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Abstract: The class III reservoir in the Daqing Oilfield has poor sand body development, poor
reservoir physical properties, and poor effects of measures. Its water drive recovery degree is low
and the remaining reserves are large. It is the key target oil layer of the Daqing Oilfield. Due to the
sedimentary characteristics and reservoir physical properties of class III reservoirs, conventional EOR
technology (chemical flooding) and conventional stimulation and injection measures (fracturing) have
poor potential tapping effects on class III reservoirs. According to the special reservoir conditions
and development characteristics of the class III reservoir in the Daqing Oilfield, fracture-flooding
technology is innovatively proposed, which greatly improves the recovery of remaining oil in class
III reservoirs. The rapid injection of hydraulic surface activators into the formation and displacement
of the remaining oil in class III reservoirs through rock core flooding experiments were simulated
in this paper. The nuclear magnetic resonance (NMR), confocal scanning laser, and computed
tomography (CT)-scanning technologies were applied to study the remaining oil distribution after
fracture flooding. The results show that: (1) After fracture flooding, the peak value of the T2 spectrum
curve of NMR shifts to the left and the degree of middle and small pore space production increases
obviously. (2) Confocal scanning laser study shows that the remaining oil in thin membranous and
clustered forms on pore surfaces is highly utilized. (3) CT scan study shows that the remaining
oil in membranous and clustered forms is effectively utilized after fracture flooding. In summary,
fracture-flooding technology can improve the washing efficiency and sweep volume of class III
reservoirs, thus enhancing the recovery efficiency of class III reservoirs.

Keywords: fracture flooding; microscopic residual oil; NMR; laser scanning confocal; computed
tomography scan

1. Introduction

Due to the serious interlayer heterogeneity, poor reservoir physical properties, and
low water-flooding recovery degree of class III reservoirs, the remaining oil is mainly
distributed in thin and poor reservoirs with small effective thick bottoms, low permeability
and outer surface reservoirs, and large remaining oil potential [1]. Due to the serious
heterogeneity of class III reservoirs and the development methods of water flooding and
chemical flooding, the recovery degree of class III reservoirs is low and the development
effect is poor. In order to effectively exploit the remaining oil of a class III reservoir, it is
necessary to increase the injection production pressure difference, control the fluidity, and
reduce the oil–water interface tension of the class III reservoir. Due to the poor physical
properties of the reservoir, the injection efficiency of conventional enhanced oil recovery
technology (chemical flooding) is low, the injection parameters do not match, the production
effect is poor, the development effect is limited, the viscosity loss rate of the chemical agent
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is high, the loss of agent performance along the way (adsorption and retention) is large,
and the displacement effect is not ideal [2,3]. After fracturing the class III reservoir by
conventional fracturing processes, due to the poor production degree of the fractured layer,
low water drive connectivity, and low reservoir energy, it is impossible to establish an
effective displacement relationship, short fracturing validity period, low cumulative oil
increase, and poor stimulation effect. Fracture-flooding technology based on large-scale
fracturing was proposed to solve the problems of low-permeability reservoirs’ physical
properties and fracture formation fracture morphology in the Daqing Oilfield [4]: a surface
active agent as fracturing fluid was rapidly advanced to the deep reservoir by hydraulic
fracture flooding and enriching and exploiting remaining oil to realize highly efficient oil
displacement. However, due to the coupling effect of hydraulic fracturing and fracturing
fluid seepage and oil displacement in fracture-flooding technology, there is still a lack of
research on the utilization of remaining oil in fracture flooding.

