase method, based on climate data from the
nearby Innsbruck site (EnergyPlus™ weather file (.epw)). Workplace-specific conversion
factors (Eh to Ev) could be derived from the simulation data.

2.3. Study Execution

The occupancy pattern study started on 1 July 2021 and ended on 19 November 2021
(100 working days, holidays considered). Three measurement days in July (13–15 July
2021) were omitted due to a failure of the data logging, so the data set ultimately comprises
97 measurement days. Over the entire study period, 22 employees were continuously
employed in the open-plan office (full-time: 1× female, 18×male; part-time: 1× female,
2× male). Two employees were only partially employed during the study period (9 weeks:
1× female; 18 weeks: 1× female; both as part-time workers). Absences due to vacation,
sick leave and home office activities were considered, as these have an essential influence
on the matching of user profiles. The core working hours during the study period were
9:00–12:00 and 14:00–17:00 from Monday to Thursday and 9:00–12:00 on Fridays. The
measurement period per study day was set to 6:00–20:00 to accommodate flextime working
hours. The study was conducted outside of COVID-19 influences. Accordingly, there were
no occupancy constraints in this regard.

2.4. Limitations of the Current Study

Even if the detection range of the presence sensor system was limited to the image
of a single workstation, it cannot be ruled out that faulty presence detections were made
due to events that are difficult to calculate. These include, among others, movements of
persons from one workstation zone to another, e.g., due to a meeting at the workstation.
Disturbing effects of movements of persons of short duration that are difficult to calculate
are intercepted by the artificial lighting switch-off delay. In this context, the adaptation of
the artificial lighting switch-off delay to presence patterns and activity profiles offers the
possibility of reducing the artificial lighting energy requirement [46,50,51]. However, to
provide a representative baseline, the artificial switch-off delay for the study was based on
the industry standard (set: 15 min; industry standard: 10–20 min [40,48,50,51]).

2.5. Methodology for Deriving User Distribution in the Room to Increase the Workplace-Related
Daily Dose of Light

Since concepts of human-centric lighting are primarily designed for office applications,
the following analysis of the daily light dose is limited exclusively to the lux hours that
users can obtain during their time at the office workplace. Figure 6 lists the daily light dose
that would result for a continuously present user during the study period. There are strong
room-related differences (standard deviation 1113 lxh). Based on the logged presence
profile, weighted with the workplace-related Ev-profile, it was necessary to derive user
distributions that list the range of the achievable daily light dose. For the representation of
the range, users were positioned in such a way that the achieved lux hours were maximized
or minimized in total. In addition, a user distribution was derived that created a balanced
ratio of the workplace-related daily light dose between the users. In this context, the effects
of such occupancy schemes on individual users were evaluated. The daily lux hours shown
were limited exclusively to the light dose received by users during their presence in the
open-plan office.
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Figure 6. Overview of the average daily light dose for the different workplace zones (WZs, cf.
Figure 2) with permanent presence at the respective workplace (values apply exclusively to the
time at the workplace), separated by viewing direction (west/east), based on the illuminance data
collected in the study object during the study period (1 July 2021–19 November 2021).

From 28 seats x in the open-plan office, which are to be occupied by 28 users y
(incl. 4 empty presence profiles, cf. Figure 2), there are x! possibilities of a user distribution
(3.05 × 1029 permutations). In order to highlight the influence of the user distribution
on lighting design concepts, the occupancy scheme with the highest total lux hours was
selected from the identified permutations, and the occupancy scheme with the lowest total
lux hours was selected for comparison. Due to the number of permutations, a brute-force
search to determine the solution did not appear to be expedient (9.67 × 1020 years with a
calculation time of 0.1 s per permutation).

To make this two-dimensional assignment problem (AP2) solvable in reasonable time,
the mathematical model of bipartite graphs was used. Since, according to the problem,
the nodes of the graph (Ev-weighting function) can be divided into two disjoint subsets
X and Y (X: space-based Ev-profile; Y: presence profile), within which there are no edges,
the definition of bipartite graphs was satisfied. For each edge {u, v} ∈ E, the following
applies: (u ∈ X ∧ v ∈ Y) ∨ (u ∈ X ∧ v ∈ Y). To solve in polynomial runtime weighted
assignment problems on bipartite graphs, existing algorithms can be used. The best-known
algorithm for an AP2 is the Hungarian algorithm (computation time in O

