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Abstract: In a quest to solve the multi-objective optimal planning problem using a simple parame-
ter-free metaheuristic algorithm, this paper establishes the recently proposed student psychology-
based optimization (SPBO) algorithm as the most promising one, comparing it with the other two
popular nonparametric metaheuristic optimization algorithms, i.e., the symbiotic organisms search
(SOS) and Harris hawk optimization (HHO). A novel multi-objective framework (with suitable
weights) is proposed with a real power loss minimization index, bus voltage variation minimization
index, system voltage stability maximization index, and system annual cost minimization index to
cover various technical, economic, and environmental aspects. The performances of these three al-
gorithms are compared extensively for simultaneous allocation of multitype distributed generations
(DGs) and D-STACOM in 33-bus and 118-bus test systems considering eight different cases. The
detailed analysis also includes the statistical analysis of the results obtained using the three algo-
rithms applied to the two test distribution systems.

Keywords: distributed generators; simultaneous allocation; D-STATCOM,; student psychology-
based optimization; Harris hawk optimization; symbiotic organism search optimization

1. Introduction
1.1. General

Within the power system structure hierarchy, power distribution networks (PDNs)
are designed to deliver the electric energy produced by the central bulk generating sta-
tions to the customers through a web of transmission grids. However, for various reasons,
including the widespread use of cables, undersized conductors, radial configuration, and
inadequate reactive power support at the distribution level, the PDN is frequently accom-
panied by a poor voltage profile, an unstable operational mode, and excessive energy
losses. Furthermore, the escalation in energy demand, soaring fuel costs, fast-depleting
energy reserves, and global efforts to harvest clean and green energy have compelled the
power distribution network operators (PDNO) to seek out alternative network planning
approaches [1] to improve system performance while satisfying environmental and eco-
nomic requirements. The distribution network planning (DNP) entails augmenting dis-
tributed generators (DGs) [2], reconfiguring the network topology (the process of chang-
ing the state of sectionalizing and tie switches) [3], compensating for reactive power [4],
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and combining these techniques [5,6]. Over time, DNP has evolved as a complex, combi-
natorial, and multi-objective optimization problem that aims to determine the optimal
combination of planning approaches and optimal device allocation (DGs, reactive power
compensating equipment), and to alter the status of switches (tie switches and sectional-
izing switches) to meet the techno-economic and environmental requirements while ad-
hering to several operating system constraints. As a result, optimal DNP necessitates effi-
cient metaheuristic approaches [7].

Amidst the rise in fuel cost, the cost of energy production by the traditional genera-
tors has escalated. However, due to technological advancement, energy production by
renewable sources, viz. solar and wind, is becoming more affordable [8]. This enforces the
integration of renewable distributed generation on a wide scale into the existing grid. The
incorporation of DGs can bring several opportunities to PDNOs not only in terms of im-
provement in the technical performance (power loss reduction, voltage profile enhance-
ment, and acceptable voltage stability margin) of the system but also in terms of several
economic (reduction in energy loss cost and deferral of system upgrade) and environmen-
tal benefits (reduction in greenhouse gas emissions). Nevertheless, the wrong assignment
of DGs can be detrimental to the system. Therefore, DG deployment is challenging and
strenuous for the PDNOs to reap all the benefits. As a result, the optimal allocation of DGs
(OADG) requires an efficient optimization technique [2].

As the number of nonlinear loads in the PDN grows, reactive power shortage causes
unacceptable voltage magnitude, resulting in voltage collapse. This can be solved through
network reconfiguration (NR), allocation of shunt capacitors banks (SCBs), on-load tap
changers (OLTC), and deployment of custom power devices (CPD). However, owing to
the sluggish dynamic response and associated power quality issues, NR, SCBs, and OLTC
are replaced by CPDs such as dynamic voltage restorers (DVRs), distribution static com-
pensators (D-STATCOMs), and unified power quality conditioners (UPQCs) to ensure
safer and quality power delivery to the end users [9]. A voltage source converter-based
D-STATCOM is a shunt-connected controller that offers rapid reactive power exchange
with a smooth operational performance. D-STATCOM is most favored for reactive power
management in the PDN as it comes with low cost, compact size, less harmonic injection,
and simple control algorithms [9,10]. Optimal allocation (location and capacity) of D-
STATCOMs can assure their effective utilization.

1.2. Related Works

Considering the plethora of advantages that DGs can offer, various methods are sug-
gested by preceding researchers to augment DGs into the PDN to improve system perfor-
mance. The presence of continuous and discrete decision variables, nonlinear objective
functions, and various operational constraints have made the OADG problem a complex
optimization problem. Different heuristic, analytical, metaheuristic, and hybrid methods
are proposed to solve the OADG problem [11]. Different versions of the improved sto-
chastic fractal search algorithm (iSFSA), which is the combination of the original fractal
search algorithm embedded with 10 different chaotic maps, are used to select the best
sizes and locations for inserting DGs into the PDN for minimizing the real power loss
(RPL) [12]. The optimal number of DGs are then selected after comparing the results of
OADG obtained for different numbers of DGs. Authors in [13] have proposed a new hy-
brid multiverse optimization (HMO) algorithm to solve OADG in a multi-objective frame-
work considering four different objectives, viz. energy loss, overall voltage deviation
(OVD), overall voltage stability margin (OVSM), and energy not served (ENS). The said
objectives are combined to formulate the multi-objective function (MOF), where the
weights associated with each objective are determined using the analytical hierarchy pro-
cess (AHP). An adaptive equilibrium optimizer (AEO) [14] is used to efficiently allocate
biomass-based DGs to simultaneously reduce polluting gas emissions, minimize annual
energy loss costs, and maximize surplus energy sales profits. A quasi-oppositional chaotic
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symbiotic organisms search (QOCSOS) is suggested in [15] to optimally allocate DGs op-
erating at unity and non-unity power factors to improve the technical performance (RPL,
voltage deviation, and voltage stability index) of the system. Simultaneous sizing and
placement of unity power factor (UPF) DGs are investigated in [16] using a novel manta
ray foraging optimization (MRFO) algorithm to diminish RPL considering the different
number of DGs. The research suggested that the allocation of three DGs has resulted in
maximum RPL minimization. A hybrid approach, which is the joint execution of a genetic
algorithm (GA) and stain bowerbird optimization (SBO), is developed in [17] for solving
OADG in a multi-objective formulation consisting of RPL, VD, emission, and costs asso-
ciated with power import from the grid and fixed and variable costs of the DGs. The effect
of the allocation of DGs in a reconfigured network is analyzed in [18], considering an im-
proved equilibrium optimization algorithm iIEOA).

DNP considering optimal deployment of D-STATCOMs are envisaged in several
works of literature. Yuvraj et al. [19] have presented a method to determine the optimal
capacity of D-STATCOM using the bat algorithm (BA) at a predetermined location (ob-
tained by voltage sensitivity index) to diminish the RPL. Ant colony optimization (ACO)-
based D-STATCOM allocation is proposed in [20] to minimize the real power loss RPL,
voltage deviation (VD), and installation, operation, and annual maintenance costs. In [21],
a gravitational search algorithm (GSA) is used to optimally allocate D-STATCOM units to
minimize RPL, VD, and annual energy loss (AEL) costs. Authors in [22] have obtained an
optimal rating of D-STATCOM using a whale optimization algorithm (WOA) to reduce
RPL and improve the voltage profile where the optimal injection node for D-STATCOM
is obtained using a voltage stability index (VSI). A nature-inspired cuckoo search optimi-
zation (CSO) technique is presented to assign optimal D-STATCOM units to minimize
RPL considering different load models viz commercial, residential, and industrial loads
[23]. DNP considering the optimal allocation of D-STATCOM using a differential evolu-
tion algorithm (DEA) is carried out in [24] to minimize the RPL and maximize savings. A
modified sine cosine algorithm (mSCA) is proposed to simultaneously optimize the place-
ment and capacity of multiple D-STATCOM units to curb RPL and VD [25]. Considering
discrete values for locations and continuous values for the size of D-STATCOMs, a dis-
crete-continuous version of GA is proposed in [26] to optimally allocate D-STATCOMs
for minimizing annual energy loss cost and annual investment cost while considering in-
dustrial, residential, and commercial load profiles. An improved bacterial foraging algo-
rithm (iBFA) is proposed to solve the optimal placement and sizing of a single D-STAT-
COM unit to reduce RPL, minimize VD, and improve VSI [27].

