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Abstract: This article focuses on developing both statistical and machine learning approaches for 
forecasting hourly electricity demand in Ontario. The novelties of this study include (i) identifying 
essential factors that have a significant effect on electricity consumption, (ii) the execution of a 
Bayesian optimization algorithm (BOA) to optimize the model hyperparameters, (iii) hybridizing 
the BOA with the seasonal autoregressive integrated moving average with exogenous inputs (SARI-
MAX) and nonlinear autoregressive networks with exogenous input (NARX) for modeling sepa-
rately short-term electricity demand for the first time, (iv) comparing the model’s performance using 
several performance indicators and computing efficiency, and (v) validation of the model perfor-
mance using unseen data. Six features (viz., snow depth, cloud cover, precipitation, temperature, 
irradiance toa, and irradiance surface) were found to be significant. The Mean Absolute Percentage 
Error (MAPE) of five consecutive weekdays for all seasons in the hybrid BOA-NARX is obtained at 
about 3%, while a remarkable variation is observed in the hybrid BOA-SARIMAX. BOA-NARX pro-
vides an overall steady Relative Error (RE) in all seasons (1~6.56%), while BOA-SARIMAX provides 
unstable results (Fall: 0.73~2.98%; Summer: 8.41~14.44%). The coefficient of determination (R2) val-
ues for both models are >0.96. Overall results indicate that both models perform well; however, the 
hybrid BOA-NARX reveals a stable ability to handle the day-ahead electricity load forecasts. 

Keywords: electricity demand; short-term forecast; Bayesian optimization algorithm; SARIMAX; 
NARX 
 

1. Introduction 
Electricity is an essential living need, and it is one of the highly challenging issues 

that every country needs to ensure and provide to their citizens as well as support the 
related economy. Electricity demand forecasting is crucial in electricity generation capac-
ity, transmission planning, and pricing. Electricity demand forecasting has distinct attrib-
utes in various forecast perspectives. A long-term forecast of the total demand is required 
for capacity planning as a function of economic or demographic variables, while a short-
term (hourly) forecast is necessary for the efficiency of day-ahead markets. The variations 
in the short-term estimates have a “regular” component depending on day-to-day rou-
tines and seasonal impacts. Exceptional circumstances (extreme weather conditions, hol-
idays, sporting events) lead to “irregular” variations that significantly impact this pattern. 
The forecasting of the “regular” component of the hourly electricity demand is essential 
for planning the day-ahead market, which is, in the long run, on a horizon throughout the 
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years. It can benefit the policymakers to set future strategies to ensure the continuity of 
such essential energy. 

Proper forecasting of electricity demand allows a trustworthy power system man-
agement decision and has an excellent cost-saving potential for power companies [1–4]. 
An inaccurate forecast leads to high economic losses for electricity companies, as a 1% 
increase in predicting error can cause a 10 million-fold rise in operating costs [5]. With the 
increase in electricity demand and the rapid improvement of artificial intelligence, elec-
tricity demand prediction has drawn significant attention. Novel research techniques, 
emerging trends, and novel developments have emerged simultaneously [6]. Several tra-
ditional forecasting methods have been proposed, namely the autoregressive moving av-
erage model (ARIMA), seasonal autoregressive integrated moving average with exoge-
nous inputs (SARIMAX), components estimation technique [7,8], exponential smoothing 
models, and regression models [9,10]. On the other hand, with the recent development of 
artificial intelligence, many studies have tried to apply related techniques to augment pre-
diction accuracy, ranging from machine learning methods such as support vector regres-
sion (SVR) and nonlinear autoregressive networks with exogenous input (NARX) neural 
networks, to bio-mimicking optimization methods such as particle swarm optimization 
(PSO), and finally to deep learning techniques such as a convolutional recurrent neural 
network [11] or long-short term memory (LSTM) [12–18] techniques. Notably, several hy-
perparameters control the performance of the models. Thus, it is essential to tune these 
hyperparameters to ensure the model’s prediction performance. However, selecting hy-
perparameters based on experience along with many attempts is time-consuming and has 
high computation costs for algorithm training and does not always maximize the model’s 
performance [19]. Thus, the tuning process of the model’s hyperparameters requires op-
timization to improve the model’s robustness and accuracy. Several tuning techniques, 
such as the Genetic algorithm (GA) and the Bayesian optimization algorithm (BOA), can 
be hybridized with each base learner to automatically optimize the hyperparameters, de-
livering hybrid super-learner models. Related models have been reported[13,20]; how-
ever, more studies need to be attempted with various datasets, including electricity de-
mand.  

Numerous studies have been conducted in energy, especially forecasting electricity 
demands [21–28].  However, very little research has been performed to analyze the elec-
tricity demand in Canada, the second-largest country in the world [15,29]. Therefore, this 
study aims to conduct a more advanced analysis of electricity consumption in Ontario, 
Canada. Ontario is the most populous province among Canada’s thirteen provinces and 
territories. Based on the Canada Energy Regulator (CER) report in 2017, Ontario is the 
second-largest producer of electricity in Canada; Ontario’s annual electricity consumption 
per capita was 9.5 megawatt-hours (MWh), and the rank is 11th in Canada for per capita 
electricity consumption. Depending on the average hourly demand data for all sectors 
aggregated (residential, industrial, commercial/institutional, agriculture, transportation) 
from 2013 to 2018, the major sectors for electricity demand are commercial at 35%, resi-
dential at 33%, and industrial at 30% of the total demand (see Figure 1). This study focuses 
on the residential demand in Ontario province, because this is one of the major sectors of 
electricity consumption and is the most well-understood among all other sectors. Electric-
ity is mainly consumed for space heating, water heating, appliances, lighting, and space 
cooling in the residential sector. 
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Figure 1. Average yearly electricity consumption in Ontario from 2013 to 2018 (note that the pan-
demic period, after 2018 onward, is purposely excluded to avoid any bias created by repetitive lock-
downs and consequent increases in residential demand). 

The primary goal of this study is to develop models for short-term forecasts of elec-
tricity demand in the residential sector in Ontario. In this regard, the following key objec-
tives are addressed:  
(1) Explore the details of overall electricity consumption in Ontario. 
(2) Investigate the factors that have a significant effect on the electricity consumption in 

residential sectors. 
(3) Apply modern data science approaches, namely the seasonal statistical method 

(SARIMAX) and the machine learning algorithm (NARX), to forecast short-term elec-
tricity demand. 

(4) Find the best model by automatic tunning hyperparameters via the Bayesian optimi-
zation algorithm (BOA). 

(5) Compare the proposed models using several performance indicators (viz., MAE, 
RMSE, MAPE, R2, adj-R2, RE, FB).  

(6) Conduct a robustness analysis to confirm the prediction accuracy of the models. 
It is noteworthy that this study marks the first-time use of a hybrid model (BOA-

SARIMAX, BOA-NARX) to forecast a short-term electricity demand, especially the hourly 
forecasting of electricity consumption in Ontario, Canada. Such short-term electrical load 
forecasting could play a vital role in the power production and scheduling process’s 
safety, stability, and sustainability.  

This paper is structured as follows: Section 2 provides the literature review. The main 
purpose of this section is to identify and state a clear gap in the current state of knowledge 
that is being addressed by the developed forecasting method. Section 3 outlines the details 
of the historical data and the model development process. Section 4 provides details of 
the results and a discussion. Finally, the concluding remarks are presented in Section 5. 
To enhance the clarity and readability of the article, all abbreviations have been tabulated 
in Table 1. 
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Table 1. Acronyms used in the article. 