(
n3)) [52–54]. The

Hungarian algorithm requires a square matrix C =
(
cij
)
. With x = y, the size of the matrix

C to be set up is x× y (28× 28). For this purpose, the normalized workplace-related daily
light dose was determined from each of the 28 presence profiles (incl. 4 empty profiles) per
workplace over the measurement period (corresponds to 784 individual values):

First, the individually related light dose per time point Di(t) was determined. This
resulted from the product of measured presence information at the workplace pi(t) and
workplace-related vertical illuminance at the eye Evi(t) at the same measurement time. The
user-specific daily light dose Ddi was then the sum of the individually related light dose
Di(t) over the day. Since the presence profiles at the workplace differed greatly from one
another (cf. Figure 1) and different illuminance levels were available over the course of
the day (Figure 7), it was important to make the potentially individually achievable daily
lux hours comparable. This was done by normalizing the light dose via a user-specific
reference profile of the vertical illuminance, which resulted from the sum product of an
average Ev-profile and the individual stamping time.
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Figure 7. Overview of the average horizontal and vertical illuminance profile over the course of the
day, separated by skylight side and window side, based on the illuminance data collected in the study
object during the study period (1 July 2021–19 November 2021).

The calculation of the 784 single values, which are transferred into the matrix C,
was carried out in an evaluation tool written in python™ (python 3.8, pandas 1.0.3, https:
//www.python.org/, accessed on 28 March 2022). The Hungarian method was also applied
in python™ (scipy 1.7.2, [55]). The Hungarian algorithm selects the optimal solution where
the assignment gives the lowest value in total [56]. To determine the association with the
maximum value, the matrix is negated (C× (−1)). A description of the association matrix
of the Hungarian method is provided by [56].

While the Hungarian method is used to identify an assignment in which the target
value is maximized or minimized overall, there is a risk that extremes are used. In order to
derive a user distribution in space that provides the most uniform distribution of workplace-
related daily lux hours, a different method is required. For this reason, an approximation
method of logical programming was used:

For this purpose, the user-specific daily light dose was ranked from the lowest to
the highest value. The same was done with the workplace-specific potentials of vertical
illuminance (Figure 6). Subsequently, the rows were mirror-matched so that the person with
the lowest reference of daily lux hours (normalization value, averaged over all workplaces)
was positioned on the seat with the largest Ev-profile.

2.6. Methodology for Deriving a User Distribution in the Room to Reduce Energy Demand

In the energy analysis, the workplace-related presence information was combined with
the workplace-related energy profile. The latter results from the artificial lighting suggest
that is necessary when users are present in order to achieve the normative minimum
illuminance of 500 lx for office activities (EN 12464-1). Due to the geometry of the room
and the course of the sun, there were also differences in the workplace-related energy
profile depending on the position of the room and the time-of-day occupancy behavior
at the workplace (cf. Figure 8). Since the artificial light energy demand of a lighting zone
(cf. Figure 2) is composed of the joint presence profile of two users (logical-OR-linkage of
the associated individual profiles), the position-dependent energy profile of the other users
must be included in energy optimization of the user distribution (Figure 8). It is shown that
in terms of the total energy demand of a lighting zone, the greater the individual profiles
of the same zone, the less overlapping time there is between the profiles and the greater
the presence in the daytime boundary areas, i.e., the time in which artificial lighting is
supplemented. For User 1 and User 2 shown in Figure 8, the overlap percentage of presence
within the lighting zone is 17.9% (based on the maximum occupancy time of the lighting
zone). For User 3 and User 4, the overlap percentage is 22.4%.

https://www.python.org/
https://www.python.org/
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Figure 8. Time course of artificial light energy demand for different user combinations in different
zones (as cumulative data) and average horizontal illuminance at the workplace (black dashed); the
data set corresponds to the study period (1 July 2021–19 November 2021); core working hours in the
study object: Monday–Friday 08:00–12:00, Monday–Thursday 14:00–17:00.

The derivation of user distributions in the room, which have the minimum or max-
imum energy demand, leads to a combinatorial assignment problem. The permutations
result from the interconnection of the presence profiles of the users to each other and are
energetically weighted to the room position. Based on 28 presence profiles y (incl. 4 empty
profiles) and 14 lighting zones, each occupied by 2 persons (or empty) (z = 2; order within
the zone is arbitrary), the number of possible assignments Pz,y can be calculated as follows:

Pz,y =

y
2−1

∏
i=0

(y− 2i)!
z!((y− 2i)− z)!