Though some researchers dealt with optimal DNP considering DGs [11-18] and D-
STATCOMs [20-27] separately, it is interesting to analyze the system performance con-
sidering the simultaneous allocation of DGs and D-STATCOMs. A novel multi-objective
approach based on a lightning search algorithm (LSA) is proposed in [28] to allocate DGs
and D-STATCOMs considering linear variation in feeder load from 50% to 160%. Later, a
curve-fitting technique (CFT) is applied to determine the optimal sizes of the devices for
different load levels. A nature-inspired cuckoo search algorithm (CSA) is applied for sim-
ultaneous optimal assignment of DGs and D-STATCOMs in a multi-objective mathemat-
ical formulation [29]. A modified flower pollination (mFP) approach is proposed in [30]
to optimally place D-STATCOM and photovoltaic DGs simultaneously in a multi-objec-
tive formulation consisting of RPL minimization, load balancing index minimization, and
maximization of voltage profile improvement. The VSI predetermines the photovoltaic
(PV) DG and D-STATCOM insertion buses. A novel whale optimization algorithm (WOA)
is proposed to simultaneously allocate DGs and D-STATCOMs at buses predetermined
by aloss sensitivity factor (LSF), aiming to minimize the RPL and operating cost of devices
[31]. Authors in [32] have applied a hybrid firefly algorithm (FA) and particle swarm op-
timization (PSO) algorithms for optimal allocation of PV-DGs and D-STATCOMs, consid-
ering several technical, economic, and environmental indices in a multi-objective frame-
work. The optimal rating and placement of DGs and D-STATCOMSs are computed using
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a hybrid lightning search (LS) and simplex method (SM) and LSF, respectively, to arrest
the RPL of the PDN [33]. Simultaneous optimal sizing and sitting of PV-DGs and D-STAT-
COMS considering uncertainties associated with solar irradiance and the system load is
addressed using a modified ant lion optimizer (MALO) [34]. Simultaneous allocations of
DGs and different shunt compensators (SCs), viz. SCB, static var compensator (SVC), and
D-STATCOM, are envisaged using a bald eagle search (BES) in [35] to curb RPL. The effect
of simultaneous allocation of DGs and SCs on the PDN is studied in terms of RPL, reactive
power loss, total VD, and stability index, both with and without allocation of devices. In
[36], optimal DNP is investigated for simultaneous allocation of PV-DGs with battery en-
ergy storage and D-STATCOMs. A joint allocation of DGs and D-STATCOMSs combined
with NR is discussed in [37] to minimize RPL, improve feeder load balancing and arrest
VD using ant colony optimization combined with a fuzzy multi-objective approach.

As previously mentioned, metaheuristic techniques are becoming more popular for
solving exclusive OADG, exclusive D-STATCOM allocation (OADS), and simultaneous
DG and D-STATCOM allocations (SOADGDS). The recently proposed student psychol-
ogy-based optimization (SPBO) technique [38] is based on the psychology of students
striving to be the best student by continuously improving their class performance. The
algorithm’s key benefit is that it lacks any algorithm-specific parameters (ASPs). As a re-
sult, it can be used to tackle any optimization problem without worrying about tuning its
ASPs. Furthermore, the supremacy of the SPBO algorithm over 10 state-of-the-art me-
taheuristic approaches, including PSO [39], teaching learning-based optimization (TLBO)
[40], cuckoo search algorithm (CSA) [41], symbiotic organism search [42], success-history-
based adaptive differential evolution (SHADE) [43], and grey wolf optimization (GWO),
[44] has been established by comparing the results on CEC 2015 benchmark functions in
[38]. Authors in [45,46] have suggested the SPBO algorithm to solve the OADG problem.
Another parameter-free metaheuristic (PFM) optimization technique, a symbiotic organ-
ism search (SOS) [42], follows the various symbiotic relationships that occur between or-
ganisms in an environment to enhance their survival chances. After being used to tackle
a variety of real-world engineering challenges, SOS has evolved into a global optimizer.
The SOS’s improved performance comes from balancing exploration and exploitation
without the use of algorithmic parameters [47]. Harris hawk optimization [48] is yet an-
other recently proposed PFM optimization approach for solving real-world optimization
problems.

1.3. Motivations

In light of the above discussion, it is observed that the DNP, which involves alloca-
tion of exclusive devices [11-27] to a combination of devices [28-37], can be framed as a
single objective [12,16,19,23,25,35] or a multi-objective [11,13-15,17,20-22,24,26-34,36,37]
optimization problem, and can have fewer decision variables [11-27] or a fairly large num-
ber of decision variables [28-37], and nonlinear objective function(s). Furthermore, the
decision variables may be binary (on or off), discrete (location of devices), or continuous
(sizes of devices), or any mix of the three. The penetration limit of DGs is always increas-
ing as technology advances. It reduces grid real-power import, resulting in a poor power
factor. Therefore, as DG penetration increases, the amount of reactive power compensa-
tion required also increases proportionately. Hence, the constraints on the sizes of DGs
and D-STATCOMs are dynamic and flexible. As an exception, NR has strict radiality and
topological constraints [3]. Therefore, other DNP regimes, except for NR, do not have a
known global optimum.

Furthermore, complying with the “no free lunch theorem” [49], several metaheuristic
algorithms have recently been proposed to solve complex engineering problems. Power
system engineers are implementing different optimization algorithms [7,9-37,45,46] to
search for the optimal solution to DNP. Despite the non-iterative feature of the analytical
approaches, metaheuristic approaches are getting widespread attention for solving DNP
problems simply because metaheuristic approaches are flexible and efficient in handling
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combinatorial optimization problems [7,11]. A compact review of the recently proposed
metaheuristic approaches implemented to solve OADG, OADS, and SOADGDS are pre-

sented in Table 1.

Table 1. Summary of related works.

Selection of

Planni s
Ref. Year AMMNE fethods Ob;j ecflve Number of ASPs  Weights in the Review Remarks
Approach Function
MOF
Technical factors are not considered.
Different Cost and wi=0, w2=1 For MOF, both objectives are given
[71 2021 OADG PSO vari- Emission Refer [7] wi=1, w2=0 equal priority.
ants wi=1, w2=1 Results revealed that hierarchical PSO
has performed better.
OADG is solved considering single ob-
jective only
[12] 2018 OADG (SFSA RPL Maximum diffusion i The results are compared with SFS and
number =5 PSO.
The control parameters of PSO are de-
termined experimentally.
Wormbhole existence AHP is adopted to decide the optimal
e AHP . .
probability = 0.2-1.0 values of weights in the MOF.
Energy Control parameter w1=0.3940 DGs operating at UPF and non-unity
[13] 2019 OADG HMO  Loss, OVD, P wa=0.2593 w= perating ,
(m)=0.5 power factor (N-UPF) are considered.
OVSM, ENS . - 0.1970
Maximum chaotic it- Too many control parameters to be
. wa=0.1497
erations = 20 tuned.
Generation rate con- Results are compared with GWO, RAQO,
trol parameter (Gp) = and DE.
Benefits and 0.5, Constant related Biomass DGs are considered.
[14] 2021 OADG AEO cost of util- to exploration ability - Too many control parameters to deal
ity (a1) = 2 Constant re- with.
lated to exploitation Technical parameters are not included
ability (a2) =1 in the objective function (OF).
Weights in the OF are subjectively as-
RPL. VD wi=1 signed.
[15] 2020 OADG QOCSOs 1 /\,/SI " Jumping rate Jr)=04  w2=0.6 DGs operating at UPF and N-UPF are
ws=0.35 considered.
Missing economic analysis.
The performance of the MRFO is highly
It £ iti h f h
[16] 2021 OADG MRFO RPL Somersault factor _ sensitive t(.) the m.mee.r of search agent,
(SF) maximum iteration and SF.
Only single objective is considered.
Greatest step size(a)
=0.94
Hybrid GA- RPL. VD Mutation probabil- Too many control parameters to be
SBO algo- N ity(p) = 0.05 tuned.
171 2021 AD! E R
171 0 OADG rithm (H- méis;fn, Percent of the differ- N MOF considers, technical, economic
GASBO) ence between the up- and emission factors.
per and lower limit
(Z)=10.02
al=2 Weights in the OF are subjectively as-
signed.
OADG and a2=1 wi=0.7
1 202 IE TPL, 1/TVSI T 1
[18] 2020 NR O , 1/TVS Generation probabil- wWaz 0.3 00 many control parameters to be
ity (Gr) = 0.5 tuned.
) Economic factor is missing in the MOF.
Loud =0. id, inimizati f the RPL
[19] 2017 OADS BA RPL oudness = 0.5 i Considers minimization of the