At present, there are two main models for the research and analysis of micro residual
oil distribution characteristics: (1) Using core thin sections, the distribution characteristics
of micro residual oil are mainly studied using computed tomography (CT) scanning, NMR,
and laser confocal technologies. Tan et al. [5] took the actual core samples of the conglom-
erate reservoir in the Karamay Oilfield as the research object and applied CT-scanning
technology to study the micro residual oil distribution law of water flooding and polymer
flooding of hydrophilic rock and lipophilic rock. Chen et al. [6] conducted pore-scale
multi-phase flow experiments on sandstone core samples and studied the effect of chemical
oil displacement on pore-scale wettability controlled by water film propagation through CT-
scanning technology. Liu et al. [7] selected cores with different lithologies such as sandstone
and glutenite for NMR experiments to study the production and distribution characteristics
of micro residual oil in polymer flooding. Liu et al. [8] studied the micro residual oil
distribution characteristics of chemical flooding using the visual conglomerate stratification
model and NMR experiments to quantify the micro residual oil distribution of chemical
flooding. Liang et al. [9] analyzed the types, distribution characteristics, and formation
mechanism of micro residual oil in the reservoir after ASP flooding using laser confocal
scanning microscope technology and a microphysical simulation experiment. Xia et al. [10]
combined the laser confocal and core fluorescence analysis technologies with a core oil
displacement experiment to study the distribution characteristics of core oil and water and
the microgenesis of remaining oil in view of the lack of research on the distribution charac-
teristics and quantitative characterization of reservoir oil and water. Li et al. [11] revealed
the oil displacement mechanism and the remaining oil distribution law of the combined
oil displacement system through visual simulation experiments and scanning electron
microscopy. Aiming at the research on the micro residual oil distribution characteristics of
chemical flooding and enhanced displacement, Zhou et al. [12] quantitatively analyzed the
micro residual oil distribution in the pore throat after the water flooding of different rock
samples, different displacement stages, and different water injection multiples through a
micro displacement experiment of a nuclear magnetic resonance imaging core. A water-
flooding experiment carried out by Gao et al. [13] with the improved NMR high-pressure
displacement system has defined the occurrence state of remaining oil and qualitatively
analyzed and quantitatively evaluated the main factors affecting water flooding efficiency;
Bai et al. [14] quantitatively determined the spatial distribution characteristics of micro
residual oil after polymer flooding by using new methods of frozen film making, UV
fluorescence, and CT nondestructive analysis; Liu et al. [15] used laser confocal technology
to determine the micro distribution law of remaining oil after ASP flooding; Xu Q.H. [16]
used laser confocal microscope (LSCM) two-dimensional- and three-dimensional-imaging
technology to qualitatively and quantitatively determine the micro residual oil distribution
characteristics based on coring wells after ASP flooding; Wang et al. [17] determined the
distribution characteristics and availability of micro residual oil in polymer flooding by
means of a core displacement experiment, frozen production technology, and core fluo-
rescence analysis; Zhang S.Q [18] combined CT-scanning technology with the laboratory
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experiment of polymer/surfactant composite flooding and understood the pore structure
and residual oil change law of polymer/surfactant composite flooding in different stages
by CT scanning the cores in different stages. (2) Through the visual model of glass etching,
Xia et al. [19] studied the influence of interface characteristics of a ternary composite system
on oil displacement efficiency by using the micro visual model. Reducing interface tension
and interface viscoelasticity is conducive to emulsifying residual oil and improving oil
displacement efficiency. Liu et al. [20] used the simplified pore model to simulate the
formation pore structure. According to the occurrence state and distribution characteristics
of micro residual oil in the model after displacement by different oil displacement systems,
the micro visual oil displacement system was used to calculate the residual oil saturation in
the model.

In order to further clarify the occurrence state and distribution characteristics of
micro residual oil in fracture flooding, this paper simulates the oil displacement process
of fracture flooding through a displacement experiment and quantitatively characterizes
the micro residual oil (the remaining oil production in different pore spaces is studied
by NMR technology; the quantitative parameters of different types of micro residual oil
are determined by confocal-scanning-laser and CT-scanning technologies). Based on the
variation of micro residual oil and the morphology of different types, the formation reasons
of microscopic remaining oil are studied to provide theoretical support for the effective
development of the class III reservoir.

2. Fracture-Flooding Technology

The buried depth of the class III reservoir in the Daqing Oilfield is relatively shallow
(<1500 m), and the principal horizontal stress is greater than the principal vertical stress.
According to the fracture opening theory [21], the fractures in the Daqing Oilfield are
horizontal fractures [22,23]. The results of fracture microseismic monitoring show that the
fractures in the Daqing Oilfield are horizontal fractures (Figure 1). Horizontal fractures
protect fracturing fluid from infiltrating and filling the formation after fracture flooding.
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Figure 1. Downhole microseismic interpretation results.

The fracture-flooding technology injected fracturing fluid through fracturing at the
production side (oil well) and applied fracture extension to drive the fracturing fluid to
the formation pores along the upper and lower side faces of the fracture and the fracture
site [24]. After the fracture flooding process, the oil well was stewed to make the fracturing
fluid diffuse in the formation and then injected into the well to restore the conventional
oil displacement method [25,26]. Fracture-flooding technology can reduce the contact
distance and contact time of chemical agents in the formation, solve the performance loss
along the way in chemical agent injection, and improve the utilization efficiency of chemi-
cal agents. Fracture-flooding also can rapidly increase the formation pressure, establish
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effective displacement between oil and water wells, and achieve the starting pressure
gradient of a low-permeability oilfield. Then, the conventional oil displacement method
was adopted to displace the remaining oil to achieve the uniform displacement of high-
and low-permeability layers, thus improving oil recovery. The fracture flooding process
was designed as the construction procedure flow of fracturing fluid’s direct fracture mak-
ing, step-change displacement (to gradually increase displacement), and slug intermittent
injection to pursue fracture extension and maximize the filtration of fracturing fluid. The
schematic diagram of the fracture flooding process is shown in Figures 2 and 3.
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Figure 3. Schematic diagram of fracture propagation and fracturing fluid filtration during
fracture flooding.