(1)

For y = 28 and z = 2, this results in 1.86 × 1025 permutations, which rules out a
brute-force search for solution determination (59 × 1015 years with a computation time of
0.1 s per permutation). Moving to graph theory, it follows that AP2 can be solved efficiently
in polynomial time [52,54], but not multidimensional assignment problems, such as AP3.
These problems are considered NP-hard [57,58]. For this reason, it is justified to apply
heuristics to find near-optimal solutions to AP3. The solution chosen by the authors for
approximation relies on the ideas of Gabrovšek et al. and Huang and Lim by breaking
down a k-assignment problem to a set of two-dimensional assignment problems [59,60].
While the solution to AP2 consists of one permutation q, the solution to an AP3 results
from two permutations p and q. Now, if the permutation p is fixed, the optimization of q
becomes an AP2 problem, and vice versa [60].

In the first step, the permutation of the presence profiles to each other is therefore
optimized. The energy weighting is not done in relation to the room position, but in
relation to an averaged energy profile resulting from the 14 lighting zones (Figure 2). This
creates independence from the room position. Based on an averaged energy profile and the
28 presence profiles y, the number of possible user pairings results as follows, whereby the
order within a user pairing is arbitrary.

Py =
y

∑
i=1

y− i (2)
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For the resulting 378 user pairings, the corresponding cumulative artificial light energy
demand over the measurement period is then determined. The presence of the user pair
results from a logical-OR-operation of the two individual profiles. The artificial switch-
off delay for absence is 15 min. Edmond’s Blossom algorithm is used to select the most
energetically favorable combination (or, for comparison, the least energetically favorable
combination) from the 378 user pairings. The Blossom algorithm is a polynomial time
algorithm to find a minimum, or maximum, match in a graph [61]. By definition, in a graph,
a match is a subset of edges of the graph, where no node is included more than once [61].

The artificial light energy demand of a user pairing was determined using an eval-
uation tool written in python™ (Python 3.8, pandas 1.0.3). The Blossom algorithm for
minimum weight matching was used via a C++ implementation of [62] (based on [63]). In
order to identify user pairings in the Blossom algorithm that provide the highest energy
demand in total, the data basis was negated.

Once the user pairings were fixed, the optimization was performed in relation to the
room position. For this purpose, the same python™ evaluation tool was used to determine
the cumulative artificial lighting energy demand for each of the 14 identified user pairs,
based on the real energy profile of the lighting zones. With these values, a square matrix
C could be formed (14× 14), for which the Hungarian algorithm provided an allocation
optimized to the minimum or to the maximum [56]. The calculation was carried out
analogously to the lighting improvement of the user distribution in the room.

The presented multilevel procedure for AP2 lists the influence of the user distribu-
tion in the room on the artificial light energy demand. Furthermore, an approximation
method based on logical programming was applied to derive the most energy efficient
user distribution. The potential of this logical programming shall be put in relation to the
methods of graph theory. In logical programming, the users with the greatest presence
at the workstation during the morning and evening hours, i.e., those time areas that are
significant for artificial light energy demand (cf. Figure 8), are placed in the row of seats
along the window area and top light, since these areas have the highest daylight autonomy
(cf. Figure 5). In this case, seating is initially allocated along the window area, due to the
higher DA500.8-18. The remaining users are positioned aisle-centered together with the
empty profiles.

3. Results
3.1. Impact of the User Distribution on Light Exposure Rates

The following table (Table 2) lists the daily light dose cumulated over all users as well
as the normalization values of the lux hours for better comparability. The data refer to the
user distributions in the room, which the Hungarian algorithm outputs for minimization
and maximization, and exclusively to the achievable lux hours for the presence in the open-
plan office. The results are put in relation to the user distribution of the initial situation.
From the results, it can be seen that the daily light dose cumulatively across all users is
11.1% higher than that of the initial situation due to the derived improved user distribution.
The user-specific improvement in lux hours is significant in this case (t-test, one-sided;
significance level α = 0.05; p = 0.0034). The data set was tested for normal distribution
using the Kolmogorov–Smirnov test prior to statistical analysis (α = 0.05; max deviation
of 0.1784; critical value of 0.2693). With the improved occupancy scheme, the achieved
lux hours cumulatively over the full-time workers with a normal weekly working time
of 40 h can be increased (9.5%), as well as for the part-time workers (23.1%). The most
unfavorable user distribution results in a daily light dose, cumulated over all users, that
is 13.6% lower than the initial situation. Thereby, the workplace-related daily light dose
cumulatively over the full-time employees is reduced by 14.6% and cumulatively over the
part-time employees by 6.08%.
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Table 2. Overview of the workplace-related daily light dose over the study period for different
occupancy schemes: the initial situation, the arrangement optimized for the minimum and for the
maximum, derived via the Hungarian algorithm; data excluding empty presence profiles.