Acronym Description Acronym Description 

ABCNN Artificial Bee Colony-based ANN model LSTM-
RNN LSTM-based Recurrent Neural Networks 

ACF Autocorrelation function NARX Nonlinear autoregressive networks with exoge-
nous input 

ACS Artificial cooperative search MA moving average 
AE Absolute error MAE Mean absolute error 
AIM Abductory Induction Mechanism MAPE Mean Absolute Percentage Error 
ANN Artificial Neural Network MARS Multivariate Adaptive Regression Spline 

ANN ABC 
Artificial neural network with artificial bee 
colony algorithm ML Machine learning 

ANN BP ANN with backpropagation MLP Feedforward multilayer perceptron structure 
ANN 
TLBO 

ANN with Teaching Learning Based Optimi-
zation MLR Multiple linear regression 

APSONN Artificial Particle Swarm Optimization based 
ANN MODWT Maximum overlap discrete wavelet transform 

AR Autoregressive MPOE MODWT-PACF-OS-ELM 
ARIMA Autoregressive integrated moving average MSE Mean square error 
ARMAX Autoregressive moving average MWh Megawatt-hours 
BOA Bayesian optimization algorithm NRCan Natural Resources Canada 
CER Canada Energy Regulator OPEC Organization of Petroleum Exporting Countries 
CS Cuckoo Search algorithm OS-ELM Online sequential extreme learning machine 

CSNN Cuckoo Search Algorithm utilizing Lévy 
flights associated with ANN 

PACF Partial autocorrelation function 

CVRMSE Coefficient of variation RMSE Pj Yearly electricity load 
DE Differential Evolution POE PACF-OS-ELM 
ELM Legates and McCabe’s Index PSO Particle-swarm optimization 
EMD Empirical Mode Decomposition QQ plot Quantile–quantile plot 
ENS Nash–Sutcliffe efficiency coefficient R2 Coefficient of Determination 
FB Fractional Bias R2 (adj) Adjusted Coefficient of Determination 
GA Genetic algorithm RE Relative error 
GANN Genetic Algorithm based ANN RF Random Forest 
GB Gradient Boosting RRMSE Relative Root Mean Square Error 
GP Gaussian process RMSE Root Mean Square Error 

HDIP Hydrocarbon Development Institute of Paki-
stan 

RNN Recurrent Neural Network 

ICA Independent Component Analysis SARIMAX Seasonal autoregressive integrated moving aver-
age with exogenous inputs 

KNN K-Nearest Neighbor SA Simulated Annealing 
LEAP Long-range Energy Alternative Planning SVR Support Vector Machine 
LR Linear Regression WI Willmott’s Index 
LSTM Long–short-term memory   

2. Literature Review 
Electricity demand forecasting received deep concern from many researchers in dif-

ferent countries due to its essential contribution to planning and power system manage-
ment. Numerous studies have been conducted to forecast electricity demand during the 
past several decades. Various algorithms were used in these studies to achieve the best 
model performance, in short-, medium-, and long-term electricity demand forecasting. 
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Aghay Kaboli et al. conducted a study to forecast the long-term electricity demand 
in Iran  using the Artificial Cooperative Search (ACS) approach, a recently developed evo-
lutionary algorithm with a high probability of finding the optimal solution to complex 
optimization problems  ]12[ . This study involved the socio-economic indicator, namely 
gross domestic product (GDP), population, import, export, and stock index, which may 
have a remarkable effect on increasing or decreasing electric energy demand. The annual 
energy demand data from 1992 until 2013 were used in this study for model development 
and validation. The authors stated that the developed ACS algorithm is more efficient in 
forecasting compared with other optimization methods that had been applied for energy 
consumption forecasting, namely, Genetic Algorithm (GA), Practical Swarm Optimiza-
tion (PSO), Independent Component Analysis (ICA), Cuckoo Search algorithm CS, Simu-
lated Annealing (SA), and Differential Evolution (DE). In addition, linear, quadratic, ex-
ponential, and logarithmic mathematic models were implemented for the path coefficient 
analysis to detect the best weighting factors. Finally, the results of this study confirmed 
that ACS achieved high performance in forecasting the electricity demand with the lowest 
errors measured with the evaluation metrics, namely, Absolute Error (AE), Root Mean 
Square Error (RMSE), U-statistic, and Mean Absolute Percentage Error (MAPE). 

Ur Rehman et al. have applied three energy forecasting models based on the Auto-
regressive Integrated Moving Average (ARIMA), Holt-Winter, and Long-range Energy 
Alternative Planning (LEAP) methods to predict the energy consumption of five essential 
fuels, i.e., electricity, natural gas, oil, coal, and liquefied petroleum gas in six fields, namely 
domestic, industrial, commercial, transportation, agriculture and other governmental sec-
tors in Pakistan [22]. In [22], the researchers retrieved annual energy data from the Hy-
drocarbon Development Institute of Pakistan (HDIP) from 1992 until 2014. Later, the 
study forecasted the energy consumption for the coming 21 years. The ARIMA and Holt–
Winter algorithms were used in this study, and the results were tested and validated by 
RMSE and MAPE. The LEAP software tool was also used in this study to build the fore-
casting model, which was highly suggested for different applications related to energy 
demand forecasting at many spatial levels such as cities, states, or countries due to their 
enormous potential and ability to forecast using minimum data. However, the authors of 
[22] proved that the ARIMA model was the most appropriate model to predict energy 
demands with a confidence interval of 95% compared with the other two models.  

In [23], Kankal et al. developed models to forecast the electricity demand in Turkey. 
In that study, the data were retrieved from different local and international resources from 
1980 to 2012 to collect data about the independent variables, GDP, population, import, 
and export. A new optimized algorithm based on Artificial Neural Network (ANN) called 
ANN-Teaching Learning Based Optimization (ANN-TLBO) was used in this study to de-
velop a forecasting model of electricity demand. This proposed algorithm was inspired 
by the teaching–learning process, where the effect of an excellent teacher reflects posi-
tively on the student performance in the exam, and the effects of students’ interaction 
among each other also affect their performance. The prediction performance of this pro-
posed algorithm was evaluated by comparing it with the performance of the artificial neu-
ral network with backpropagation (ANN-BP) and the artificial neural network with arti-
ficial bee colony algorithm (ANN ABC) models. The ANN-TLBO defeated the other two 
models; the root mean square error (RMSE) was reduced by 42.3% and 39.3%. The authors 
also stated that the ANN-TLBO algorithm had a significant advantage in decreasing the 
computational complexity.  

In [24], Khan et al. forecasted the electricity consumption in the 12 countries in the 
Organization of Petroleum Exporting Countries (OPEC), namely Algeria, Angola, Ecua-
dor, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi, the United Arab Emirates, and Ven-
ezuela. The dataset was collected by yearly electric consumption from 1980 till 2012 to 
predict the demand 3 years ahead, 6 years ahead, 9 years ahead, and 13 years ahead. The 
Cuckoo Search Algorithm utilizing Lévy flights associated with the ANN was used in this 
study to construct the CSNN model for forecasting electricity consumption. For model 
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performance evaluation, the study compared the results of the MSE with other models, 
namely, the Artificial Particle Swarm Optimization-based ANN model (APSONN), the 
Genetic Algorithm-based ANN model (GANN), and the Artificial Bee Colony-based 
ANN model (ABCNN). The results illustrated that CSNN achieved the best performance 
among the other models.  