Due to the serious heterogeneity of the class III reservoir, conventional fracturing
can only improve reservoir permeability but cannot establish the effective displacement
differential pressure between the oil well low-permeability reservoir and the corresponding
water well. Even after the fracturing of the oil well low-permeability reservoir, the energy
in the near-well area is insufficient, the remaining oil cannot be effectively developed, and
the oil increase effect is poor. Compared with the conventional fracturing process, since the
fracturing fluid for fracture flooding is a high-efficiency oil displacement agent (surfactant
and surface polymerization agent), fracture-flooding technology and conventional fractur-
ing technology have changed in fracture propagation and the oil displacement mechanism:
(1) The “fluid loss reduction” is transformed to the “fluid loss promotion”. The conven-
tional fracturing fluid (guar gum) is mainly for forming fractures. Therefore, the fracturing
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design needs to reduce the filtration loss to reduce the damage to the reservoir. However,
the fracturing fluid (surfactant) for fracture flooding is directly pressed into the formation,
which needs to increase the spread range of the fracturing fluid in the reservoir. (2) “Promot-
ing extension” is changed to “slow extension”. Conventional fracturing mainly focuses on
increasing fracture length and expanding fracturing area. While fracture flooding requires
fracture extension, fracturing fluid (chemical agent) shall be filtered into the reservoir as
much as possible. (3) “Fast flowback” is turned to “slow diffusion”. After conventional
fracturing, it is necessary to quickly flow back to reduce the damage of fracturing fluid,
while fracture flooding requires a chemical agent to diffuse into the oil layer to make the
surfactant fully in contact with the formation and reduce the interfacial tension to improve
oil recovery.

3. Study on the Distribution Characteristics of the Microscopic Remaining Oil in
Fracture-Flooding
3.1. Design of Fracture-Flooding Experiment Scheme
3.1.1. Experimental Materials

The fracturing fluid used in the experiment was petroleum sulfonate with a 0.3% mass
concentration (oil–water interfacial tension 3.4 mN·m−1). The water used to prepare sur-
factant was used for fracturing fluid in the field construction of Daqing Oilfield downhole
operation company. The experimental oil with a viscosity of 9.75 mPa·s at 45 ◦C was simu-
lated oil mixed with kerosene after degassing and dehydration of the produced oil from the
low-permeability reservoir in Daqing Sazhong development zone. The experimental water
was injected into the formation water of the third oil layer in the Daqing Oilfield with a
salinity of 3681 mg·L−1. The natural cores used in the experiment (diameter: 2.5 cm, no
cracks, drying) were all collected from class III reservoir layers in the Daqing Oilfield. The
layers experienced the water flooding development stage, but the recovery degree was low.
The core samples were provided by the core reference office of Daqing Oilfield exploration
and development research institute.

3.1.2. Experimental Equipment

High-temperature and high-pressure reservoir displacement simulation device, Mi-
croMR12 NMR instrument, laser scanning confocal microscope (LSCM, model LEICA
SP5II), and Micro XCT-400 CT machine with CT scan image data-processing software
Avizo 8.0 were used in this experiment. In addition, double-cylinder constant-speed
constant-pressure pump (HBS300/50), piston vessel, pressure sensor (0.01~40 MPa), core
gripper, thermostat, hand pump (GJB-II), vacuum pump (2XZ-4), timer, electronic balance
(WTB5003), agitators (JB200-SH), caliper, measuring test pipe, etc., were also used.

3.1.3. Experimental Design Scheme

As can be seen from the process of fracture flooding (Figure 2), fracture flooding
mainly involves fracturing the production well after water flooding by infiltrating the
fracturing fluid (surfactant) into the reservoir pore under the net pressure along the fracture
as the fracture expands. The fracture flooding process is characterized by a high-pressure
and high-speed core displacement experiment, and the experimental design diagram is
shown in Figure 4. The water flooding stage core displacement adopted constant speed
displacement. After the core injection and production sides were turned over, high-pressure
and high-speed displacement was carried out to simulate fracturing fluid injection into
the reservoir after fracture flooding of the production side. According to the similarity
criterion [27,28], the experimental parameters related to the displacement core experiment
of water flooding and fracture flooding were determined.
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3.2. Distribution Characteristics of Microscopic Remaining Oil
3.2.1. NMR Technology