Occupancy Schemes
Most Unfavorable

Occupancy Scheme
in Terms of Lighting

Initial
Situation

Improved User
Distribution in

Terms of
Lighting

Balanced
Occupancy

Scheme of the
Daily Light Dose

Calculation Method Hungarian Method
for Minimization

Calculation
from

Measured
Values

Hungarian
Method for

Maximization

Logical
Programming

Mean daily light dose, cumulated over all
users 83,729.5 lxh 96,959.8 lxh 107,753.7 lxh 98,576.1 lxh

N
or

m
al

iz
at

io
n

va
lu

e al
lu

se
rs

Average ± Standard
deviation 0.6237 ± 0.1612 0.7226 ± 0.3172 0.8023 ± 0.3880 0.7168 ± 0.2343

Minimum–
Maximum 0.3249–1.0937 0.3604–1.6552 0.2480–2.0096 0.3031–1.2598

Fu
ll-

ti
m

e
em

pl
oy

ee
s Average ± Standard

deviation 0.6358 ± 0.1686 0.7519 ± 0.3194 0.8188 ± 0.4066 0.7286 ± 0.2432

Minimum–
Maximum 0.3249–1.0937 0.4089–1.6552 0.2480–2.0096 0.3031–1.2598

Pa
rt

-t
im

e
em

pl
oy

ee
s Average ± Standard

deviation 0.5629 ± 0.1149 0.5765 ± 0.3019 0.7198 ± 0.3094 0.6579 ± 0.2018

Minimum–
Maximum 0.4076–0.6821 0.3604–1.0221 0.4311–1.1546 0.4476–0.9328

To derive a user distribution in which the normalized daily light dose is distributed
as equally as possible for all users, the logical programming presented was used (see
Section 2.5). Logic programming results show a 1.67% improvement in cumulative daily
lux hours compared to baseline, with less dispersion of values (Table 2).

Figure 9 lists how the daily light dose changes for individual users depending on the
selected user distribution in the room (data as average over the study period; standard
deviations: baseline: 1805.8 lxh, Hungarian method for minimization: 1061.7 lxh, Hun-
garian method for maximization: 2222.7 lxh, logical programming: 1324.4 lxh). Since the
users are ranked according to the achievable dose, the linear slope of the light dose can be
given, which can be considered as a measure of the homogeneity of the lux hours between
the users.
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Figure 9. Overview of achievable daily lux hours (average) depending on different user distributions
in the room.

The following figure (Figure 10) lists where the unoccupied workstations are located
after the lighting improvement of the user distribution in the room (Hungarian method for
maximization, green shaded areas, Figure 10), for the most unfavorable user distribution
(Hungarian method for minimization, orange shaded areas, Figure 10), and for the lighting
balanced user distribution (logical programming, gray shaded areas, Figure 10; initial
situation in Figure 2).
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Figure 10. Floor plan of the office premises of Bartenbach GmbH with representation of the individual
functional rooms (colored hatching); the position of the four free workstations is highlighted in color
as an area according to the derived occupancy scheme (user distribution in the room improved
according to the daily dose of light: green; most unfavorable user distribution of the lux hours: red;
user distribution in the room for a balanced daily dose of light: gray); cf. initial situation in Figure 2.

3.2. Impact of the User Distribution on Energy Demand

For the user distribution according to the initial situation, the cumulative energy
demand for the artificial lighting system over the study period (1 July 2021–19 November
2021) is 83.8 kWh (area of the open plan office: 161.7 m2). The average of the energy
demand across all lighting zones is 6.76 kWh ± 3.13 kWh (excl. zones with unoccupied
workstations). At the lighting zone level, there are large fluctuations in terms of energy
demand (minimum: 2.01 kWh; maximum: 12.3 kWh; excl. zones with one unoccupied
workstation).