Some research was conducted to study the forecasting methods for both short and 
long prediction periods. Yukseltan et al. used the Fourier series expansion in electricity 
demand forecasting in Turkey [25]. In that study, the researchers applied the feedback-
based forecasting methodology to forecast the electricity consumption for the next hour 
based on the error found in the present hour. The dataset was obtained from 2012 to 2017 
and was used to forecast the consumption in an hourly, daily, and yearly manner. A two-
year observation period was applied to generate hourly forecasting for the coming year. 

Moreover, the last two-year period data were used to predict the coming day and the 
next hour based on a feedback mechanism. The result of the proposed model achieved a 
high performance in forecasting the electricity demand, and it was validated by testing 
the MAPE with 0.87%, 2.90%, and 3.54% in the hourly, daily, and yearly forecasts, respec-
tively. Additionally, the study utilized an autoregressive (AR) model to enhance the pre-
dictions by the Fourier series expansion and provide better accuracy.  

In [15], Bouktif et al. forecasted the short–medium term electric load in Canada using 
monthly data retrieved from France metropolitan’s electricity consumption for nine years. 
The long–short-term memory (LSTM)-based Recurrent Neural Networks (LSTM-RNN) 
and other machine learning models, namely Linear Regression (LR), Ridge, Regression K-
Nearest Neighbours (KNN), Random Forest (RF), Gradient Boosting (GB), and ANN and 
Extra Trees Regressor, were used in this study. The forecasting performances of the de-
veloped models were then compared to identify the best predictive model. Additionally, 
this study included several features such as time lags, temperature, humidity, wind speed, 
and schedule-related variables (month number, weekends, weekdays). The genetic algo-
rithm (GA) was used in this study to select the best features and time lags to optimize the 
model performance. The results showed that LSTM-RNN achieved a better performance 
in forecasting electricity load than the ML models, with the coefficient of variation RMSE 
(CVRMSE) of 0.61% for the short term and an average of 0.56% for the medium term.  

Several studies focused on developing short-term forecasting models. In [26], Bedi et 
al. delivered a hybrid model to estimate the short-term electric energy demand forecast in 
the city of Chandigarh in India. This study used deep learning-based algorithms, namely 
the long–short-term memory network (LSTM) and Empirical Mode Decomposition 
(EMD), to develop the proposed hybrid model. The dataset was retrieved for five years 
(from January 2013 to January 2018) in addition to a recorded electric consumption every 
15 min each day to estimate the short-term forecasting. In addition, multiple regression 
models were applied to compare the results with the proposed hybrid model, such as 
Recurrent Neural Network (RNN), LSTM, and EMD-based RNN (EMD + RNN) models. 
RMSE and MAPE were used to evaluate the model performance, and the results showed 
that the hybrid model (EMD + LSTM) achieved better accuracy than the regression models 
from 5 to 8%. 

In [27], AL-Musaylh et al. aimed to construct an artificial neural network (ANN) 
model for short-term electricity demand forecasting over other models based on multiple 
linear regression (MLR), MARS, and ARIMA. The dataset in that study was obtained from 
July 2014 to June 2017 in around 200 suburbs in Southeast Queensland, Australia. That 
study included six climate variables, namely maximum temperature, minimum tempera-
ture, rainfall, evaporation, solar radiation, and vapor pressure to estimate the daily elec-
tricity consumption and six-hour ahead prediction. Further, to evaluate the model perfor-
mance, the study applied six evaluation metrics, namely Legates and McCabe’s Index 
(ELM), Willmott’s Index (WI), and Nash–Sutcliffe efficiency coefficient (ENS), MAE, 
RMSE, MAPE, and RRMSE. The results showed that the ANN model outperformed the 
other models. Moreover, a hybrid ANN model was developed in that study by merging 
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the forecasts of ANN, MARS, and MLR. This hybrid model’s highest predictions were 
compared with other models, with the RMSE of 3.85% for the six-hour forecasting and 
4.37% for daily forecasting. 

Al-Musaylh et al. developed forecasting models utilizing various algorithms, namely 
Multivariate Adaptive Regression Spline (MARS), Support Vector Regression (SVR), and 
the statistical (ARIMA) model to forecast the short-term electricity demand in Queens-
land, Australia [30]. These models predicted the electric energy at 0.5 h ahead, 1.0 h ahead, 
and 24 h onwards. The dataset used in this study contains electricity consumption from 
January 2012 to December 2015. This study utilized multiple evaluation metrics for model 
performance, including the Pearson Product Moment Correlation coefficient (r), RMSE, 
and MAE. The results illustrated that, by forecasting the short-term horizons of 0.5 h and 
1.0 h, the MARS model achieved better performance than the ARIMA and SVR models 
with MAE values of 0.765 and 1.446, respectively. On the other hand, the SVR model out-
performs the other two models in forecasting daily electricity consumption with 2.717 
MAE. 

K. Chapagain et al. developed short-term electricity demand forecasting models and 
analyzed the impact of temperature and other deterministic features on the Thai electricity 
demand [28]. The whole dataset was divided into four subgroups based on demand char-
acteristics, and models were developed for each subset. The feedforward artificial neural 
network was developed in this study, and the model accuracy was compared with regres-
sion methods, namely ordinary least square and general least square. The authors state 
that regression methods have better forecasting accuracy than the developed feedforward 
artificial neural network. The authors also found that the temperature is linearly related 
to the Thai electricity demand. The maximum effect of temperature during the night hours 
occurs at 11 p.m., is 300 MW/°C, about a 4% rise in demand. However, the temperature 
impact is only 10 MW/°C to 200 MW/°C during day hours, about a 1.4% to 2.6% rise in 
demand. 

Elnakla et al. compared the electricity demand per capita in Saudi Arabia with the 
United Arab Emirates (UAE) and Australia [31]. The results showed that Saudi Arabia 
consumes less electric energy than the UAE and higher electricity than Australia. Moreo-
ver, this study forecasted the electricity consumption in Saudi Arabia based on three sce-
narios. The first scenario was ‘Optimistic’, which estimated the average population 
growth would be 2.5% per year while the electricity consumption would increase by 1% 
per year. The second scenario was ‘Moderate’, which assumed that population growth 
would increase by 3% per year. The third scenario was ‘Pessimistic’, which assumed that 
the average population growth would continue along the same trend as the previous 40 
years and the annual electricity consumption would be the as same as the last 20 years. 
Further, this study forecasted electricity consumption from 2014 until 2040. The results 
showed that to provide reliable electricity consumption and ensure availability for all sec-
tors, KSA should increase the electricity generation by 215% based on the ‘Optimistic’ 
scenario and by 514% to meet the population demand based on the ‘Pessimistic’ scenario.  

Abdel-aal et al. forecasted the consumption of electrical energy for the Eastern prov-
ince of Saudi Arabia based on weather parameters and demographic and economic vari-
ables [32]. This study applied a Univariate Box–Jenkins time-series analysis on monthly 
data for six years from August 1987 to July 1993; the first five years were used to develop 
the model, while the dataset for the 6th year was used for validating the models. The non-
seasonal and seasonal autoregressive models were used in this study. Moreover, different 
models were developed using the Abductory Induction Mechanism (AIM) and multivar-
iate regression models. The results showed that the ARIMA models had the best forecast-
ing results compared with the AIM and multivariate regression models, with an average 
percentage error of 3.8% compared to 8.1% and 5.6%, respectively.  