(1) Experimental Method

NMR technology was applied to characterize water saturation changes in different
pores through the relaxation characteristics of water in pores. The fluid distribution in the
displacement process reflected the distribution of pore size, and the NMR T2 spectrum was
obtained by Fourier transform fitting. NMR T2 spectrum was converted into a pore radius
distribution curve to obtain the relationship between pore radius and T2 value. Thus, the
production of pore crude oil in the reservoir core could be evaluated by NMR data [29,30].
The T2 relaxation times of different pores were different. T2 relaxation times less than 10 ms
ranged from 10 ms to 100 ms, and times greater than 100 ms were defined as small pores,
medium porosity, and macropore, respectively. The surrounding area of the T2 spectrum
curve corresponds to the fluid volume. The change of T2 can be used to evaluate the fluid
production in the pores [31].

(2) Experimental Procedures

The natural core data obtained in the experiment are shown in Table 1. The experiment
was carried out after oil washing and drying. The NMR experiment was performed accord-
ing to SY/T6490-2014 Specification for Laboratory Measurement of NMR Parameters of
Rock Samples (oil and gas industry standard). The experimental procedures are as follows:

• Before the experiment, the rock core was cut to about 5 cm and dried at 110 ◦C to
measure core length and diameter and physical parameters such as conventional
porosity and permeability. The core was vacuumed, and the saturated formation
water was pressurized. Then, the core was measured by NMR in saturated water
T2 spectrum.

• Saturated oil and bound water, displacement speed of 0.1 mL/min, and co-displacement
of about 15 pore volume were used (PV). The T2 spectrum of core was measured by
NMR with saturated oil and bound water to record the volume of produced water
and calculate the bound water saturation.
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• The displacement speed of the water flooding was 0.1 mL/min, and no oil was
produced at the producing side. The T2 spectrum of the core was measured using
NMR at this state.

• After fracture flooding, surfactant displacement was performed through high-pressure
and high-speed injection from the reverse direction (water flooding production side)
with displacement pressure at 2 MPa and injection volume of 0.3 PV. The T2 spectrum
of the core was measured using NMR at this state.

Table 1. Basic data of NMR core.

Well Identifier Core No. Permeability
(×10−3 µm2)

Porosity
(%)

Bound Water
Saturation (%)

G111-J455 1-1 119.4 24.18 35.43
N5-21-741 2-1 103.5 22.46 35.04
X2-1-729 3-1 88.4 23.85 34.87

(3) Distribution Characteristics of Microscopic Remaining oil NMR Results of Different
Core Displacement Stages Are Shown in Figure 5:
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After water flooding, the recovery degree of macropores is 43.38% (Figures 6 and 7, Table 2).
The results are mainly because of the small seepage resistance in macropores and the
easy flow of fluid in macropores; in addition, the formation of preferential passage at the
macropores after water is seen at the exit end results in low development and utilization
degree of small and middle pores (33.13% for middle pores and 19.09% for small pores)
and large distribution of remaining oil. After fracture flooding, the peak value of the
spectrum curve shifts to the left, and the utilization degree of small and middle pores
is significantly improved (49.40% for middle pores and 40.91% for small pores). The
phenomenon is mainly because the emulsification of fracturing fluid (surfactant), the
reduction of interfacial tension, and the high-speed displacement of fracture flooding make
the remaining oil in the small and middle pores effectively utilized. With the decrease in
oil–water interfacial tension and hydrophilicity, the seepage resistance decreases and the
oil phase seepage capacity of small and medium pores increases. Increasing the injection
speed can improve the sweep area of crude oil. After enlarging the production pressure
difference, some parts of crude oil with low permeability, large start-up pressure, and no
flow of crude oil can overcome the seepage resistance and start to flow, increasing the
sweep volume of small and middle pores.
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Table 2. Recovery degree table of different pore areas of T2 spectrum under different displacement states.

Core No. Displacement
State

Recovery
Degree (%)

Absolute Recovery Degree (%) Relative Recovery Degree (%)

Small Pore
(<10 ms)

Middle Pore
(10–100 ms)

Macropore
(>100 ms)

Small Pore
(<10 ms)

Middle Pore
(10–100 ms)

Macropore
(>100 ms)

1-1
Water flooding 35.94 3.14 13.89 18.91 18.63 32.08 44.42

Fracture-flooding 52.84 6.93 22.08 23.83 41.22 51.61 54.68

2-1
Water flooding 36.36 3.54 14.85 17.97 23.39 37.18 43.86

Fracture-flooding 49.84 7.31 20.92 21.61 42.16 49.03 51.79

3-1
Water flooding 33.38 5.19 12.83 15.36 15.26 30.16 41.85

Fracture-flooding 48.56 9.23 19.08 20.25 39.34 47.57 53.46

AVG
Water flooding 35.23 3.96 13.86 17.41 19.09 33.14 43.38

Fracture-flooding 50.41 7.82 20.69 21.90 40.91 49.40 53.31

3.2.2. Laser Scanning Confocal Technology

(1) Experimental Method

The core samples after displacement were made into thin slices. Before slicing, the
samples were frozen in liquid nitrogen and then the thin slices were scanned under the laser
scanning confocal microscope [32]. The two-dimensional image of the sample was collected
using a specific wavelength laser as the emission light source and then was processed by
special computer software to finally obtain the two-dimensional and three-dimensional
images of the sample [33].