To list the effects of user distribution on energy demand, staged graph theory al-
gorithms were applied (see Section 2.6). The identified energetically improved user dis-
tribution in the room leads to 30.2% energy savings compared to the initial situation
(4.87 kWh ± 1.75 kWh). The derived maximum variant leads to an increase in artificial
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lighting energy demand of 15.3% (7.01 kWh ± 3.05 kWh). In this context, Figure 11 il-
lustrates the effects of user pairing and user positioning in the room on artificial lighting
energy demand. The corresponding values are listed in Table 3.

Table 3. Overview of the influence of the individual optimization steps on the energy demand of the
artificial lighting system; energy demand of the original occupancy scheme: 83.8 kWh; study period:
1 July 2021–19 November 2021; area of the open-plan office: 161.7 m2.

Occupancy Schemes

Adjustment of Room Position

Hungarian Method
for Minimization

Hungarian Method
for Maximization

Adjustment of the
user pairing

Blossom algorithm for
minimization 58.4 kWh 88.2 kWh

Original
User-combination 72.4 kWh 96.8 kWh

Blossom algorithm for
maximization 86.4 kWh 96.7 kWh
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Figure 11. Overview of the influence of the individual optimization steps on the energy demand
of the artificial lighting system, based on the presence, energy, and illuminance data collected in
the study object, the R&D open-plan office of Bartenbach GmbH in the period from 1 July 2021–19
November 2021; energy demand of the original user distribution: 83.8 kWh; area of the open-plan
office: 161.7 m2.

The user-specific energy savings proved to be significant (t-test, one-sided; significance
level α = 0.05; p = 0.0017). The baseline data set was tested for normal distribution using
the Kolmogorov–Smirnov test prior to statistical analysis (α = 0.05; max. deviation of
0.1163; critical value of 0.2693).

As an alternative variant to graph theory methods, logical programming was used
to derive the most energy-efficient user distribution in the room. The results provide
a user distribution with an artificial light energy demand of 75.2 kWh. This represents
savings of 10.3% over the baseline. Across all lighting zones, the average energy demand is
6.26 kWh ± 4.54 kWh.

Figure 12 lists where the unoccupied workstations are located after the energetic
improvement of the user distribution based on graph theory methods (green shaded areas,
Figure 12), for the energetically least favorable occupancy scheme based on graph theory
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methods (orange shaded areas, Figure 12), and for the energetic improvement based on
logic programming (gray shaded areas, Figure 12; initial situation in Figure 2).
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Figure 12. Floor plan of the office premises of Bartenbach GmbH with representation of the individual
functional rooms (colored hatching); the position of the four free workstations is highlighted in color
as an area according to the derived occupancy scheme (energetic minimization: green; energetic
maximization: red; logical programming for energy reduction: gray); cf. baseline in Figure 2.

Since the overlap time of the user presences within a lighting zone is decisive for the
artificial light energy demand of the corresponding zone (cf. Figure 8), Table 4 lists the
overlap share of the individual user pairings in relation to the maximum occupancy time
of the respective zone. From Table 4, it can be seen that the mean overlap percentage of the
user pairings improves by 43.3% compared to the baseline situation for the energetically
improved user distribution based on the graph theory methods. Logical programming
results in a 30.1% increase in simultaneous presence within a lighting zone.

Table 4. Overview of the overlap fraction over the study period 1 July 2021–19 November 2021, for
different user distributions in the room: the baseline, the minimum, and the maximum energetically
optimized occupancy scheme, derived via the Hungarian and Blossom algorithm as well as the
energetically improved user distribution based on logical programming; average and standard
deviation data are exclusive of pairings with empty presence profiles.