In [33], N. Liu et al. constructed two different short-term electricity consumption fore-
casting models based on the ANN approach and the Seasonal Autoregressive Integrated 
Moving Average with exogenous variables (SARIMAX) to predict a week ahead of 
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electricity demand. An hourly electricity consumption dataset from 2010 to the middle of 
2011 in Abu Dhabi, UAE, was utilized in this study. This study considered the impact of 
the dry bulb temperature as a variable that affected the electricity load. This study showed 
that the ANN model reacted better in the estimation stage than the SARIMAX. In contrast, 
the forecasting results illustrated that SARIMAX outperformed the ANN model with an 
RMSE of 62.61 MW; the MAPE was 2.98%, while the ANN model achieved an RMSE of 
72.92 MW with a MAPE of 3.57%. Thus, the authors concluded that the SARIMAX model 
is comparatively more reliable and better for this forecasting process.  

Similarly, A. Shadkam in [34] applied short-term prediction by using the SARIMAX 
model to forecast the peak and daily electricity demand in two university buildings in 
Canada. For that purpose, a daily dataset was obtained about these two buildings from 
2017 to 2019. The electricity demand from 2017 to 2018 was used in this study to develop 
the model, while the data for 2019 was used to test the performance. Additionally, this 
study included the impact of the daily average temperature and humidity on electricity 
consumption. Ultimately, the SARIMAX model achieved desirable forecasting results for 
both buildings. For the first university building, the MAPE was 4.1%, while the second 
university building reached a MAPE of 12.8%.  

J. Buitrago et al. conducted short-term electricity consumption forecasting techniques 
on the New England electric grid to forecast the next 24 h to enhance the energy load 
resources and the cost [35]. This study used a nonlinear autoregressive with exogenous 
multi-variable input (NARX) based on the ANN approach to training the data in an open 
loop to optimize the results. Then, the forecasting data was generated in a closed loop 
using the predicted values as the feedback input. An hourly dataset was retrieved from 
2005 till 2015, and weather data such as wet bulb temperature and dry bulb temperature 
were utilized as exogenous. The performance of the proposed model was compared to the 
ARMAX model, and the results showed that NARX outperformed with MAPE of 0.85% 
while the ARMAX achieved 1.09%.  

M. Al-Musaylh et al. in [36] combined the online sequential extreme learning-ma-
chine (OS-ELM) model and the maximum overlap discrete wavelet transform (MODWT) 
algorithm to forecast the electric demand on three campuses at the University of Southern 
Queensland, Australia. Daily electricity consumption data was collected for two periods,  
from January 2013 to December 2014 and September 2015 to August 2016. The authors 
applied the partial autocorrelation function (PACF) technique to select the most critical 
lagged input variables in the time series data. Then, the MODWT-PACF-OS-ELM (MPOE) 
model was compared with the non-wavelet equivalent PACF-OS-ELM (POE) model, and 
the results illustrated that the MPOE achieved better performance than the POE with a 
MAPE of 4.31%, while POE scored a MAPE of 11.31%. 

Table 2 summarizes the related studies in their region of application, the available 
extra information, the developed method, whether hyperparameter tuning was per-
formed, the benchmarked methods, and comparison metrics. One can observe that no 
study focuses on data from Ontario, Canada. Most of the studies benefitted from extra 
information, especially weather information. Very few studies utilized optimization tech-
niques to efficiently tune their hyperparameters, though it is known that this is a signifi-
cant bottleneck in the forecasting pipeline; furthermore, none of these studies investigated 
BOA. Various machine learning, deep learning, and evolutionary methods have been uti-
lized for benchmarking purposes. Moreover, a wide range of metrics is being used for 
comparison, with some studies using only one metric. However, only one study also con-
sidered time complexity. On the other hand, the last row of this table lists the features of 
our study, clearly highlighting the novelty of this study; it is the first study investigating 
short-term load forecasting in Ontario, including significant weather data, developing a 
novel hybrid method based on NARX (shown to be promising in [35]) and BOA for hy-
perparameters optimization, benchmarked with SARIMAX (another promising method 
as shown in [28,34]), based on a wide range of metrics, including time complexity.  
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Table 2. Comparative table of related studies. 

Ref. Region Extra Information Method 
Hyperpa-
rameters 
Tuning 

Benchmarked 
Methods 

Metrics Performance 

[21] Iran 
Socio-economic 
indicator ACS 

Linear, 
quadratic, 
exponen-
tial, and 
logarithmic 
mathematic 
models 

GA, PSO, ICA, 
CS, SA, DE 

AE, RMSE, 
U-statistic, 
MAPE 

ACS achieved high 
performance with 
the lowest errors 
measured 

[22] Pakistan  ARIMA   Holt-Winter 
RMSE, 
MAPE 

ARIMA confidence 
interval of 95% 
compared with 
other models 

[23] Turkey 
GDP, population, 
import, and ex-
port 

ANN-TLBO  ANN-BP, 
ANN-ABC 

RMSE, 
Time 

RMSE reduced by 
42.3% and 39.3% 

[24] 12 OPEC 
countries  CSNN  

APSONN, 
GANN, 
ABCNN 

MSE 
CSNN achieved 
the best perfor-
mance 

[25] Turkey     MAPE 

0.87%, 2.90%, and 
3.54% in the 
hourly, daily, and 
yearly forecasts 

[15] France 
Time lags, tem-
perature, humid-
ity, wind speed 

LSTM-RNN GA 

LR, Ridge re-
gression, KNN, 
RF, GB, ANN, 
Extra tree re-
gressors 

RMSE Variation of 0.61% 

[26] 
Chan-
dirgah/India  

Hybrid LSTM and 
EMD  

RNN, LSTM. 
EMD + RNN 

RMSE, 
MAPE 

Better accuracy + 5 
to 8% 

[27] 
Southeast 
Queensland, 
Australia 

Maximum tem-
perature, mini-
mum tempera-
ture, rainfall, 
evaporation, solar 
radiation, and va-
por pressure 

Hybrid ANN + 
MARS + MLR  

ANN, MLR, 
MARS, 
ARIMA 

ELM, WI, 
ENS, 
MAE, 
RMSE, 
MAPE, 
RRMSE 

RMSE of 3.85% for 
the 6 h forecasting 
and 4.37% for daily 
forecasting 

[30] 
Queensland, 
Australia  MARS  ARIMA, SVR 

r, RMSE, 
MAE 

MAE values of 
0.765 and 1.446, re-
spectively 

[28] Thailand 

Temperature and 
other determinis-
tic features on 
Thai electricity 
demand 

Feedforward artifi-
cial neural network 

 

ordinary least 
square and 
general least 
square 

 Regression had 
better accuracy 

[32] 
Eastern 
province of 
Saudi Arabia 

Weather parame-
ters and 

ARIMA (univariate 
Box-Jenkins time-
series analysis) 

 AIM, multivar-
iate regression 

Average 
percentage 
error 

Average percent-
age error of 3.8% 
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demographic and 
economic varia-
bles 

compared to 8.1% 
and 5.6% 

[33] 
Abu Dhabi, 
UAE 

Dry bulb temper-
ature as a variable 
that affected the 
electricity load 

SARIMAX  ANN 
RMSE, 
MAPE 

SARIMAX outper-
formed ANN with 
RMSE of 62.61 MW 
(vs. 72.92 MW), 
MAPE 2.98% (vs. 
3.57%) 

[34] 

Two univer-
sity build-
ings in Can-
ada 

Daily average 
temperature and 
the humidity 

SARIMAX   MAPE 4.1% and 12.8% 

[35] 
New Eng-
land electric 
grid 

Wet bulb temper-
ature and dry 
bulb temperature) 

NARX  ARMAX MAPE 
NARX MAPE = 
0.85% vs. ARMAX 
MAPE = 1.09%  

[36] 

Three cam-
puses in the 
University of 
Southern 
Queensland, 
Australia 

 MPOE  POE MAPE 4.31% 

This 
study 

Ontario, 
Canada 

Precipitation, 
snowfall, snow 
mass, air density, 
ground-level solar 
irradiation, top of 
atmosphere solar 
irradiation, cloud 
cover fraction 

NARX BOA SARIMAX 

MAE, 
RMSE, 
MAPE, R2, 
RE, time 

BOA-NARX 
MAPE ~3%, steady 
RE 1~6.56%) 

3. Methodology 
This section first presents a description of the dataset used in this study and some 

fundamental statistical analyses. Afterward, the proposed algorithms’ brief mathematical 
background and operational principles are described. This section also summarizes the 
Bayesian algorithm’s mathematical formulation and theoretical principles and optimizes 
the proposed algorithms’ hyperparameters. Figure 2 outlines the major steps of the meth-
odology adopted in this study. 