(2) Experimental Procedures

• Natural cores of class III reservoir in Daqing Oilfield (Table 3) were selected for core
saturation at 45 ◦C.

• Water flooding: The core was flooded to 90% water content. The sample was made
into thin slices. The remaining oil saturation, oil/water area, and different types of
remaining oil of the sample were analyzed using computer image processing and
confocal scanning laser technologies.

• Fracture-flooding: Surfactant (0.3 PV) was injected at the reverse high pressure (2 MPa)
at the production side of water flooding. The remaining oil saturation, oil/water area,
and remaining oil content of different types of samples were observed by confocal
scanning laser technology.

Table 3. Basic data of physical properties of confocal scanning laser natural core.

Well Identifier Core No. Permeability
(×10−3 µm2)

Porosity
(%)

Bound Water
Saturation (%)

G111-J455 1-2 106.5 24.03 34.77
N5-21-741 2-2 86.7 23.76 36.48
X2-1-729 3-2 121.6 24.65 33.56

(3) Types and Distribution Characteristics of Remaining Oil

The types and distribution characteristics of the remaining oil were analyzed through
the confocal scanning laser image. The schematic diagram of the remaining oil types in
the confocal scanning laser experiment shows that the remaining oil types are divided into
three types:

The first type is the free remaining oil (Figure 8), i.e., the remaining oil far from the
surface of the hole wall, including the cluster-like type and intergranular adsorption-like
type remaining oil. The remaining oil in clustered is mainly distributed in the pores in
the form of beads and clustered. The remaining oil of intergranular adsorption is mainly
distributed in the parts with high content of clay minerals or intergranular mud impurities.
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The second type is the remaining oil in a bound state (Figure 9), i.e., the remaining
oil adsorbed on the surface of the pore wall, including membrane-like and column-like
type, slit-like type, and particle-adsorbent-like type remaining oil. The membrane-like
and column-like type remaining oil is the membranous remaining oil adsorbed on the
surface of rock and mineral particles in the form of membranes. Slit-like type residual oil
mainly occurs in a thin and long narrow gap (less than 0.01 mm). Particle adsorbent-like
type remaining oil is mainly spread and disseminated on the surface of rock and mineral
particles by means of adsorption.
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The third type is semi-bound remaining oil (Figure 10), i.e., remaining oil outside the
bound or relatively far from the surface of the hole wall, including corner-shaped type and
throat-like type remaining oil. The corner-shaped type remaining oil is mainly distributed
in the corner of the complex pore space. One side is located in the angle depression of
the pore, and the other side is in the free state of the external space. The throat-like type
remaining oil occurs in the small throat with pore connectivity and often occurs in the
slender and curved throat due to capillary action.
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(4) Analysis of Microscopic Remaining Oil Distribution in Different Displacement Stages

In order to analyze the oil displacement mechanism of water flooding and fracture
flooding and remaining oil distribution characteristics, water flooding and fracture flooding
displacement experiments were carried out on natural cores and confocal scanning laser
analysis was conducted on cores. The remaining oil distribution is shown in Figure 11. After
water flooding, the remaining oil content is large, mainly distributed on the surface of rock
particles and intergranular pores. After fracture flooding, the fine remaining oil decreases
significantly, the remaining oil on the particle surface is driven out in large quantities, and
the cluster-like type remaining oil is reduced to some extent. However, some remaining oil
still accumulates in large chunks, indicating that the remaining oil reaccumulates under
the action of fracturing fluid. The comparison between the distribution characteristics of
the remaining oil in water flooding and that in fracture flooding shows that the remaining
oil after fracture flooding is mostly distributed in the form of clusters, while the remaining
oil in fine fragments is less. The results indicate that the displacement effect of fracture
flooding on remaining oil with small and middle pores is significant.