Occupancy Schemes
Energetically Most
Unfavorable User

Distribution

Initial
Situation

Energetically
Improved User
Distribution I

Energetically
Improved User
Distribution II

Calculation Method
Blossom and Hungarian

Algorithm for
Maximization

Calculation from
Measured

Values

Blossom and Hungarian
Algorithm for
Minimizing

Logical
Programming

Average overlap time ±
standard deviation, within

an occupancy scheme

13.0%
± 7.1%

19.1%
± 8.8%

27.4%
± 14.2%

24.9%
± 12.9%

Deviation compared to the
initial situation −31.9% Reference 43.3% 30.1%

3.3. Testing for Synergies between the Impacts on Energy Demand and Light Exposure Rates

In order to reveal possible synergies between the two target criteria as a function of
the selected user distribution, the average daily light dose for each user is determined
for the derived energetic user distributions. The resulting workplace-related daily lux
hours are listed in Table 5 and visualized in Figure 13. A Pearson correlation indicates that
an energetic improvement in user distribution is not simultaneously accompanied by an
improvement in daily light dose (t-test statistic: 0.6474; p = 0.5205; α = 0.05). The Pearson
correlation is based on the user-specific energy consumption and lux hours of the baseline
situation and the energetically optimized user distribution.
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Table 5. Overview of workplace-related daily light dose for the energetically improved occupancy
scheme or energetically unfavorable occupancy schemes; cumulative daily lux hours of the user
distribution of the initial situation: 96 959.8 lxh.

Occupancy Schemes

Adjustment of Room Position

Hungarian Method for
Minimization

Hungarian Method for
Maximization

A
dj

us
tm

en
to

f
th

e
us

er
pa

ir
in

g

Blossom algorithm for
minimization

Cumulated 98,201.2 lxh 96,089.7 lxh

Average ± standard
deviation, normalized 0.7324 ± 0.3070 0.7122 ± 0.3132

Original
user-combination

Cumulated 98,756.5 lxh 94,792.0 lxh

Average ± Standard
deviation, normalized 0.7362 ± 0.3024 0.7029 ± 0.3395

Blossom algorithm for
maximization

Cumulated 90,140.3 lxh 94,941.1 lxh

Average ± standard
deviation, normalized 0.6696 ± 0.2467 0.7060 ± 0.2870Energies 2022, 15, x FOR PEER REVIEW 16 of 22 
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The energetically enhanced logical programming occupancy scheme results in a cu-
mulative workplace-related daily light dose of 92,505.2 lxh. The result value is 4.59% lower
than the baseline. The average of the normalized daily light dose is 0.6842 ± 0.2976 (excl.
zones of unoccupied workplaces).

For maximizing the workplace-related daily lux hours, based on the Hungarian algo-
rithm, the artificial light energy demand can be determined. Maximizing the lux hours
results in an artificial light energy demand of 81.3 kWh (3.01% less than the baseline). Across
all lighting zones, this results in an average of the energy demand of 7.41 kWh ± 3.47 kWh.
The decrease is not significant (Pearson correlation, t-test statistic: 0.1209; p = 0.9043;
α = 0.05). Accordingly, there is no dependence between the improvement of daily light
dose and the increase in energy efficiency. The performed Pearson correlation is based
on the user-specific energy consumption and lux hours of the initial situation and the
occupancy scheme of the daily light dose optimized to the maximum.

Under the objective of distributing the lux hours as evenly as possible, the logical
programming leads to an energy demand of 82.5 kWh (1.56% less than the baseline). The
average of the energy demand of the lighting zones in this case is 6.77 kWh ± 3.22 kWh.
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4. Discussion

The distribution of users in the room has an influence on the effectiveness of lighting
concepts. Table 2 shows a range of about 24,000 lxh between minimum and maximum.
This corresponds to ±12.4% deviation around the achievable daily light dose of the ini-
tial situation (cumulated over all users). There are clear differences in the available lux
hours in terms of room position and time (cf. Figures 6 and 7). These prove to be great-
est along the south facade (Figure 5). Thus, the high diversity of the presence patterns
(cf. Figure 1) coupled with the strong spatial differences in the availability of high illu-
minance levels leads to the identified ranges. It thus follows that the greater the absence
at the workplace, the more the room position becomes important for individual users to
take advantage of non-visual lighting effects. In addition, indoor climatic conditions (IEQ,
Indoor Environmental Quality, which includes visual comfort) have a direct impact on the
productivity of the building user [64].

Since the Hungarian algorithm maximizes the daily light dose of the overall situation
(Table 2), individual users may experience a decrease in the achievable daily light dose.
Thus, users who achieve low lux hours may end up in even less favorable seating positions
(which occurred with five users, cf. Figure 9), in order to take greater advantage of the
influence of users with high presence in well-lit areas of the room. Logical programming is
able to close the gap between the individual users. This is clearly illustrated in Figure 9
by the comparison of achievable lux hours per user as a function of method. Logical
programming does not improve the achievable lux hours of the overall situation as much as
the Hungarian method (1.67% compared to 11.1%), but instead achieves a higher uniformity
(spread 0.2342 compared to 0.3880). In application, this could be created by the introduction
of guideline values for planning to avoid the disadvantage of individuals.