Pulse rate = 0.5

only.
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Weights used to combine multiple ob-

wi=0.5
RPL, VD, a=1 jectives are randomly selected.
2 201 AD A =0.
[20] 018 OADS €O Cost p=2 w2=03 The values of control parameters are
ws=0.2
not tunned.
wi=1 Allocation of single D-STATCOM unit
1=
RPL, VD i idered.
[21] 2019 OADS GSA PV NR wa=1 | lsconsidere .
AEL costs wiz1 All objectives are given equal im-
3=
portance.
2 (Discovery rate of LSF is used to identify the D-STAT-
alien e P}; —025 COM insertion buses.
[23] 2020 OADS CSO RPL Dimert?sgi,on Sear'ch, - Empirical analysis is conducted to de-
Space = 1or 3) termine the optimal parameter setting.
P Only single objective is considered.
Total energy
Penalty f
loss cost and Crossover rate (Cr) = arznsae:};t gcicofl;)sr Penalty factor is used to handle the
[24] 2020 OADS DE total cost of 0.8 both the oi:)'ec constrained optimization problem.
D-STAT-  Scaling factor (F) =1 . ) Single D-STATCOM is allocated.
CcoM) tives.
[25] 2021 OADS mSCA RPL az? ) Considers minimization of the RPL
only.
Annual cost ..
function of Placement and sizing of the D-STAT-
energy COM are obtained by the discrete and
[26] 2021 OADS DC-GA  losses and NR NR continuous part of .the codification re-
annualized spectively.
investment Technical factors are not considered in
cost the OF
Allocation of single D-STATCOM unit
Wiz 05 is considered.
271 2021 OADS BEA PL, VD, Run-length unit w l_ 0 '25 Weights in the MOF are subjectively as-
1/VSIk Step size e signed.
ws=0.25 . ; . .
Economic factor is not considered in
the MOF.
Optimal allocation of DG and D-STAT-
COM are carried out by varying feeder
. wi=0.4 loads linearly in the range 0.5 to 1.6.
[28] 2017 OADGDS  LSA RPL\’/STIVD’ MaXIm‘tli?leChamel w2=0.3  Weights in the MOF are subjectively as-
ws=0.3 signed.
Economic factor is not considered in
the MOF
VSI and LSF are used to pre locate DG
and D-STATCOM injection buses re-
RPL an,d Discovery rate of al- . spectlvgly. .
2018 Cumulative ien eee = 0.25 Dimen Wiz 07 CSA is used to determine the size of the
[29] OADGDS CSA voltage de- . 86 =" e devices.
L sion search space = w2=0.3 . . L
viation lor 3 Weights in the MOF are subjectively as-
(CVD) signed.
Economic factor is not considered in
the MOF.
RPL, Oper- Linearly decreasing Location is obtained through LSF and
ating cost of weight (a) =2 Coeffi- wi=0.6 size by WOA.
(311 2019 OADGDS WOA DGs and D- cient describing spi- we=0.4 Weights in the MOF are subjectively as-
STATCOMs ral shape (b) signed.
. RPL level, Cmin=0.5 Cmax=2.5; wi=0.3 . .
[32] 2021 OADGDS I?glbr;: FA " hort cireuit a=1/3; w2=0.2 Th; Valzesnwilg};ts Ilnlfz MtOrF are
WIS O 1ovel, VD ci=25 =035, w3=0.2 ased on practical ndicators.
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sine acceler- level, Net 2 =0.5 c2r=2.5; wa=0.2
ation coeffi- Saving level, ci=0.5ce=2.5; ws=0.1
cients PSO  environ- 0=2,0=05
mental pol-
lution re-
duction
level
LSF is used to identify the DG & D-
Hybrid LS- . STATCOM 1nsert10.n buses. .
SM optimi PL VD w1=0.5 Simplex method and elite opposite-
[33] 2021 OADGDS . p " Not Reported w2 =0.25 based learning is incorporated to im-
zation algo- TOC
rithm w3 =0.25 prove the performance of LSA.
Weights in the MOF are subjectively as-
signed.
o3 ¢ reduc- Levy Flight is used to enhance the ex-
tion, VD . . .
minimiza- Avnax = 0.85 ploration of the basic ALO algorithm.
[34] 2021 OADGDS MALO . : NR Variation in solar irradiance and the
tion, and Anmin=0.4 . .
VST en load are considered for solving the
¢ OADGDS.
hancement
Only single objective is considered.
[35] 2022 DGs&SRC  BES RPL oo a - Too many control parameters.

Different SRC viz, SCB, SVC & D-
STATCOM are considered

As noted in Table 1, several metaheuristic approaches are applied for solving multi-
objective combinatorial optimization problems like optimal DNP. However, most me-
taheuristic approaches require certain control parameters to balance the exploration and
exploitation to yield an optimal solution. The selection of these control parameters is quite
tedious and has a substantial impact on the algorithm’s performance. Therefore, recently,
parameter-free metaheuristic (PFM) optimization techniques have been proposed. The
student psychology-based optimization (SPBO) technique is a PFM algorithm proposed
by Das et al. [27] that is based on the psychology of students to continuously perform
better in their class performance. The authors in [27] also proved the supremacy of the
SPBO algorithm over 10 state-of-the-art metaheuristic approaches by comparing the re-
sults of the CEC 2015 benchmark functions. Exclusive allocation of DGs using SPBO is
proposed in [28]. The symbiotic organism search [29] is another PFM optimization tech-
nique that follows the various symbiotic relationships existing between organisms of an
ecosystem to improve their survival opportunities. After being used to tackle a variety of
real-world engineering challenges, SOS has evolved into a global optimizer. Enhancement
in SOS’s performance is due to its capacity to strike a balance between exploration and
exploitation without using algorithmic parameters [30]. The Harris hawk optimization
[31] is yet another recently proposed PFM optimization approach for solving real-world
optimization problems.

Most metaheuristic techniques have ASPs, as shown in Table 1, and tuning these pa-
rameters introduces a new subproblem, increasing the computing cost. Furthermore, the
appropriate ASP values significantly impact the quality of the optimal solution. As a re-
sult, PFM algorithms are logical for dealing with the DNP. VSI [29] and LSF [23,31,33] are
two sensitivity techniques that a few researchers have utilized to identify the prospective
locations for the deployment of the devices. The device’s ideal rating is then calculated
using several metaheuristic methods. Technical, economic, and environmental considera-
tions must all be taken into account for a comprehensive and pragmatic optimal DNP.
However, authors in [12,16,19,23,25,35] have established a single goal for addressing the
optimal DNP. Few authors have looked at only the technical [13,15,18,27,28], the solely
economic [14,24,26], or both the technical and economic aspects [20,21,31,33,34]. However,
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[17,32] authors took technical, economic, and environmental concerns into account. The
weighted sum multi-objective (WSMO) strategy is one of the most prominent approaches
for combining multiple objectives. In the WSMO technique, each objective is given a
weight and the values allocated to these weights are crucial in determining the overall
objective function. As a result, selecting the most appropriate weight for each objective
function is critical. However, except when the PDNO’s perspective and expertise are taken
into account, these weights are usually picked at random. Lastly, most researchers have
suggested DGs be powered by solar, wind, or biomass instead of having mixed energy
sources.

1.4. Contribution

In the light of the above discussion, the major contributions of the current manuscript
are outlined below.

®  Three recently surfaced parameter-free metaheuristic algorithms, viz. the student
psychology-based optimization, symbiotic organism search optimization, and Harris
hawk optimization, are implemented for optimal planning of a power distribution
network.

*  Optimal allocations of seven different combinations of PV-DGs, gas-turbine-based
DGs, and D-STATCOMs are studied.

*  Optimal planning combines technical, economic, and environmental indices using
suitable weights derived from the analytical hierarchy process.

1.5. Manuscript Organisation

The paper is organized as follows: modeling of devices, viz. solar photovoltaic (PV)
DGs, gas-turbine (GT) DGs, and D-STATCOMs are included in Section 2. Section 3 for-
mulates the weighted-sum-based multi-objective simultaneous allocation problem of DGs
and D-STATCOMs using four indices. Three parameter-free metaheuristic (PFM) ap-
proaches are introduced in Section 4. In Section 5, the implementation of PFM to solve
simultaneous OA-DG-DS problems is elucidated. Results and discussions are presented
in Section 6 followed by the conclusions in Section 7.

2. Modeling of Devices

In this paper, the optimal planning of multitype DGs, viz. solar PV-DGs, gas-turbine
DGs (GT-DG), and D-STATCOMs is carried out. A simplified two-node equivalent of a
DN connected to DGs and a D-STATCOM is shown in Figure 1. A brief modeling aspect
of solar PV-DG, GT-DG, and D-STATCOM is discussed below.

Substation

Figure 1. A simplified two-node equivalent of a DN connected to DGs and DSTATCOM.

2.1. Solar Photo Voltaic DG

The output power of the solar photovoltaic DG (PV-DG) is sensitive to the panel
characteristics and meteorological conditions of the site. Due to the intermittent nature of
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the power produced by PV-DG, it is treated as a non-dispatchable DG. The following sets
of Equations (1)—(5) [32] are used to attribute the power generated by the PV-DG.