3.1. Data Description 
Hourly electricity demand data for the residential sector of the Ontario province of 

Canada from 2013 to 2019 was used in this study. Data were collected from Natural Re-
sources Canada (NRCan). The hourly air temperature and weather data (precipitation, 
snowfall, snow mass, air density, ground-level solar irradiation, top of atmosphere solar 
irradiation, cloud cover fraction) were collected from ETH Zurich and Imperial College 
London. An overall decreasing trend was observed in the yearly electricity (PJ) load from 
2013 to 2019 (see Figure 3). Note that a decreasing demand is usually uncommon, but 
Ontario is notorious for energy conservation efforts as well as improvements in energy 
efficiency. The seasonal effect was analyzed on this dataset. A strong seasonality effect 
was observed, with high Summer consumption periods, comparatively less winter con-
sumption, and low consumption periods in spring and fall (see Figure 4).  
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Figure 2. Overall flow chart of the methodology. 
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Figure 3. Trend analysis plot for yearly electricity load (PJ) in 2013–2019. 

 
Figure 4. Typical daily load profiles in winter, spring, Summer, and fall. 

According to NRCan, space heating accounts for 63% of the energy used in the aver-
age Canadian home and 56% of the energy used in commercial settings. However, elec-
tricity consumption is less in winter than in Summer because oil/gas is used mainly for 
space heating based on Canada’s Energy Efficiency Regulations. Based on the daily elec-
tricity load analysis, it is observed that the load is lower on weekends compared to week-
days (see Figure 5). Furthermore, daily variations are more significant in periods of high 
average consumption (see Figure 5). For heating and cooling purposes, electricity con-
sumption has strong temperature dependence or, more precisely, is dependent on devia-
tions from comfortable temperatures.  

 
Figure 5. Typical daily load profiles over two weeks. 
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3.2. Computational Techniques 
In this study, both the statistical approach (SARIMAX) and the machine learning ap-

proach (NARX) were utilized to forecast Ontario’s hourly electricity demand. MATLAB 
(version R2021a) was applied for model development and data analysis. 

3.2.1. Statistical Approach (SARIMAX) 
The Auto-Regressive Integrated Moving Average (ARIMA) model was developed to 

analyze non-stationary time series that exhibit a particular trend. It is considered one of 
the most general time series models. The standard ARIMA (p, d, q) linear time series model 
for a univariate response process 𝑦௧ can be written as: 

൭1 − ෍ ∅௜𝐵௜௣
௜ୀଵ ൱ (1 − 𝐵)ௗ𝑦௧ = ൭1 + ෍ 𝜃௜𝐵௤௤

௜ୀଵ ൱ 𝑎௧ (1) 

where 𝐵 is backshift operator defined as 𝐵𝑦௧  =  𝑦௧ିଵ, 𝐵௝𝑦௧ =  𝑦௧ି௝ , p is the non-seasonal 
auto-regressive (AR) order, d is non-seasonal differencing, q is the non-seasonal moving 
average (MA) order, and 𝑎௧ is the white noise. The values of p and q can be estimated 
using the sample autocorrelation function (ACF) and partial autocorrelation function 
(PACF) plots. The ACF describes how the current value of a time series is compared with 
the previous values. The x-axis is represented by the correlation coefficient, while the 
number of lags is represented on the y-axis. While the PACF provides the partial correla-
tion between the time series and its lagged values.  

The main difference between them is that the PACF plot regressed the time series 
values at all smaller delays, while the ACF, on the other hand, does not account for addi-
tional delays. It is essential to look for significant lags where the autocorrelation and par-
tial autocorrelation values in the ACF and PACF plots exceed the confidence interval. The 
significant lags can be considered when determining the value of the parameters p and q. 
Due to the fact that real-time series do not perform like flawless autoregressive models, 
the estimations supplied by the ACF and PACF plots can only be noticed as a hint.  

In addition to non-stationary behavior, many time series show seasonal behavior. 
The energy demand data usually show intra-day, intra-week, and intra-year seasons. The 
SARIMA model combines two ARIMA models, one for the base time series and the other 
for describing the seasonality. The SARIMA model or ARIMA(p, d, q) × (P, D, Q)s can be 
described as 

൭1 − ෍ ∅௜𝐵௜௣
௜ୀଵ ൱ ൭1 − ෍ Φ௜𝐵௜௉

௜ୀଵ ൱௦ (1 − 𝐵)ௗ(1 − 𝐵௦)஽𝑦௧ = ൭1 + ෍ 𝜃௜𝐵௤௤
௜ୀଵ ൱ ቌ1 + ෍ Θ௜𝐵ொொ

௜ୀଵ ቍ௦ 𝑎௧ (2)

where (1 − ∑ Φ௜𝐵௜௉௜ୀଵ )௦(1 − 𝐵௦)஽𝑦௧ =  ൫1 + ∑ Θ௜𝐵ொொ௜ୀଵ ൯௦𝑎௧  represents the seasonal part 
with parameters P (seasonal AR order), Q (seasonal MA order), D (seasonal differencing), 
and S (a period of the repeating seasonal pattern).  

However, energy forecasts depend on exogenous effects, and including these de-
pendencies may help increase the model’s accuracy. The SARIMAX model permits exog-
enous parameters by additively or multiplicatively adding a term for the exogenous var-
iable to the equation. This model can be written as below:  

൭1 − ෍ ∅௜𝐵௜௣
௜ୀଵ ൱ ൭1 − ෍ Φ௜𝐵௜௉

௜ୀଵ ൱௦ (1 − 𝐵)ௗ(1 − 𝐵௦)஽𝑦௧ = ൭1 + ෍ 𝜃௜𝐵௤௤
௜ୀଵ ൱ ቌ1 + ෍ Θ௜𝐵ொொ

௜ୀଵ ቍ௦ 𝑎௧ + ൭1 + ෍ η௜𝐵௕௕
௜ୀଵ ൱ 𝑑௧ (3)

where 𝜂௜ are the parameters of the exogenous time series 𝑑௧ and 𝑏 is the order of this 
time series.  
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3.2.2. Machine Learning Approach (NARX) 
Artificial Neural Networks (ANNs) have been adapted and applied in various appli-

cations such as classification, prediction, and recognition due to their structure, which 
stimulates the brain’s biological neural system and provides a strong ability to learn, store, 
and analyze data [37–39]. ANNs consist of multiple layers, including input, output, and 
hidden layers that generate mathematical models based on prior knowledge. ANNs can 
be classified based on the information-flow direction. In feedforward neural networks, 
nodes are assembled in layers, where inputs are fed to the input layer and passed via 
hidden layers to the final output layer. On the other hand, information flows forward and 
backward in recurrent neural networks (RNNs). The output of RNNs is recycled as the 
next time-step input. The nonlinear autoregressive network with exogenous inputs 
(NARX) is a recurrent neural network (RNN), which offers the popular feedforward mul-
tilayer perceptron structure (MLP) by a global feedback connection between input and 
output layers. The NARX networks merge ANNs with autoregressive models with exog-
enous input (ARX), a well-known statistical approach for time series analysis and model-
ing. These collective features of NARX permit acquiring nonlinear characteristics in an 
autoregressive time series. The nonlinear autoregressive models with exogenous input 
relate the current value of the target time series to past values of the same time series and 
current and past values of other exogenous time series. NARX is frequently applied for 
nonlinear time series predictions and nonlinear filtering tasks [35,40]. Similar to different 
types of RNNs, NARX also has limitations in acquiring long-term dependencies due to 
the trouble of disappearing and shattering gradients. However, they can preserve infor-
mation up to three times longer than simple RNNs. As a result, they can converge more 
rapidly and generalize better in comparison [41–44].  