After water flooding and fracture flooding, sample slices were prepared. Confocal
scanning laser technology was used to construct a three-dimensional remaining oil distri-
bution map of rock samples. The content, saturation, and oil/water volume of different
types of remaining oil were analyzed by computer image intelligent recognition technology.
Table 4 and Figure 12 show the relative percentage of microscopic remaining oil distribution
of various types of rock samples.
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Figure 11. Three-dimensional distribution map of the remaining oil in cores at different displacement
stages using confocal scanning laser.

It can be seen from the data in Table 4 that in the water flooding stage, the recovery
degree is low and the remaining oil content is high. Among them, the remaining oil
content of membrane- and column-like, cluster-like, intergranular-adsorption-like, and
particle-adsorbent-like type remaining oil is high, accounting for 80.63% of the remaining
oil saturation. In the fracture flooding stage, the production effects of the membrane- and
column-like and cluster-like types of remaining oil on the pore surface are the best, and the
residual oil saturation decreases from 8.89% and 15.75% to 4.95% and 12.54%, followed by
the degree of intergranular-adsorption-like, throat-like, and corner-shaped types remaining
oil, and the residual oil saturation decreases from 6.47%, 2.36%, and 4.48% to 5.83%, 1.45%
and 3.32%.

Figure 12 shows the comparison of the remaining oil content of different types after
water flooding and fracture flooding. The content of the membrane-like and column-like
and cluster-like types of remaining oil on the pore surface after fracture flooding is the
highest mainly because: (1) For membrane-like and column-like types of remaining oil on
the pore surface, the binding property of crude oil in the hole wall of the oil-wet core during
water flooding is strong. Water displaces oil from the middle pore, and the pore wall of
crude oil does not flow, resulting in the formation of the membrane-like and column-like
types of remaining oil on the pore surface. On the one hand, the high viscosity of fracturing
fluid (surface active agent) increases the tangential friction force between the surface active
agent and crude oil and overcomes the hole wall adhesion of crude oil, resulting in the use
of membrane-like and column-like typed remaining oil on the surface of the hole. On the
other hand, the surfactant can reduce the interfacial tension and change the wettability
of the core, thus reducing the adhesion of the pore wall, resulting in the separation of
column-shaped remaining oil on the pore surface. (2) For cluster-like type remaining oil,
due to the heterogeneity of core oil and water flow degree difference, the referential passage
is formed within the rock core after water is seen at the exit end, resulting in the formation
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of the cluster-like type remaining oil in the mainstream area that cannot be displaced by
water flooding. Due to the high viscosity of fracturing fluid (surface active agent), the
oil/water flow ratio is reduced, thus improving the displacement pressure, expanding the
swept area, and displacing cluster-like type remaining oil.

Table 4. Relative percentage of remaining oil distribution.

Core
No.

Displacement
State

Recovery
Degree

(%)

So (%)

Bound Remaining Oil Semi-Bound
Remaining Oil Free Remaining Oil

Membrane- and
Column-like Type

Remaining Oil

Particle-
Adsorbent-like

Type

Slit-
like
Type

Corner-
Shaped

Type

Throat-like
Type

Cluster-like
Type

Intergranular-
Adsorption-like

Type

1-2
Water flooding 35.94 10.24 7.08 2.20 3.16 1.59 15.53 5.91

Fracture-
flooding 52.84 6.13 5.88 1.65 2.02 1.03 13.25 4.32

2-2
Water flooding 36.36 8.51 6.36 1.22 4.93 2.52 17.56 6.29

Fracture-
flooding 49.84 4.17 6.08 0.91 3.82 1.44 12.53 4.95

3-2
Water flooding 33.38 7.91 5.96 2.68 5.35 2.96 14.17 5.26

Fracture-
flooding 48.56 4.54 5.52 2.09 4.12 1.89 11.84 4.25

AVG
Water flooding 35.23 8.89 6.47 2.03 4.48 2.36 15.75 5.82

Fracture-
flooding 50.41 4.95 5.83 1.55 3.32 1.45 12.54 4.51
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The remaining oil in intergranular-adsorption-like type, throat-like type and corner-
shaped type remaining oil has a high exploitation degree, which is mainly because the
remaining oil in intergranular adsorption form is mainly distributed in the position with
high clay content and under the high displacement speed of fracture flooding and the
partial remaining oil in the intergranular adsorption form is utilized. The remaining oil in
the throat form is mainly due to the small displacement pressure difference between the
two sides of the throat during water flooding, resulting in the inability of the remaining
oil to flow. After fracturing fluid (surfactant) injection, the remaining oil in the throat-like
type is reduced due to solubilization. The surfactant can increase displacement pressure
difference, reduce interfacial tension, and effectively displace the remaining oil in throat-
like type. The corner-shaped remaining oil is highly exploited due to the particularity of its
position (with one side being closed). Thus, effective displacement cannot be achieved in
the blind end during water flooding, while fracturing fluid (surface active agent) emulsifies
the remaining oil in the inlet side of the blind end into droplets by solubilization and then
displaces the residual oil. In addition, the increased viscosity of fracturing fluid increases
the tangential tension of the remaining oil of the corner-shaped type so that it is more likely
to be exploited.