T :Ta+s[—NOT‘2°] 1)
0.8

I, =S[I,+K /(T -25)] )

Vi=V,.—K[I 3)

P, = NXFFXV, XI, 5)

where T, T, and Nor represent the cell temperature, ambient temperature, and nominal
cell operating temperature, respectively. Ki and Kv are the temperature coefficients for cur-
rent and voltage, respectively. Voltage and the current during maximum power point are
designated as Vmrr and Ivrp, respectively. Isc and Voc are the short-circuit current and the
open-circuit voltage, respectively, of the PV panel. N is the number of PV panels in use
and FF is the fill factor of the PV panels. Voltage and current of the PV panel are denoted
as Vi and I, respectively. An inverter-based SPV-DG can operate in lagging power factor
mode, which allows the DG to inject reactive power into the grid in addition to real power.
The reactive power injected by the PV-DG can be exposed as:

Opy = Fpy X tan(9) 6)

where ¢ is the power factor angle.

2.2. Gas Turbine DG

Gas-turbine-based DGs (GT-DGs) are attracting widespread attention as they offer
higher operational efficiency (close to 80%), leave a smaller carbon footprint, and support
a dispatchable mode of operation. They can also be utilized for cogeneration to provide
combined heat and power. In GT-DGs, highly pressurized natural gas is used for energy
conversion and its output power can be controlled by regulating the amount of natural
gas supplied as the input fluid. Therefore, deterministic models are used to represent the
GT-DGs. Furthermore, by connecting a suitable power electronics interface between the
DG and the load, it can be operated at a lagging power factor.

2.3. D-STATCOM

D-STATCOM is a sophisticated device connected at the distribution voltage level to
facilitate fast reactive power exchange for alleviating power quality issues. In the present
work, a steady-state model of D-STATCOM is developed that can be used to study the
steady-state impact of D-STATCOM on the DN. Consider a D-STATCOM connected to
the (t + 1) node (receiving node) of DN, as shown in Figure 1. This will modify the voltage
of the corresponding node as:

Ut+149t+1 = l]téet _<Rm + ]Xm )X[méé‘m - (Rm + ]Xm ) X(IDSTATCOMA l//) (7)

To exchange reactive power, the current supplied by the D-STATCOM and the com-
pensated node voltage must maintain a 90-degree phase difference. Therefore:
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/4 .
w=5+6’m ®)
So, the rating of the D-STATCOM can be obtained as:
. ' - v/ '
—JOpsrarcon =Vl 6t+1] pstarcom L 5 + ‘9x+1 )

where Qpsratcom and Ipsrarcom represent the reactive power delivered and current sup-
plied by the D-STATCOM at (t + 1)*bus, respectively.

3. Problem Formulation

A simultaneous optimal allocation of DGs and D-STATCOM (OA-DG-DS) for a
power distribution system is formulated considering the following indices for the overall
performance enhancement of the system [33].

3.1. Real Power Loss Minimization Index (RPLMI)

Active power loss (APL) minimization is considered the most significant objective to
improve the performance of the DN. Therefore, the effect of the allocation of DGs and D-
STATCOMs (devices) on APL reduction must be assessed. RPLMI is the ratio of the APL
of the system with and without allocation of the devices. It is formulated to quantify the
impact of device (DGs and D-STATCOMs) installations on APL minimization of the DN.

device
RPLMI =% (10)

where PLOSSt is the base case power loss (i.e., without allocation of any devices), and
the APL of the system in the presence of devices is designated as PLOSS*vc, Equation (11)
can be used to determine the system APL.

PLOSS = "bzw|1m " % R(m) (11)

m=l

An RPLMI having a unity value corresponds to no effect of the device allocation on
APL minimization of the DN. A positive effect of device allocation is marked by an RPLMI
value less than unity. An RPLMI value more than unity corresponds to an increase in the
system’s APL in the presence of the devices and therefore is viewed as a negative system
impact.

3.2. Bus Voltage Variation Minimization Index (BVVMI)

DN being radial experience a wide variation of the bus voltage. The fluctuation in
bus voltage gets more pronounced as the location of the bus goes farther from the substa-
tion. If the bus voltage variation is not maintained within a prescribed limit, it can lead to
detrimental system performance. The effectiveness of device allocation on voltage profile
enhancement can be observed using the bus voltage variation minimization index
(BVVMI) as:

device
BYVMI = (12)

The VDbse denotes the voltage deviation (VD) of the base case scenario, whereas the
VD of the DN in the presence of devices is represented by VD¢vic, Equation (13) is em-
ployed to determine the VD of the DN.
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Acdevice — Cdevice + Pdevice Xk;-eal X 8670 +

sub

nbus

VvD=> (U ,-U,) (13)

i=1

where Usand U: are the substation and the bus voltage magnitude, respectively.

A BVVMI having a unity value corresponds to no effect of the device allocation on
the bus voltage variation. A positive effect of device allocation is marked by a BVVMI less
than unity. A BVVMI value more than unity is reflected as a negative system impact in the
presence of the devices.

3.3. System Voltage Stability Maximization Index (SVSMI)

An increased percentage of sensitive and nonlinear loads into the DN requires fast
and adequate reactive power support for maintaining secure and stable network opera-
tion. Lack of reactive power support may force the DN into the insecure mode of opera-
tion, leading to system blackouts. Installation of DGs (operating in lagging power factor
mode) and D-STATCOMSs can significantly improve the secure operation of the DN. In
this regard, the voltage stability index (VSI) [34] of the DN can be computed using Equa-
tion (14) to access the state of the security and stability of the network.

t+1 t+1 t+1

VSI(t+1)=|U,|4—4[Peff><Xm_ f—’ffom:Iz_4|:P€l‘f'XRm+QteJ)r‘jl‘mej||Ut|2 14

where Bf_flf and fo; represent the effective active and reactive load demand for (¢ + 1)

bus, respectively. Furthermore, R and X, are resistance and reactance, respectively,

of the branch connecting the f and ¢ + 1 buses.

A VSI closer to unity indicates better system stability, whereas a VSI closer to zero
indicates an unstable system operating mode. The bus corresponding to the least VSI
value of the DN is called a critical bus. Therefore, a system voltage stability maximization
index (SVSMI) is developed using Equation (15), as the ratio of the reciprocal of the volt-
age stability index of the DN’s critical bus with and without device consideration to assess
the influence of device allocation on the stability margin.

1/ VST

SVSMI = _
1/ VS

(15)

The values of SVSMI can be less than unity, equals unity, or more than unity. Alloca-
tion of devices will be considered beneficial for an SVSMI value less than unity as it cor-
responds to a value of VSI of the critical bus closer to unity in the presence of the devices
compared to the DN without devices.

3.4. System Annual Cost Minimization Index (SACMI)

When no devices are installed in the DN, the distribution utility (DU) has to meet the
annual cost of purchasing power from the upstream grid and leverage the penalty for
emissions caused by the outsourced power from the thermal stations. Equation (16) shows
clearly how much DUs pay each year in the base case.

AC™™ = Pl kI X 8670+ QL XK/ + k21 x P X 86T0X E

sub sub sub sub grid

(16)

However, when different devices are introduced, the capital cost and operation and
maintenance cost of the devices has also to be shared by the DU as formulated in (17).
device X kreac + k emxpdevice < 8670X E

sub sub sub sub grid

+k,, XP,; X86T0XE (17)
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device
device __ I C
- L Sdevice

However, in the presence of the devices, energy purchase cost and emission cost will
be significantly reduced, causing the net annual cost to be substantially less than that with-
out the installation of devices.

The impact of device allocation on the annualized cost borne by the DU is measured
by the system annual cost minimization index (SACMI), which is defined as the ratio of
the annual cost borne by DU with and without the allocation of devices.

device
SA CM] = Iﬁﬁ (19)

+ OMdevice (18)

3.5. Multi-Objective Function(MOF)

The allocation of the individual and a combination of devices can significantly affect
the performance of the DN by diminishing power loss, boosting the voltage profile, and
enhancing the stability margin. Moreover, in the deregulated framework, the owners of
the devices must earn economic benefits, which incentivize them to invest in sophisticated
devices. Therefore, the allocation of the devices must be envisaged to ensure the technical
and economic benefits. Hence, considering the above facts, both the technical factors, viz.
APLRI, VDM], and VSII, and the economic factor ACMI are suitably combined to formu-
late the multi-objective function as exposed in Equation (20).

MOF = min(w,RPLMI +w, X BVVMI +w,x SVSMI +w, X SACMI) (20

where w1, w2, w3, and w« are the constants that can be adjusted to prioritize the influence
of individual factors on the overall MOF. The values of these weights are finalized using
an AHP, as described below.

3.6. Analytical Hierarchy Process (AHP)

An AHP requires a priority matrix (PM) formulated up front to capture the pair-wise
significance between the considered multiple-objective functions. PM is a square matrix
with rows equal to the number of objective functions (NOF). Elements of each row of the
PM signify the relative importance of each objective function compared to the other ob-
jective functions. The degree of importance is represented on a scale from 1 to 9, with 1
meaning both objectives are of equal importance and 9 meaning the concerned objective
function is highly significant compared to the other objective functions. The formation of
a PM is often guided by the expertise and requirement of the decision maker. The present
work considers the following PM.