The NARX neural network can be represented mathematically as follows [37,45,46]:  𝑦(𝑡)  =  𝑓[𝑦(𝑡 − 1), 𝑦(𝑡 −  2), . . . , 𝑦(𝑡 – 𝑑௬), 𝑢(𝑡 − 1), 𝑢(𝑡 −  2), . . . , 𝑢(𝑡 – 𝑑௨)]  (4)

In Equation (4), 𝑦(𝑡) denotes the target time series, 𝑢(𝑡) indicates the exogenous 
time series, 𝑑௬ is the delay of the target variable (known as feedback delay), 𝑑௨ is the 
delay of exogenous time series (known as input delay), and 𝑓 is a nonlinear mapping 
function of the neural network, which is typically not known (black-box function). This 
black-box function 𝑓 passes the input and exogenous time series through a specific num-
ber of hidden layers, and certain algorithms train the NARX network to build the best 
correlation between the inputs and the target variables. 

The NARX neural network model architecture consists of two phases: series-parallel 
architecture (open-loop) and parallel architecture (closed-loop). In the open loop, the 
training phase contains all the historical data of the variables that will be utilized to deter-
mine the node weights and calculate the output to feed the input of the feedforward net-
work. Thus, all training is performed in an open loop, including the validation and testing 
steps. In addition, only when the network has been trained (which includes validation 
and testing steps), is it transformed to a closed loop for multistep-ahead prediction, where 
the actual output is excluded. The predicted delayed output is considered to provide the 
forecast [35,37]. 

3.2.3. Hyperparameters Optimization for SARIMAX and NARX 
Proper selection of the hyperparameters of SARIMAX (p, q, d, P, Q, D) and NARX 

(number of hidden layers, number of neurons in each hidden layer, input delay, feedback 
delay) ensures the model’s prediction performance. The Bayesian optimization algorithm 
(BOA) was applied in this study to tune the hyperparameters since it provides the best 
hyperparameters that generate the lowest validation error. In this respect, the BOA was 
hybridized with SARIMAX and NARX separately to automatically find the optimum val-
ues of the hyperparameters.  
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The BOA is a sequential design procedure for the global optimization of black-box 
functions with no mathematical differentiation [47]. This optimization framework effec-
tively uses the complete historical data to enhance the search efficiency, and its most im-
portant theory is to constantly forecast the posterior information through prior knowledge 
[19]. The proposed BOA-based optimization approach is more appreciable than other fre-
quently applied optimization techniques, such as grid search, manual search, and random 
search, depending on its meaningful advantage of utilizing the acquisition function [48]. 
In particular, the Bayesian optimization approach firstly presumes a functional associa-
tion between the hyperparameters and the loss function as: ℎ∗ = arg min௛ఢு 𝑙𝑜𝑠𝑠(ℎ) (5) 

where 𝐻 denotes the set of hyperparameters, ℎ indicates the set of hyperparameter com-
binations in 𝐻, ℎ∗ denotes the optimal combination of hyperparameters achieved from 
the final optimization, and 𝑙𝑜𝑠𝑠(•) indicates the objective function required to be opti-
mized. The objective function is the validation error of a predictive model and can be de-
scribed as:  

𝑙𝑜𝑠𝑠൫ℎ௝൯ = 1𝑛 ෍ห𝑦పෝ൫ℎ௝൯ − 𝑦௜ห ௡
௜ୀଵ  (6)

where ℎ௝ is the 𝑗th hyperparameter combination, and 𝑦 is the true value, 𝑦ො൫ℎ௝൯ is the 
model outputs obtained using ℎ௝.  

The following process of BOA is creating a surrogate probability model based on 
Bayes’ rule to contract the data set 𝐷 = (ℎ௜, 𝑙𝑜𝑠𝑠(ℎ௜)). Here, ℎ௜ is the 𝑖th set of hyperpa-
rameters. In this process, a prior distribution 𝐻(𝑙𝑜𝑠𝑠) combined with the likelihood func-
tion 𝐻(𝐷|𝑙𝑜𝑠𝑠) is used to obtain the posterior distribution 𝐻(𝑙𝑜𝑠𝑠| 𝐷) as the following 
[19]: 𝐻(𝑙𝑜𝑠𝑠| 𝐷) = 𝐻(𝐷|𝑙𝑜𝑠𝑠) ∗ 𝐻(𝑙𝑜𝑠𝑠) (7)

The posterior probability approximates the objective function, called the surrogate 
objective function, and can direct future sampling. The Gaussian process (GP) can be used 
as a prior for the observed and unknown values of the loss function. A GP extends the 
multivariate Gaussian distribution to an infinite-dimension stochastic process for which 
any finite combination of dimensions will be a Gaussian distribution. Similar to a Gauss-
ian distribution, a GP is a distribution over functions entirely specified by its mean func-
tion 𝜇 and covariance function 𝐾 as 𝑓(x) ∼ GP(μ(x), (x, x′)). The GP can be considered 
as a function, but it returns the mean and variance of a normal distribution over the pos-
sible values of 𝑓 at x instead of returning a scalar 𝑓(x) for an arbitrary x. When using 
the Gaussian process for Bayesian optimization, it is assumed that the domain of the 
Gaussian process is the space of hyperparameters.  

To sample efficiently, Bayesian optimization uses an acquisition function, a mathe-
matical technique that guides how the parameter space should be explored during the 
BOA process. The acquisition function uses the predicted mean and variance generated 
by the Gaussian process model. Generally, acquisition functions are described such that 
high acquisition corresponds to potentially high values of the objective function, whether 
because the forecasting is high, the uncertainty is high, or both. Augmenting the acquisi-
tion function is utilized to take the next point to assess the objective function. Thus, the 
next observation is chosen using the acquisition function as follows: ℎ∗ = arg max௛ఢு 𝑎(ℎ|𝐷) (8)

where 𝑎(•) is the generic symbol for an acquisition function. For more details on the 
Bayesian optimization, readers are referred to articles published elsewhere [13,14,49,50].  
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3.2.4. Performance Evaluation Metrics 
It is essential to apply multiple statistical metrics to assess the model’s accuracy, be-

cause it may perform well with one statistical metric but perform poorly with another 
indicator. Five performance evaluation metrics are calculated using the following equa-
tions to evaluate the performance of the constructed models. Mean absolute error (𝑀𝐴𝐸) = 1𝑛 ෍|𝐴𝑣 − 𝑃𝑣| (9)

 Root Mean Square Error (𝑅𝑀𝑆𝐸) = ඨ∑(𝐴𝑣 − 𝑃𝑣)ଶ𝑛  (10)

Mean Absolute Percentage Error (MAPE) =  1𝑛 ෍ |𝐴௩ − 𝑃௩||𝐴௩| ∗ 100 (11)

Coefficient of Determination (𝑅ଶ) = ቆ ∑ 𝑋 𝑌𝑛 𝜎௫𝜎௬ቇଶ
 (12)

Relative Error (𝑅𝐸) = 𝐴௩ − 𝑃௩𝐴௩  (13)

Fractional Bias (FB) = ଶ ∑ (஺௩ି௉௩)೙೔సభ∑ (஺௩ା௉௩)೙೔సభ     (14)

where 𝑛 is the number of data points, 𝑌 is the datasets of the dependent variable, 𝑋 is 
the datasets of explanatory variables, 𝜎௫ is the standard deviation of dataset 𝑋, 𝜎௬ is the 
standard deviation of dataset 𝑌, 𝐴௩ is the actual value of the data point, and 𝑃௩ is the 
predicted value of the data point. 