The distribution of the free seats shows that, both when maximized by the Hungarian
algorithm and by logical programming, three of the four free seats are located in the lighting
zones WZ5 and WZ10, those areas which, according to Figure 6, have the lowest potential
in the workstation-specific Ev-profile. The low achievable lux hours in WZ10 (south facade)
can be attributed to time-dependent shading caused by the outdoor situation. As expected,
the minimization of the light dose by the Hungarian algorithm places the empty profiles in
the best working areas in terms of light (WZ9 and WZ14; cf. Figure 6).

The distribution of users in the space also determines the effectiveness of energy
objectives. Thus, the individual procedures for the strongly daylit study object (161.7 m2, cf.
Section 2.1) over the study period (1 July–19 November 2021) result in a range of 38.4 kWh.
Against the background that the most unfavorable user distribution results in 96.8 kWh,
the user distribution significantly determines the artificial light energy demand in the
study object.

The ranges are again due, among other things, to the room position. Due to the
high average illuminance over the midday period, the artificial light energy demand is
determined by the time-of-day margins (Figure 8). For time periods that exhibit high user
dynamics, since the real energy demand of a lighting zone results from the combined
presence profile of both users of a zone (cf. Figure 8; determined via logical-OR-linking of
the presence profiles), the overlapping time of the presence profiles of a lighting zone plays
a major role. The greater the overlap, the more efficiently the artificial lighting can be used
in a lighting zone. It is therefore important to combine those energy profiles in a zone that
are as similar as possible in their temporal course (cf. Figure 1).

The optimization procedure lists an improvement of the overlapping times of the
presences of 43.3% compared to the initial situation due to the derived user pairings. Logical
programming leads to a 30.1% improvement in overlap times. The degree of zoning proves
to be significant in this context: Due to the identified low attendances at the workplace
and the simultaneous low overlap times, larger lighting zones could often be incompletely
occupied. A preliminary study in the same study object lists that the artificial light energy
demand decreases significantly with increasing zoning degree [43]. The reduced use of
artificial lighting also indirectly results in energy savings in the area of cooling [30,65].
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The study results further show that the unfavorable positioning of the original user
pairing (96.8 kWh) leads to almost the same energy demand as the least favorable occupancy
scheme (96.7 kWh), which can be derived via the algorithm. For the improved user pairing,
an energy range of 29.7 kWh results depending on the room position. For the least favorable
user distribution in the room, this amounts to 10.2 kWh. The influence of the room position
therefore gains in importance with better user matching (Figure 11).

When the occupancy scheme is energetically improved, the unoccupied seats collapse
(Figure 12). This creates an unused space area. The fact that this is not located in the center
of the open-plan office, but rather in the peripheral area, offers the advantage of reducing
the disruptive influence of faulty presences due to fewer room movements. In addition,
WZ10 proves to be the most unfavorable zone in terms of lighting (cf. Figure 6).

The results further indicate that an energetic improvement in the user distribution
is not simultaneously accompanied by an improvement in the workplace-related daily
light dose and vice versa. This is evident from the fact that in Figure 13, high lux hours
are present both for energetically improved user distributions and for energetically less
favorable user distributions in the room. The fact that the derived occupancy schemes
of the lighting improvement result in minor energy savings can be explained by the fact
that the initial situation already shows a very energetically unfavorable user distribution
(cf. Figure 11 and Table 3). A detailed analysis shows that the users who achieve the highest
workplace-related lux hours (cf. Figure 9) are also the users who have high energy profiles
even in optimized occupancy schemes. This is due to the fact that they list a generally
high occupancy rate. Accordingly, high variability in occupancy profiles prevents the equal
optimization of daily light dose and energy demand through user distribution. The lack of
synergy between objectives leads to planning challenges:

In view of the fact that the building sector accounts for about one third of the energy
demand [37,38] and that lighting energy in commercial buildings is a major contributor [66],
it is necessary to reduce the energy demand in order to meet current climate protection
targets. A current problem is the existing gap between planning and operation. Since
the occupancy behavior at the workplace only becomes apparent after commissioning,
user-centered mapping in the building design phase proves to be difficult or impossible
to implement. This can lead to incorrect system sizing and result in inefficient building
operation. The study lists a significant impact of user distribution in the space on energy
demand. Occupancy times in the workplace are determined by organization-specific pro-
cesses and social structures—aspects that result from the target application. In this context,
a classification of organizations via relative frequency distributions of different variants of
occupancy profiles could help to plan in a more targeted way and to close the gap between
planning and operation. Such a classification could represent a middle ground between
user-centeredness and generalized assumptions. However, this requires organizational re-
search in the energy context. Through this research, possible factors influencing occupancy
hours could be identified and made usable for planning and simulation.