1 3 6 9
0.3333 1 2 3

K= 1)
0.1667 0.5 1 1.5

0.1111 0.3333 0.6667 1

The rows of the PM represent RPLMI, BVVMI, SVSMI, and SACMI, respectively. It
can be seen that the objective of power loss minimization is given the highest priority
against the annual cost reduction, whereas it is made moderately significant as compared
to the objectives of voltage deviation and voltage stability index, respectively. Further-
more, the voltage stability index objective is given more importance than the voltage devia-
tion objective.

The suitable values of the weights can be computed from the PM (K) using the fol-
lowing equation.
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(22)

Following the above process, the weights of the MOF are computed as w:=0.6207, w:
=0.2069, ws= 0.1034, and ws= 0.0690.

4. Parameter-Free Metaheuristic (PFM) Algorithms

Population-based metaheuristic algorithms are inherently the most preferred ap-
proaches to solve the simultaneous optimal allocation problems, though they are usually
computationally burdensome. Therefore, parameter-free metaheuristic algorithms are the
natural choice of researchers for solving this class of problems. In this paper, three such
parameter-free metaheuristic algorithms (SPBO, SOS, and HHO) are considered to solve
the planning problem formulated in the previous section.

4.1. Student Psychology Based Optimization (SPBO)

Student psychology-based optimization (SPBO) begins with an initial population of
the prospective solution vectors that represent the performance of N students of a class in
D different subjects. The fitness of the initial population is determined by evaluating the
objective function that resembles the overall marks secured by the students in the class
examination. The students often try to enhance their overall class performance by securing
better marks in each subject offered to them and trying to be the topper of the class. A
student’s performance in a subject is influenced by factors like the student’s interests, mo-
tivation/incentives for the subject, efficiency, and capability of the student to handle the
subject. Therefore, the entire class is divided into four groups of students based on the
students’ psychology to perform in the examination. Group-I represents the student with
the highest overall marks in the examination. S/he is called the best student or topper of
the class. A student who belongs to this group puts valiant efforts into each subject com-
pared to any other student of the class to maintain his/her first position in the class. There-
fore, the performance of Group-I students can be expressed as:

k+1

pbest,j = p[]:est,j + (_1)0’ Xrand X(plljest,j - p;{; ) (23)

The updated and the previous performance of the best student in the j* subject is

represented as pf:si ;and pfest ; respectively. pr/;. denotes the past performance in the

jth subject of a random student of the class. « is a switching parameter, which can assume
a value of 0 or 1. rand is a random number in the range [0, 1] drawn from a normal distribution.

Students who have performed well in the respective subjects are subject-wise good
students (SGS) and are placed in Group-II. Because of the stated factors, SGS, though per-
forming well in a particular subject, might have average performance in some other sub-
jects. Therefore, the selection of students to Group-II is a random process. Some students
in Group-II may try to be in Group-I by endeavoring to undertaken similar efforts as the
topper of the class, and their improvement in performance can be defined in (24).

K+ k k k
PL = iy Frand X (py, = b)) 4
Where p;:fl and pf ; are the performances of the i* student in the j* subject in the k*t

and (k + 1)t iterations, respectively. Again, some SGS may apply effort that is more than
the average effort of the class, as well as in line with the effort made by the best student.
It can be modelled as in (25):
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P =pi +‘rand><(p,’fm’j —P,-]fj) +‘rand><(pl.’fj —P:vg) (25)

k
avg

where p,  is the average class performance in a kth iteration.

Students with average performance in a subject are included in Group-III and called
subject-wise average students (SAS). Since students’ psychologies are different for differ-
ent subjects, they are randomly included in Group-III. These students may improve their
overall performance, as mentioned in (26):

k+1 k

pit=pl+ ‘randX(pavg _pilfj)

(26)

Students who do not have any structured effort to improve their performance and
often perform poorly in the class belong to Group-IV and are referred to as below-average
students (BAS). BAS apply random efforts to the subject to improve their overall score
and therefore their performance improvement can be expressed as in (27):

pol=p [rand X ( pr=p )} (27)

Where p;™ and p;mn are the maximum and minimum marks of the j* subject.

Here, the psychology of different students to continuously upgrade their class per-
formances reflects the intrinsic philosophy of optimization. The step-by-step implemen-
tation procedure of the SPBO Algorithm 1 is illustrated below.

Algorithm 1 Pseudocode for SPBO algorithm

Class size (N)

Maximum number of iterations (Kmax)

Number of design variables (D)

Upper and lower bound of the design variables

Output: Best solution (Pbest)

Randomly initialize the class performance uniformly spread within the upper and

Input:

L lower bound of the design variables.

2. Evaluate the objective function.

3. Select the best solution Pbest,

4. Set the iteration counter: k =1.

5. while k < Kmax.

6. fori=1:D.

7. forj=1:N.

8. if student belongs to Group-1.

9. Update student performance using Equation (23).
10. else if student belongs to Group-IL

11. if rand <0.5.

12. Update student performance using Equation (24).
13. else.

14. Update student performance using Equation (25).
15. end if.

16. else if student belongs to Group-III.

17. Update student performance using Equation (26).
18. else.

19. Update student performance using Equation (27).
20. end if.

21. end for.

22. Evaluate the objective function using current class.
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23. if current class is better than previous class.
24. Update previous class with current class.
25. end if.

26. end for.

27.  end while.

4.2. Symbiotic Organisms Search (SOS)

The symbiotic organisms search (SOS) is a promising search algorithm where the
symbiotic interactions between heterogeneous organisms to produce better organisms
continually showcases the natural optimization process. It begins with an ecosystem that
represents a population of organisms as in (28):

0G =[0G, 0G, 0G, ...0G, T’ (28)

where N represents the size of the ecosystem and each organism shall have D components
(equal to the no of the optimization variable) as in (29):

0G, =[og, 0g,, 0g;; ...08,,], (i=123...N) (29)

The degree of survival of individual organisms is obtained by the functional evalua-
tion of the ecosystem. The ecosystem is then iteratively subjected to three phases of sym-
biotic relationships, viz. the mutualism phase, communalism phase, and parasitism phase,
till the predefined maximum number of iterations is reached. The basic operations of the
stated symbiotic phases are elucidated below.

4.2.1. Mutualism Phase

In this phase, both participating organisms get benefits from the relationship. Here,
an individual organism OG:i fosters a mutualism interaction with another randomly se-
lected organism OG; (i # j) from the ecosystem as modeled in (28) and (29) and produces
two new organisms. Depending on the better rate of survival of the current organisms,
previous-generation organisms get replaced.

OG'"" =0G, +rand(0,1)x(OG,,, — MV x Bf;) (30)
OG'™ =0G, +rand(0,1)X(OG,,,, — MV X Bf, ) (31)
MYV = mean(Bf,, Bf,) (32)

where rand is a uniformly distributed random number in the interval [0, 1], and the benefit
factors corresponding to individual organisms are represented by Bfi and Bf, respectively.
Bfi and Bf: stochastically assigned a value of either one or two. The mutual vector (MV)
mimics the mutualism interaction between the organisms involved.

4.2.2. Communalism Phase

A communalism relationship is one where one of the organisms benefits from the
symbiotic relationship without affecting the other organism. So, for two organisms, OGi
and OG; (i # ), drawn from the ecosystem, the communalism relationship is established,
such that only OG: gets benefits, whereas OGjremains unaffected, as mentioned in Equa-
tion (33):

OGinew — OGZ + rand(—l, 1) X (OGhest - OGJ ) (33)

4.2.3. Parasitism Phase
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HHk+1 —

In the parasitism interaction, one of the involved species referred to as a parasite ben-
efits immensely, whereas the other one, referred to as a host, is subjected to sheer suffer-
ing. To model this interaction, at first, a parasite vector (PV) is generated by copying and
randomly altering some variable of the carrier of parasite OGi. Then the PV interacts with
a randomly selected host organism OG;. If PV has a higher rate of survival, then it replaces
the host in the ecosystem.

The step-by-step implementation procedure of the SOS Algorithm 2 is elucidated be-
low.

Algorithm 2 Pseudocode for SOS algorithm

Ecosystem size (N)

Maximum number of iterations (Kmax)

Number of design variables (D)

Upper and lower bound of the design variables

Output: Best solution (OGpest)

Randomly initialize the ecosystem within the upper and lower bound of the de-

Input:

L sign variables.

2. Evaluate the objective function.

3. Select the best solution OGbes.

4. Set the iteration counter: k =1.

5. for k =1: Kmax.

6. fori=1:N.

7. Perform mutualism phase using Equations (30)—(31).

8. Update the ecosystem if the current organism is better than previous.
9. Perform Communalism phase using Equation (33).