4. Results and Discussions  
The hourly electricity consumption data on weekdays from 2013 to 2018 was used to 

train the model, and the model was tested on 2019 data to examine the forecasting errors 
and avert overtraining. Initially, eight weather-related features were included in this 
study. Several feature selection techniques, including univariate feature ranking for re-
gression using F-tests, sequential feature selection, and neighborhood component analy-
sis, were used to select the most relevant and significant features of electricity consump-
tion. The best result was obtained from the neighborhood component analysis (see Figure 
6). It is evident that snowfall and air density are not relevant features, as the weights for 
these two features are very close to zero. The other six features (namely snow depth, cloud 
cover, precipitation, temperature, irradiance toa, and irradiance surface) are relevant and 
are considered in this study to develop the predictive models.  

4.1. Development of Hybrid BOA-SARIMAX Model 
The performance of the SARIMAX model depends intensely on its hyperparameters. 

Thus, the proper selection of hyperparameters is a pivotal task in getting an optimized 
model. The ACF and PACF plots of the hourly electricity consumption series were ana-
lyzed to determine the value of the parameters p and q (see Figure 7). However, as shown 
in Figure 7, there is no direct indication of the significant lags that can be used for selecting 
the value of the parameters p and q. Therefore, the BOA was hybridized with the SARI-
MAX to determine the optimum value of the hyperparameters [13,14]. As a result, a hy-
brid BOA-SARIMAX model was developed. Based on the ACF, PACF, and the time series 
plots of the hourly electricity consumption series, the range [1, 24] was selected for both 
the p and q, [1, 2] was selected for both P and Q, and [0, 2] was selected for both d and D. 
The optimum values for p, q, P, Q, d, and D were found to be 24, 14, 2, 2, 0, and 1, respec-
tively (see Table 3). These tuned parameters were used to determine the optimal SARI-
MAX model. The goodness of fit of the developed BOA-SARIMAX model was assessed 
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by analyzing the residual diagnostic plots (see Figure 8). The quantile–quantile plot (QQ-
plot) in Figure 8 shows no apparent violations of the normality assumption. Further, the 
sample autocorrelation function (ACF) and partial autocorrelation function (PACF) plots 
for the standardized residuals indicate no significant autocorrelation, confirming that the 
residuals are uncorrelated. 

 
Figure 6. Feature ranking based on the neighborhood component analysis. 

Table 3. Optimized hyperparameters of the developed models. 

Model         

SARIMAX 
Parameters 𝑝 𝑞 𝑑 𝑃 𝑄 𝐷 𝑆 

Range for BOA [1, 24] [1, 24] [0, 2] [1, 2] [1, 2] [0, 2] - 
Optimized value 24 14 0 2 2 1 24 

NARX 

Parameters 
No. of Hid-
den layers 

Hidden 
layer size 

Input de-
lay 

Feedback de-
lay 

Training func-
tion 

Training er-
ror  

Range for BOA - [1, 50] [1, 24] [1, 24] - -  

Optimized value 1 27 24 24 Levenberg–Mar-
quardt MSE  

4.2. Development of Hybrid BOA-NARX Model 
The BOA was hybridized with NARX to develop the hybrid BOA-NARX model and 

find the optimal hyperparameters with the simplest structure. In this regard, the number 
of hidden layers, hidden layer size, input delay, feedback delay, and training function 
were tuned using the BOA. The optimized hyperparameters of the best predictive NARX 
model are presented in Table 3, and the network structure is displayed in Figure 9. The 
performance plot (MSE versus epoch) of the developed NARX model is shown in Figure 
10. Generally, in each epoch, the neurons’ weight values were revised. A high epoch value 
results in high computing times for training, testing, and validating [13]. The training in-
volving adaptive weight minimization halted at the 18th epoch, with the best validation 
performance of 37,628.7618 (see Figure 10). The errors for both the test and the validation 
data have similar characteristics, suggesting no overfitting. The regression plots of the 
developed network based on the training, testing, validation, and whole dataset were 
used to analyze the goodness of fit (shown in Figure 11). The values of R > 0.99 for all cases 
suggest a reliable and high predictive performance of the developed NARX neural net-
work. 
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Figure 7. ACF and PACF plots of hourly energy load. 

 
Figure 8. Residual diagnostic plots of the developed SARIMAX model. 

0

0.5

1

Au
to

co
rre

la
tio

n

0 5 10 15 20 25Lag

-1

0

1

Pa
rti

al
 A

ut
oc

or
re

la
tio

n

0 5 10 15 20 25
Lag

0 2 4
104

-20

0

20
Standardized Residuals

-5 0 5
Standard Normal Quantiles

-5000

0

5000

Q
ua

nt
ile

s 
of

 In
pu

t

QQ Plot of Sample Data versus Standard Normal

0

0.5

1

Sa
m

pl
e 

Au
to

co
rre

la
tio

n

Sample Autocorrelation Function

0 10 20
Lag

0

0.5

1

Pa
rti

al
 A

ut
oc

or
re

la
tio

n Sample Partial Autocorrelation Function

0 10 20
Lag



Energies 2022, 15, 3425 19 of 26 
 

 

 
(a) 

 
(b) 

Figure 9. NARX networks for (a) open loop and (b) closed loop architectures. 

 
Figure 10. Performance plot of the developed neural network. 

0 5 10 15 20
24 Epochs

105

Best Validation Performance is 37628.7618 at epoch 18

Train
Validation
Test
Best



Energies 2022, 15, 3425 20 of 26 
 

 

 
Figure 11. Regression plot of the developed NARX model. 

4.3. Performance Evaluation and Model Comparison 
The developed hybrid BOA-SARIMAX and BOA-NARX models were tested for day-

ahead forecasting of five consecutive weekdays in four seasons of 2019. The average MAE, 
RMSE, MAPE, 𝑅ଶ, adj-R2 and FB values for all five testing weekdays are displayed in Ta-
ble 4.  

Table 4. MAE, RMSE, MAPE, 𝑅ଶ, 𝑎𝑑𝑗 𝑅ଶ, and FB for five testing days in four seasons of 2019. 

  MAE (MW) RMSE (MW) MAPE (MW) 𝑹𝟐 Adj-𝑹𝟐 FB 

BOA-SARIMAX 

January 2019 825.1307 945.8183 4.7468 0.9719 0.9641 0.0101 
April 2019 469.5054 573.8192 3.2249 0.9499 0.9360 −0.0059 
July 2019 1735.5 1910 10.4028 0.9635 0.9534 −0.0058 

October 2019 256.5279 303.7495 1.8782 0.9869 0.9833 −0.0059 

BOA-NARX 

January 2019 553.0839 614.9764 3.2299 0.9687 0.9600 0.0168 
April 2019 471.7548 555.9796 3.1555 0.9512 0.9377 0.0005 
July 2019 610.4919 719.0792 3.7649 0.9674 0.9584 −0.0112 

October 2019 480.9545 570.1857 3.4114 0.96179 0.9512 −0.0325 

The performance comparisons of the historical data and forecasted electricity de-
mand of all five testing weekdays are shown in Figure 12. Clearly, both models demon-
strate the promising ability to handle the day-ahead electricity load forecasts. The 
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forecasted curves presented by the models closely follow the load shapes of several week-
days and describe the peak load changes against various meteorological conditions. 