The motive of the study is to show the influence of the space utilization concept on the
key performance indicators energy demand and workplace-related lux hours. However,
acceptance studies are required to evaluate the practicality of re-locations in operation. This
study determines user distributions in the space based on zoning the lighting concept to
two opposing users. For larger zoning levels, other matching methods would be required,
or this case could be NP-complete.

The lux hour calculations of this study served to show the influence of the user
distribution in the room on lighting planning concepts. For this reason, the daily light dose
was limited to the times of presence at the workplace for the calculation. The influence of
the user distribution in the room on the daily light dose proved to be significant. However,
the achievement of lux hours is also determined outside of office presence and in individual
cases can significantly outweigh the influence of the user distribution in the room. For
the periods outside of an office presence, there are conditions that are difficult to control
in terms of measurement technology, so that assumptions would have to be made. This
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would require corresponding specifications in the planning. Likewise, the guideline values
for the health effects of light turn out to be insufficiently broken down, so that further
research on this is necessary in order to realize a trade-off between the objectives. In this
context, there is a high need for research concerning the suitability of the daily light dose as
a parameter, concerning the benchmark of a daily light dose to be achieved and concerning
the individuality of such a parameter. Energy planning is currently more explicit in the
formulation of the objective and highly relevant in practice.

5. Conclusions

As the study results indicate, occupancy patterns can strongly influence the effective-
ness of lighting and/or energy objectives. Due to the time-varying nature and complexity of
behavior, users therefore exert decisive influence on the building energy demand [15,67,68].
A basic assumption of generally valid models fails especially when the social structure
leaves a lot of freedom, e.g., flextime of working hours or high dynamics of presence at
the workplace.

Monitoring and data analyses of ongoing operation (post-occupancy evaluations, POE)
can serve as a basis to analyze user behavior and thus break down their impact on building
energy demand [34]. Based on this, measures can be derived to better align the real-world
situation with the target. Wireless sensor networks proved to be a useful tool in this context
and also offer the advantage of reducing installation effort by eliminating wiring and
providing flexible sensor positioning [34,69,70]. The quality of the occupancy data depends
largely on the intended application [34]. The position, number, and detection range of
the sensors are crucial in order to be able to map profiles sufficiently accurately [71–73].
Since the use of sensors is associated with intrinsic energy requirements for production,
operation, and disposal, it is important to ensure that the resulting energy savings potential
in the target application outweighs the sensors’ own energy demand.

However, long-term verification is required to establish subsequent repositioning of
users as a more advanced approach to POE. This is because the study presented represents
the calculations for only one office example, which cannot be representative of different
office concepts (cellular offices, open-plan offices, etc.) with different target applications. A
generalization of the statements therefore first requires further investigations.

Crucial to deriving improved user arrangements in space is the measurement period.
Since work tasks and the associated workflows change over time, it is important to mark
transitions in the work processes, to recognize them at an early stage, in order to determine
the most favorable time for optimizing the occupancy schemes.

The study results also indicate that methods from graph theory can be used to derive
more energy-efficient occupancy schemes, or in terms of daily light dose, improved occu-
pancy schemes. Approximation methods for multidimensional assignment problems, as in
the energetic case, prove to be of high practical relevance.

6. Perspective

The article emphasizes the importance of organizational aspects on the key perfor-
mance indicators. Therefore, the article should primarily be an impetus for further research
in this area to close the performance gap. Due to the focus on building technology, the con-
sideration of the flow design of work processes was deliberately left out. Communication
is described as an essential aspect needed to efficiently accomplish work objectives, and
thus critical to maintaining smooth operations and achieving business goals [74]. Com-
munication in the workplace is commonplace, ubiquitous, and controllable in terms of
user distribution in space. Therefore, a user arrangement can also be done in terms of
reducing communication paths. In this context, those employees who are working on the
same project topic or whose work focus are similar would be placed as close to each other
as possible. The authors therefore recommend the identification of procedures for deriving
holistically improved user distribution in space that combine building-, organization-, and
user-specific aspects as an objective for future research.
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