10. Update the ecosystem if the current organism is better than previous.
11. Perform parasitism phase.

12. Update the ecosystem if the current organism is better than previous.
13. end for.

14. Update OGpest,

15.  end for.

4.3. Harris Hawk Optimization (HHO)

Harris hawks (HH) are the most intelligent raptors found in the deserts of North
America. The cooperative predation activity of HH, which includes searching for prey,
surprising the prey, and attacking the prey, curates the structure of the Harris hawk opti-
mization (HHO). Here, the initial population of the solution represents the random place-
ment of the hawks and the prey (rabbit) is designated as the best solution. The initial pop-
ulation is iteratively guided through three stages of the algorithm unless a stopping crite-
rion is encountered. The three stages of the algorithm are stage-I, the exploration stage,
stage-II, the transition between exploration and exploitation stage, and stage-III, the ex-
ploitation stage.

Stage-I: HH searches for the prey either by sitting on a tall tree to scan the desert or
by following the locations of the gaggle (which are closer to the prey). Citing equal prob-
ability for the above two perching behaviors, HH may update their placements as exposed
in (32):

HH —rand*‘HHf —2%rand * HH*

;9205

k k k (34)
HH', —HH},, —rand*(HH},, +rand+(HH,  —HH,. ))q<0.5

where HH*! and HH* represent in sequence the placement of HH in the (k + 1)* and kt
iterations. a rand is a random number in the interval [0, 1]. The placement of the rabbit is
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presented as HH"*

prey’
lected HH and the average placement of the gaggle in the kt iteration, respectively. The
average placement of the gaggle can be computed as follows:

HH' and HH',  represent the placement of a randomly se-

mean

N
HH!,, = iZHHi" (35)
N3
Stage-II: The performance of any optimizer depends on its ability to shift from the
exploration to exploitation phase swiftly. Stage-1I of HHO presents the transition from the
exploration to exploitation stage. During the hunting, the prey gets tired as its energy is
utilized in escaping from the predator. The dynamics of escaping energy is modelled in (36):

k
E=2E,1 —k—) (36)

max

where k, kmaxr, and Eo are the current iterations, maximum iteration, and initial energy, re-
spectively.

|El >1 indicates the exploration, as the HH search for a different location to find the
rabbit, whereas exploitation sets in for |El <1.

Stage-III: This stage models the interaction of HH and the prey (rabbit) as four differ-
ent perching tactics displayed by the HHs. The following four perching scenarios are
framed based on the rabbit’s attempt to escape the hunt (Pprey < 0.5 implies the rabbit
avoids the predation and Pprey 2 0.5 implies the rabbit falls prey to the HH) and the dynamics
of the escaping energy.

Scenario-1: Soft besiege (I El = 0.5 and Pprey 2 0.5).

The following equations model the soft besiege strategy.

HH'" = AH* — E%|J % HH, — HH"| (37)
AHH" = HH,, — HH" (38)
J =2%(1—-rand) (39)

Scenario-2: Hard Besiege (1 El < 0.5 and Pprey 2 0.5).
Hard besiege can be modeled as follows:

HH" = HH* - E‘AHH"‘ (40)

prey

Scenario-3: Soft besiege with a progressive rapid dive (IEl > 0.5 and Pprey < 0.5).
The following equations model the soft besiege with a progressive dive of HH.

—_ {Yl;f(Yl)<f(HHk)

= P (41)
Z;f(Z)< f(HH")
where:
Y, = HH},, — E*|J * HH,, — HH"| (42)
Z, =Y +S*LD(D) (43)

where D is the no of design variables, S is a random vector of length D, and LD is levy
distribution.
Scenario-4: Hard besiege with progressive rapid dive (I El <0.5 and Pprey < 0.5).
Hard besiege with progressive dive of HH can be modeled as follows:
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— { Vi f (1) < f(HH")

. (44)
2y, f(Z,)< f(HH")
where:
Y, = HH},, - E *|J = HH,, - HH},, (45)
Z,=Y,+S*LD(D) (46)

The step-by-step implementation procedure of the HHO Algorithm 3 is presented
below.

Algorithm 3 Pseudocode for HHO algorithm

Population size (N)

Maximum number of iterations (Kmax).

Number of design variables (D)

Upper and lower bound of the design variables

Output: Best solution (HHprey)

Randomly initialize the positions of HH uniformly spread within the upper and

Input:

L lower bound of the design variables.

2. Evaluate the objective function.

3. Select the best solution HHprey.

4. Set the iteration counter: k = 1.

5. for k =1: Kmax.

6. fori=1:N.

7. Update E using Equation (36).

8. if IEl 21.

9. Update the position of HH using Equation (34).
10. else.

11. if Pprey 20.5and |El 20.5.

12. Update the position of HH using Equation (37).
13. elseif Pprey 2 0.5 and | E| <0.5.

14. Update the position of HH using Equation (40).
15. elseif Pprey< 0.5 and |1 El > 0.5.

16. Update the position of HH using Equation (41).
17. elseif Pprey<0.5and |EI <0.5.

18. Update the position of HH using Equation (44).
19. end if

20. end if

21. end for

22.  end for.

5. Implementation of PFM Algorithms for Simultaneous OA-DG-DS Problem

In this work, the SPBO algorithm and the other two parameter-free optimization al-
gorithms are used as tools to determine the optimal location and size of the devices (D-
STATCOMs, PV-DGs, and GT-DGs) separately and concurrently to minimize the pro-
posed MOF. The optimal planning of the DN considers the following eight cases:

Case-1: DN without allocation of any devices;
Case-2: DN with exclusive D-STATCOMs allocation;
Case-3: DN with exclusive PV-DGs allocation;
Case-4: DN with exclusive GT-DGs allocation;
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Case-5: DN with simultaneous D-STATCOMSs and PV-DGs allocation;
Case-6: DN with simultaneous D-STATCOMs and GT-DGs allocation;
Case-7: DN with simultaneous D-STATCOMs with 2 PV-DGs and 1 GT-DG allocation;
Case-8: DN with simultaneous D-STATCOMs with 1 PV-DG and 2 GT-DGs allocation.

In the present work, DGs are operated at a combined load-power factor. Allocation
of DGs is accomplished by considering these as negative loads at the respective candidate
buses. Similarly, for D-STATCOM allocation, its equivalent current is subtracted from the
corresponding bus current. A common approach is proposed to solve the OADGDS prob-
lem using the three PFM algorithms, as explained in the subsequent sections for the above-
mentioned cases.

5.1. Initialization

The initial population contains N individuals and each individual has D components.
Each individual (X:) corresponds to a potential solution vector to the optimization prob-
lem. The composition of the solution vector shall vary depending on the optimal planning
strategy. For case-2, case-3, and case-4, the solution vectors shall contain sizes of the three
individual devices (D-STATCOMSs, PV-DGs, or GT-DGs) followed by their location
strings, which are generated using Equation (45). Similarly, for the remaining cases, the
solution vector shall contain sizes of the six individual devices (combination of D-STAT-
COMs, PV-DGs, and GT-DGs as per the cases) followed by their location strings, which
are generated using Equation (48).

X i = [Slzedew'cel ’ Slzedev[ceZ > SlzedeviceS > locdev[cel ’ locdeviceZ > locdevice3 ] (47)

X i = [S lzedevicel 2000 Slzedevice6 > lOCdevicel 200 locdeviceG ] (48)

These solutions are randomly generated within the stipulated ranges of the devices,
as mentioned in Table 1, to be equally distributed throughout the whole solution space as
defined by Equations (47) and (48).

Slzedevice = Slzedevice,min + rand(szzedevice,max - szzedevice,min ) (49)

locdevice = I"Ound (locdeviee,min + rand(locdevice,max - locdevice,min )) (50)

It is to be noted that each optimization technique uses different metaphors to refer to
the population, best solution vector, etc. For example, the initial population or the solution
vector in SPBO, SOS, and HHO are called a class, an ecosystem, and placements of hawks,
respectively, where each individual may be termed as the performance of the student (as
in SPBO), an organism (as in SOS), or position of the Harris hawk (as in HHO). Similarly,
the best solution vector of the algorithm is known as the performance of the best student,
best organism, and position of the prey (rabbit) in SPBO, SOS, and HHO, respectively.

5.2. Updation

The generated initial population for the respective planning schemes is then itera-
tively updated to yield the best planning solution unless the stopping criteria are met.
However, each optimization technique employs its own mechanism to update the initial
population. For example, in SPBO, the initial population is first subjected to functional
evaluation to determine the best student. Furthermore, based on this functional evalua-
tion, the population is segregated into four groups. Then the performance of each student
belonging to different groups (Group-I, Group-II, Group-III, and Group-IV) are updated
using Equations (23)—(27), respectively, as mentioned in Section 4.1. In the SOS optimiza-
tion technique, the fitness of the initial ecosystem is obtained by evaluating the MOF. Then
each organism of the ecosystem is updated by simulating the three symbiotic interactions,
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namely mutualism, communalism, and parasitism, between the organisms of the current
ecosystem as exposed in Equations (30)—(33), respectively. The fitness of the initial popu-
lation of HHO is also obtained by evaluating the MOF. Then, the initial HH population is
modified in three stages of the algorithm: stage-I (exploration), stage-II (balances explora-
tion and exploitation), and stage-III (exploitation). In stage-I, HH updates their placement
using Equation (34) to improve exploration. The balance between exploration and exploi-
tation is achieved in stage-1I using Equation (35). The exploitation of the HH population
is enhanced in stage-III by simulating four different scenarios as discussed in Section 4.3
using Equations (37), (40), (41), and (44), respectively.