 
Figure 12. Comparison of observed and day-ahead forecasted electricity loads (MW) for five testing 
days in four seasons of 2019 using SARIMAX and NARX algorithm. 

According to Table 4, the prediction performance of the BOA-NARX model is more 
stable and robust, for example, the average MAPE of five consecutive weekdays for all 
seasons in the BOA-NARX model is about 3%, while in the BOA-SARIMAX model, there 
is a remarkable variation in the value of averaged MAPE between the seasons. However, 
an outstanding prediction of the BOA-SARIMAX model (MAPE = 1.8782, 𝑅ଶ = 0.9869, adj-
R2 = 0.9833, FB = −0.0059) compared to BOA-NARX model (MAPE = 3.4114, 𝑅ଶ = 0.96179, 
adj-R2 = 0.9512, FB = −0.0325) was observed for the selected days in the Fall season. For 
load uncertainty, the performance gap between the BOA-SARIMAX model and the BOA-
NARX model was most considerable in Summer, which had the highest peak load and 
the highest part of the uncertainty. This is intuitively reasonable, as the BOA-SARIMAX 
model is made of a linearity assumption, whereas the true temporal association and co-
variance are primarily nonlinear. Moreover, the considerable uncertainty in the time-se-
ries electricity load data may greatly reduce the performance of the BOA-SARIMAX 
model since regression-based approaches guess that both input and output parameters 
follow the Gaussian distribution. Overall, the BOA-NARX model reveals the most favor-
able and steady ability to handle the day-ahead electricity load forecasts. Several studies 
reported that the NARX model works excellently in forecasting [51,52]. Our results are in 
agreement with these studies. 

An hour-of-day indexed error analysis was conducted for all four seasons to analyze 
how the BOA-NARX model improves day-ahead load predictions compared to the BOA-
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SARIMAX model. The averaged absolute relative errors (%) of five consecutive testing 
days at each hour of the day for both models are shown in Figure 13. As shown in Figure 
13, there are remarkable variations in the absolute relative errors throughout the day in 
all seasons except Summer. In Summer, there is not much variation in the hourly forecast-
ing errors of the models in the first few hours, whereas these values evolve quite differ-
ently across the day. A significant increase in error starts from hour 12, when the BOA-
SARIMAX model is employed. The relative error for the BOA-SARIMAX model is com-
paratively low (range 0.73~2.98%) in Fall and very high (range 8.41~14.44%) in Summer. 
On the other hand, the BOA-NARX model shows an overall steady result in all seasons 
(range about 1~6.56%). However, regarding the computation efficiency, the BOA-SARI-
MAX model shows higher efficiency (average 74.138 s/run) than the BOA-NARX model 
(average 1832.465 s/run).  

 
Figure 13. Average relative errors (%) at each hour of the day for five testing days in four seasons 
of 2019 based on SARIMAX and NARX model. 
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Although the studies reported in Table 4 have various time ranges, overall, one can 
see that with ~3% of average MAPE values of the tested period for all seasons, the BOA-
NARX tests aligned with [25] and outperformed [34,36]. All these findings thus support 
other studies published elsewhere [53].  

Further, to confirm the prediction accuracy, a robustness analysis was performed. In 
this regard, three sets of manipulated testing datasets were created by introducing three 
different noise levels into the day-ahead weather data. Specifically, for the five-day hourly 
weather profile (5 × 24 = 120 data points), 20%, 40%, and 60% of the original data points 
were manipulated with the Gaussian distributed white noise. The SARIMAX and NARX 
models were re-run on the noise-introduced datasets. Table 5 shows the averaged MAE, 
RMSE, and MAPE values for five testing days under different noise levels. It is indicated 
that, with the introduction of up to 60% white noise, the average MAPE values of the 
SARIMAX and NARX models increase slightly from 4.7468 to 4.7482 and from 3.2299 to 
3.2773, respectively. Therefore, it is verified that both models are robust in terms of fore-
casting. However, the prediction accuracy of the BOA-NARX model is much better than 
that of the BOA-SARIMAX model.  

Table 5. Averaged MAE, RMSE, and MAPE values for five testing days in January 2019 under dif-
ferent noise levels. 

 BOA-SARIMAX BOA-NARX 
Percentage of In-
troduced Noise MAE RMSE MAPE MAE RMSE MAPE 

0% 825.1307 945.8183 4.7468 553.0839 614.9764 3.2299 
20% 825.1293 945.8161 4.7468 553.3542 615.2964 3.2314 
40% 825.2115 945.9330 4.7473 554.3769 616.0434 3.2371 
60% 825.4104 946.3487 4.7482 562.3439 620.1726 3.2773 

4.4. Practical Applications and Prospects 
Although a significant improvement in model development (both statistical and ma-

chine learning-based) for forecasting electricity demand has been made, analyzing the 
short-term electricity demand in Canada is still limited. While some predictive models 
offer exceptional capability in handling complex nonlinear relationships, model complex-
ity, computation efficiency, and robustness are of concern. It is noteworthy that model 
performance greatly depends on its hyperparameters; thus, automatically tuning these 
parameters is crucial to achieving an optimum model with less computational effort. In 
this regard, substantial time, research, and experiments (computational trials) are re-
quired for a particular dataset. Hence, such a modeling approach is not only a state-of-
the-art application, but also a potential area of study. To the authors’ knowledge, most 
energy research articles overlook the auto-tuning process to optimize hyperparameters. 
In this regard, the Bayesian optimization algorithm (BOA) could play an important role. 
As a result, a powerful hybrid platform (BOA + statistical method or BOA + artificial in-
telligence approach) may build, which could be effective in terms of generating excellent 
and robust predictions. 

5. Conclusions 
In this study, the residential electricity demand for 2013–2019 in Ontario, Canada, 

was analyzed. The neighborhood component analysis was performed to select six signif-
icant weather-related features, namely snow depth, cloud cover, precipitation, tempera-
ture, irradiance toa, and irradiance surface. Hybrid BOA-SARIMAX and BOA-NARX 
models were developed for forecasting the short-term electricity demand. The perfor-
mances of the models were compared using several performance indicators. Both models’ 
predicted data for all tested periods almost overlapped on historical values (R2 > 0.96). 
BOA-NARX provides the average MAPE of the tested period for all seasons of ~3%, while 
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BOA-SARIMAX significantly deviates between the seasons. A steady RE at each hour of 
the day was found (1~6.56%) in BOA-NARX for all seasons, while unstable variations 
(Fall: 0.73~2.98%; Summer: 8.41~14.44%) were observed in BOA-SARIMAX. The BOA-
SARIMAX model showed higher computation efficiency compared to the BOA-NARX 
model. The overall results indicated that the performances of both models were compara-
ble. However, the developed BOA-NARX model had a better prediction accuracy and sta-
bility performance than the BOA-SARIMAX model. It can be concluded that the devel-
oped predictive platform successfully estimated the electricity consumption; thus, it could 
be a potential tool for policymakers to deliver favorable insights into forecasting and im-
proving energy strategies. 
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