Particle-adsorbent-like and slit-like residual oil are mainly residual oil in the bound
state, which has a relatively low utilization degree and poor displacement effect.
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3.2.3. CT Scanning Technology

(1) Experimental Method

Microcomputer tomography [34] (micro-CT) is used in this experiment, which scans
the core after displacement, obtains the X-ray attenuation coefficient data of each substance
in the scanning area, and reconstructs the data volume in three dimensions. The image
processing was adjusted (adjust the threshold brightness, remove noise, and improve beam
hardening), and professional software was used to realize image segmentation and pore
network model establishment. The fluid and rock skeleton particles of each phase were
segmented and extracted from the image and the model, and the distribution maps of oil,
water, and particle phases in the core were obtained. The micro residual oil was classified
based on Euler number, contact ratio, and shape factor of oil cluster. During the whole
experiment, the position of the core holder in the CT scanner remained unchanged, which
means in situ scanning was used.

(2) Experimental Procedures

• Core preparation: Natural cores of class III reservoir layers were selected and dried
at 110 ◦C, and core permeability, porosity, and other basic physical parameters were
measured. After vacuumizing, the core was saturated with water first and then with
oil. The CT scan was performed on the core in the initial bound water state to obtain
the scanning data volume.

• Water flooding: The displacement speed was 0.1 mL/min. The displacement would
be stopped when no oil was produced at the producing side. CT scan was performed
on the core to obtain the scanning data volume.

• Fracture-flooding: Surfactant will be reversely injected at high pressure (2 MPa) to play
a displacement role (injected at the production side of water flooding). Displacement
speed was 0.6 mL/min, with an injection volume of 0.3 PV; the core was scanned by
CT to obtain scan data volume.

The description of micro remaining oil in core: CT scan data were processed and
analyzed to perform the three-dimensional reconstruction.

(3) Morphological Characterization of Microscopic Remaining Oil Occurrence

• Occurrence types of microscopic residual oil

After the data volume obtained from the CT scan was analyzed and processed, the
scanning image was generated and the three-dimensional remaining oil distribution map
was reconstructed. According to factors such as the occurrence location, oil–water contact
relationship, and flow morphology of microscopic remaining oil, it can be divided into five
types [35,36]: cluster-like, multi-porous form, column-like, droplet-like, and membrane-
like, according to the contact ratios, Euler numbers, and shape factors of oil clusters, as
shown in Table 5.

Table 5. Quantitative characterization of the microscopic remaining oil.

Type Typical
Figure

Number of
Occupied

Pore-Throat

Shape
Factor

Contact
Ratio

Euler
Number

clustered-like
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Thickness< 1/3 of
pore-throat diameter G > 2 C < 0.4 EN > 0

• Distribution of remaining oil in the two-dimensional plane by CT scanning

The core in different displacement stages (initial stage, water flooding, and fracture
flooding stages) was scanned by tomography, and 600 sections were scanned in each stage.
After the scanning, data should be reconstructed and a reasonable area should be selected
for image plane optimization. The optimization process mainly includes: adjusting threshold
brightness, removing noise, and improving beam hardening. The two-dimensional CT images
of core in different displacement stages are shown in Figures 13 and 14. In the two figures, the
red area is the oil phase, the blue area is the water phase, and the gray area is rock particles.
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Figure 14. Two-dimensional distribution map of remaining oil during the fracture flooding stage
constructed after CT scan.

In the initial state of core (bound water), the crude oil was mainly composed of
continuous-phase microscopic residual oil (cluster-like and multi-porous form), with a little
discontinuous-phase microscopic residual oil (column-like, droplet-like, and membrane-
like). In the water flooding stage, the crude oil was displaced, washed, segmented, and
dispersed by the water phase, and the crude oil gradually changed from continuous-phase
to discontinuous-phase. The proportion of remaining oil with column-like, droplet-like,
and membrane-like types gradually increased, but that of the remaining oil with continuous
phase (cluster-like and multi-porous form) in the pores was still high due to the water-
flooding fingering phenomenon. At the fracture flooding stage, due to reverse fracture
flooding (where the surface active agent was injected into the production side), the affected
area was extended, and the continuous-phase residual oil was displaced, and the surface
active agent could reduce the interfacial tension, increase the viscosity of fracture fluid, and
enhance the shearing action within the pore percolation. Thus, the membrane-like residual
oil decreased significantly, some droplet-like remaining oil was produced effectively, and
the residual oil saturation was further reduced.