5.3. Implementation Steps

The graphical illustration of the optimal planning of the DN considering different
planning schemes as implemented using the metaheuristic techniques is envisaged in Fig-
ure 2.
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Figure 2. Implementation of optimization tools for the optimal planning of DN.

6. Results and Discussions

The efficacy of the proposed approaches is epitomized by considering two standard
test systems, i.e., 33-node and 118-node radial PDN [3]. The MOF, which is the amalgam-
ation of different technical and economic factors for the optimal planning of the PDN, is
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evaluated using a backward—forward sweep load flow [50]. For each metaheuristic ap-
proach, population size and a maximum number of iterations of 50 and 100 are set, re-
spectively. The best results of 30 independent trial runs of the algorithms are reported.
The description of the test systems and the sizes of the devices considered are presented
in Table 2. All simulations were performed on a laptop (Intel(R) Core (TM) i3-6006U CPU
@2.00 GHz, 4GB RAM) using a MATLAB 2016a software package.

Table 2. Description of test systems and devices.

TQL, Test TQL,
Test System TPL, kW KVAF kw kVAR System TPL, kKW KVAr
33-node 37,150 2300  210.9824 143.0219 0.9038 2000 2000

118-node 22,710 17,041 12,981 978.7196  0.8688 4000 3000

6.1. Performance Assessment of PFM Algorithms

The suitability of the three parameter-free optimization algorithms, SPBO, SOS, and
HHO, for the optimal allocations of single-type devices and different combinations of the
devices is assessed by considering the above-mentioned eight cases for each test system.

The best results attained by the SPBO, SOS, and HHO algorithms for exclusive D-
STATCOM allocations (case-2) for the two test systems are presented in Tables 3 and 4,
respectively.

Table 3. Comparison of results for exclusive D-STATCOM allocation (case-2) for 33-bus test system.

Method (DMSVS;; DS Bus 1()11(;3? Vmin (p.u.) RPLMI BVVMISVISMSAICM MOF
0.8167 7

SPBO 09799 30 1465795 09496  0.6947 0.3050 0.5613 0.0014 0.6201
05465 15
1.0316 30

SOS 05275 15 1462087 09488  0.6930 0.3073 0.5697 0.0014 0.6203
0.7850 7
10737 30

HHO 06580 14 1469252 09490  0.6964 03109 0.5680 0.0013 0.6230
0.4773 7

Table 4. Comparison of results for exclusive D-STATCOM allocation (case-2) for 118-bus test system.

Method (DMSVSI;;"') DS Bus fli‘;zj’ Vmin (p.u.) RPLMI BVVMISVIS MSAICM MOF
27412 110

SPBO  3.0000 71 9363917 09178 07214 0.4673 0.6753 0.0019 0.6825
30000 50
27598 110

SOS 29322 50  929.6233 09155 07162 0.4795 0.6914 0.0018 0.6835
28516 71
28169 110

HHO 19906 50 9395813 09161 07238 05137 0.6874 0.0016 0.6950
28887 71

A net optimal reactive power of 2.3431 MVAr, 2.3441 MVAr, and 2.2090 MVAr is
injected by the D-STATCOM s in the 33-bus test system, as reported by SPBO, SOS, and
HHO, respectively. Similarly, for the 118-bus test system, the net optimal reactive power
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injected by the D-STATCOMSs are 8.7412 MV Ar, 8.5436 MV Ar, and 7.6962 MV Ar, respec-
tively, as obtained by the SPBO, SOS, and HHO. Because of the lowest D-STATCOM ca-
pacity reported by HHO, the SACMI is the minimum for both test systems when opti-
mized by HHO. However, owing to the larger capacities of D-STATCOMs as achieved by
SPBO and SOS, it leads to better improvement in technical indices than HHO. However,
in terms of improvement in the overall performance, the SPBO algorithm obtains the best
MOF value of 0.6201 and 0.6825 among the three algorithms for both the test systems,
respectively.

The convergence characteristic of the three algorithms for case-2 are compared in
Figure 3 for 33-node and 118-node test systems, respectively. As noted from the figures,

the SPBO algorithm has a better convergence speed as it settles to the optimal value within
30 iterations for both the test systems.
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Figure 3. CC of optimization algorithms for case-2. (a) 33-bus test system; (b) 118-bus test system.

The exclusive allocation of three PV-DGs in 33-node and 118-node PDN are recorded
in Tables 5 and 6, respectively. The total real power injection by the three PV-DGs for the
33-node test system is 3.5861 MW, 3.6195 MW, and 3.5665 MW, as achieved by SPBO, SOS,
and HHO, respectively. Similarly, for the 118-node test systems, the net real power injec-
tion obtained by SPBO, SOS, and HHO is in sequence 10.3908 MW, 10.4210 MW, and
10.5184 MW, respectively. As noted from Tables 5 and 6, SPBO leads the table in terms of
the minimum value of MOF compared to the other two algorithms for both test systems.
Furthermore, the integration of PV-DGs has improved performance indices (RPLMI,
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BVVMI, SVSMI, and SACMI) for both test systems compared to that of exclusive DSTAT-
COM insertion.

Table 5. Comparison of results for exclusive PV-DG allocation (case-3) for 33-bus test system.

DG Size Ploss SVSM SACM

Method (MW)) DG Bus (W) Vmin (p.u.) RPLMI BVVMI I I MOF
1.3114 24

SPBO  1.3384 30 78.6331  0.9803  0.3727 0.0433 0.2296 0.1369 0.2735
0.9363 13
1.3503 24

SOS  0.9454 13 78.8536  0.9801  0.3737 0.0425 0.2318 0.1293 0.2737
1.3238 30
1.3778 30

HHO  1.3129 24 78.6346  0.9807  0.3727 0.0451 0.2249 0.1415 0.2737
0.8758 14

Table 6. Comparison of results for exclusive PV-DG allocation (case-3) for 118-bus test system.

Method D(f/[a‘;e DG Bus I()li(v)frj Vmin (p.u.) RPLMI BVVMISVISMSAICM MOF
38704 49

SPBO 34615 71 6860218 09561 05285 0.2346 0.3817 0.7130 0.4652
3.0589 110
32506 110

SOS  3.6949 49  685.0649 09562 05278 0.2349 0.3816 0.7293 0.4660
34665 71
32988 71

HHO 3.6066 109 6822693 09556 05256 0.2394 0.3861 0.7377 0.4666
36130 50

Figure 4 depicts the convergence curves of the three algorithms as applied to exclu-
sive PV-DGs allocations to minimize the MOEF. From the said figure, it is evident that the
convergence speed of the SPBO algorithm is the fastest, followed by HHO and SOS, which
proves the efficiency of the SPBO algorithm to solve the optimal PV-DG allocation.
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Figure 4. CC of optimization algorithms for case-3. (a) 33-bus test system; (b) 118-bus test system.

Tables 7 and 8 compare the optimal results for allocating three GT-DGs on the 33-
node and 118-node test systems. The net sizes of GT-DG as computed by SPBO, SOS, and
HOH are 3.6087 MVA, 3.5487 MVA, and 3.6297 MVA, respectively, for the 33-node test
system and 10.8680 MV A, 10.6280 MV A, and 10.5540 MV A, respectively, for the 118-node
test system. As GT-DGs operate at a 0.9 power factor, their sizes are marginally larger
than the PV-DGs. SPBO achieves minimum MOF value for both the test systems, which
proves its supremacy over the other two algorithms considered.

Table 7. Comparison of results for exclusive GT-DG allocation (case-4) for 33-bus test system.

Method D&&fe DG Bus 1()11“’3 Vmin (p.u.) RPLMI BVVMISVISMSAICM MOF
10915 24

SPBO 13138 30 189542 09941  0.0898 0.0022 0.0939 0.1973 0.1350
08425 13
08376 13

SOS 10832 24 186561 09937  0.0884 0.0030 0.1039 0.2097 0.1353
12730 30
09702 12

HHO 09245 24 209962 09941  0.0995 0.0027 0.0708 0.1934 0.1388
13720 30

Table 8. Comparison of results for exclusive GT-DG allocation (case-4) for 118-bus test system.