• The construction of the three-dimensional model of remaining oil distribution after
CT scanning

The cores at different displacement stages were scanned by CT. After the data volume
was obtained, it was denoised and trivalued to construct a three-dimensional pore network
model (Figure 15, the red area is oil phase; the blue area is water phase) to study and analyze
the distribution morphology of microscopic remaining oil and carry out the quantitative
characterization, as shown in Table 6, Figure 16.
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Table 6. Data table of microscopic remaining oil distribution content after CT scan.

Well
No.

Core
No.

Displacement
State

Oil Saturation,
So (%)

Remaining Oil Saturation (%)

Cluster-like Multi-Porous Form Column-like Droplet-like Membrane-like

G111-J455 1-3
The initial 68.72 38.68 18.89 1.56 5.14 4.45

Water flooding 43.83 12.34 8.55 5.08 7.53 10.33
Fracture-
flooding 33.46 10.12 8.28 4.53 5.67 4.86

N5-21-741 2-3
The initial 65.61 32.41 23.46 3.59 3.98 2.17

Water flooding 42.34 14.23 9.32 3.76 5.79 9.24
Fracture-
flooding 34.47 12.46 7.16 5.92 4.74 4.19

X2-1-729 3-3
The initial 67.11 33.95 24.76 2.62 3.03 2.75

Water flooding 40.83 14.48 9.45 4.24 5.89 6.77
Fracture-
flooding 34.58 13.15 9.16 4.87 4.34 3.06

The mean
The initial 67.15 35.01 22.37 2.59 4.05 3.12

Water flooding 42.33 13.68 9.11 4.36 6.40 8.78
Fracture-
flooding 34.17 11.91 8.20 5.11 4.92 4.04
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It can be seen from the constructed three-dimensional remaining oil distribution
diagram that, under the condition of initial saturated oil, the bound water content is
relatively low, the oil phase is the continuous phase, the saturation of cluster-like and
multi-porous oil is 57.38%, and the remaining oil of the discontinuous phase (column-
like, droplet-like, and membrane-like) is scattered at the corner of pore edges. In the
water flooding stage, the oil phase was displaced and divided, forming a large number
of droplet-like and membrane-like residual oil, but due to reservoir heterogeneity, poor
oil/water viscosity, and the fingering phenomenon, the affected area of water flooding was
limited. The residual oil after water flooding was mainly composed of the cluster-like and
multi-porous remaining oil, with the remaining oil saturation being 22.79% and mainly
occurring in the big pores and pore-throat junction. At the fracture flooding stage, due to
the displacement mode (reverse fracture flooding at high speed) and the fracturing fluid
(surface active agent), the viscosity of the displacement fluid and the displacement pressure
difference increased, which increased the swept area, and the cluster-like and multi-porous
remaining oil with continuous phase were effectively displaced. The residual oil saturation
decreased to 20.11%, and the reduced interfacial tension enabled the effective displacement
of the membrane-like and droplet-like remaining oil. The So decreased from 8.78% and
6.40% to 4.04% and 4.92% after water flooding.

4. Conclusions and Suggestion

The analysis of micro residual oil characteristics under fracture flooding shows that
fracture flooding can effectively displace the residual oil in small and medium pores and
the cluster-like residual oil in large pores, indicating that fracture flooding can expand
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the swept volume. Surfactant in fracture flooding can improve oil washing efficiency and
effectively use membrane-like residual oil in pores. The results are as follows:

(1) According to NMR results, after fracture flooding, the peak value of the T2 spectrum
curve of NMR shifted to the left, the degree of middle-pore production increased from
33.13% to 49.40%, the degree of small-pore production increased from 19.09% to 40.91%,
and the degree of middle- and small-pore space production increased significantly.

(2) The confocal scanning laser study showed that the membrane-like and cluster-like
remaining oil on the pore surface was highly produced.

(3) CT scanning was used to quantitatively characterize the microscopic remaining oil
types in each displacement stage. After fracture flooding, the displacement sweep volume
increased, the cluster-like and multi-porous remaining oil with continuous phase was
effectively utilized, the remaining oil saturation was reduced to 20.11%, and the reduced
interfacial tension enabled the effective production of membrane-like and droplet-like
remaining oil. The remaining oil saturation decreased from 8.78% and 6.40% to 4.04% and
4.92% after water flooding. The membrane-like and cluster-like remaining oil could be
produced effectively.

At present, the research on the micro residual oil distribution characteristics of fractur-
ing displacement can only simulate the process of surfactant entering matrix pores from
fractures through high-speed displacement. The influence of real fractures on remaining
oil should be considered in future research processes.
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