Method D(f/[a‘;e DG Bus I()li(v)frj Vmin (p.u.) RPLMI BVVMISVISMSAICM MOF
35252 50

SPBO 32370 71 3844106 09603 02961 0.1543 0.3474 0.7300 0.3634
30190 110
29805 110

SOS 33001 50 3847075 09603  0.2964 0.1576 0.3473 0.7492 0.3642
32846 71
34403 50

HHO 34589 71 3956196 09605 03048 0.1579 0.3458 0.7356 0.3680
25994 110
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The convergence characteristic of three considered algorithms for optimal GT-DG
allocation to minimize the MOF for 33-node and 118-node test systems are shown in Fig-
ure 5, respectively. It can be noted from Figure 5 that the SPBO algorithm achieves the
fastest convergence speed as compared to SOS and HHO algorithms for both the test sys-
tems. Further, the SPBO algorithm converges to the optimal results within 10 iterations
for both the test systems.
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Figure 5. CC of optimization algorithms for case-4. (a) 33-bus test system; (b) 118-bus test system.

The outcomes of simultaneous allocation of D-STATCOMSs and PV-DGs using the
studied algorithms are presented in Tables 9 and 10 for both test systems. The optimal
effective sizes of the D-STATCOMs and PV-DGs are (1.9081 MVAr, 2.9477 MW), (1.8138
MVAr, 3.3573 MW), and (1.3148 MV Ar, 3.1555 MW) for the 33-node test system as ob-
tained by SPBO, SOS, and HHO, respectively. Similarly, for the 118-node test system, the
optimal effective sizes of the D-STATCOMs and PV-DGs are in sequence (7.0012 MV Ar,
9.9368 MW), (5.6637 MV Ar, 9.2612 MW), and (7.0693 MV Ar, 10.4279 MW) as obtained by
SPBO, 50S, and HHO, respectively. It can be noted that the effective sizes of the individ-
ual devices for simultaneous allocation (case-5) are smaller as compared to that of alloca-
tion of individual devices (case-2 and case-3). The minimum MOF for both test systems is
recorded by the SPBO algorithm, which is 0.0656 p.u. and 0.2825 p.u., respectively.
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Table 9. Comparison of results for simultaneous DS and PV-DG allocation (case-5) for 33-bus test system.

DS Size DS DG Size DG Ploss Vmin
Method (MVAR) Bus (MW) Bus (kW) (p.uw) RPLMI BVVMI SVSMI SACMI  MOF
0.4219 25  1.1474 24
SPBO  0.4862 12 09677 30 123286 0.9940  0.0584 0.0030 0.1004 0.2655 0.0656
1.0000 30 08326 13
0.6266 8 0.8735 32
SOS 0.9076 30 09020 13 18.8355 0.9936  0.0893 0.0022 0.0905 0.1726 0.0771
0.2796 25 15818 23
0.3089 7 11902 24
HHO 02515 11 1.0323 30 17.5064 0.9928  0.0830 0.0043 0.0955 0.2195 0.0774
0.7544 30 09330 13
Table 10. Comparison of results for simultaneous DS and PV-DG allocation (case-5) for 118-bus test
system.
Method (DMSVSZ{"') ]]33 uss D&sge DG Bus 2‘;\5’:’ };“E‘; RPLMI BVVMI SVSMI SACMI  MOF
2.7327 50  4.0000 35
SPBO 23494 110 3.1050 71 356.7143 0.9609 0.2748 0.1406 0.3427 0.6873 0.2825
1.9191 72 28318 110
1.6192 75  2.8933 112
S0OS 21201 109 3.3768 71 397.2199 0.9602 0.3060 0.1690 0.3482 0.7775 0.3146
1.9244 51 2.9911 34
2.5026 89  3.8947 71
HHO  2.7468 35  3.2659 35  454.8666 0.9611 0.3504 0.1330 0.3407 0.7609 0.3328
1.8199 110 3.2673 109
The convergence characteristic for simultaneous allocation of D-STATCOMs and PV-
DGs by the three algorithms for the 33-node and 118-node test systems are shown in Fig-
ure 6. The SPBO algorithm converges to the optimal results at about 40 iterations for both
test systems, which is the minimum among the three algorithms. The faster convergence
speed of the SPBO algorithm is also evident from the said figures.
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Figure 6. CC of optimization algorithms for case-5. (a) 33-bus test system; (b) 118-bus test system.

The results of simultaneous allocation of D-STATCOMs and GT-DGs using SPBO,
SOS, and HHO algorithms are presented in Tables 11 and 12 for both the test systems. The
optimal effective sizes of the D-STATCOMSs and GT-DGs are (1.9081 MV Ar, 2.9477 MW),
(1.8138 MV Ar, 3.3573 MW), and (1.3148 MV Ar, 3.1555 MW) for the 33-node test system as
obtained by SPBO, SOS, and HHO, respectively. Similarly, for the 118-node test system,
the optimal effective sizes of the D-STATCOMs and GT-DGs are in sequence (7.0012
MVAr, 9.9368 MW), (5.6637 MV Ar, 9.2612 MW), and (7.0693 MV Ar, 10.4279 MW) as ob-
tained by SPBO, SOS, and HHO, respectively. It can be noted that the effective sizes of the
individual devices for simultaneous allocation (case-5) are smaller as compared to that of
allocation of individual devices (case-2 and case-3). The minimum MOF for both the test
systems is recorded by the SPBO algorithm, which is 0.1050 p.u. and 0.3057 p.u., respec-
tively.

Table 11. Comparison of results for simultaneous DS and GT-DG allocation (case-6) for 33-bus test
system.

DS Size DS DGSize DG Ploss Vmin
Method (MVAR) Bus (MW) Bus (kW) (p.w) RPLMI BVVMI SVSMI SACMI MOF
0.1221 21 1.0814 30
SPBO 0.4485 7 0.8108 13 11.2484 0.9956 0.0533 0.0012 0.0542 0.9942 0.1050
0.2837 32 1.0657 24
0.1301 31 0.7209 13
SOS 0.0905 9 1.1221 30 13.0950 0.9934 0.0621 0.0033 0.0843 0.9899 0.1139
0.6526 6 0.8086 25
0.1045 30 0.9969 12
HHO 0.4822 30 0.9305 30 13.3973 0.9934 0.0635 0.0031 0.0790 0.9935 0.1143
0.6184 3 0.9628 24
Table 12. Comparison of results for simultaneous DS and GT-DG allocation (case-6) for 118-bus test
system.
Method (DMSVSI;E ]]; uss D&i’ge DG Bus fli“’;j 2;“:1“)‘ RPLMI BVVMI SVSMI SACMI  MOF
1.8630 40 3.4937 50
SPBO 1.9242 80 2.8152 72 317.4696 0.9679 0.2446 0.0902 0.2843 1.5769 0.3057
1.3316 96 3.0296 110
SOS 1.1757 99 2.8903 110 3285501 0.9617 0.2531 0.1027 0.3359 1.5626 0.3180
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1.6938 34  2.8180 72
1.6039 83  3.3801 50
2.0581 86 27324 110
HHO 24914 40  3.3486 50 338.2096 0.9651 0.2605 0.1021 0.3075 1.5996 0.3220
0.3537 113  3.3498 71

The convergence characteristic for simultaneous allocation of D-STATCOMs and GT-
DGs by the three algorithms for the 33-node and 118-node test systems are shown in Fig-
ure 7. The SPBO algorithm shows a faster convergence speed than the SOS and HHO al-
gorithms for both test systems. Furthermore, the SPBO algorithm converges to the optimal
results within 30 and 40 iterations for the 33-node test systems and 118-node test systems,

respectively, the minimum among the three algorithms.
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Figure 7. CC of optimization algorithms for case-6. (a) 33-bus test system; (b) 118-bus test system.

The simultaneous allocation of D-STATCOMs and two PV-DGs and one GT-DGs us-
ing the SPBO, SOS, and HHO algorithms are presented in Tables 13 and 14 for both test
systems. The optimal effective sizes of the D-STATCOMs and DGs are (1.6375 MVAr,
3.0251 MW), (1.9040 MV Ar, 3.7934 MW), and (1.4300 MV Ar, 2.8257 MW) for the 33-node
test system as obtained by SPBO, SOS, and HHO, respectively. Similarly, for the 118-node
test system, the optimal effective sizes of the D-STATCOMSs and DGs are in sequence

(7.4882 MVAr, 9.7180 MW), (7.0897 MVAr, 8.4920 MW), and (5.3633 MVAr, 8.4624 MW)

as obtained by SPBO, SOS, and HHO, respectively. The SPBO algorithm reports the min-
imum MOF for both test systems, which is 0.0734 p.u. and 0.2827 p.u., respectively.
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Table 13. Comparison of results for simultaneous DS and 2 PV-DG and 1 GT-DG allocation (case-7)
for 33-bus test system.

Metho
d

DS
Size DS DG

Size
(N;{\)/A Bus (MW)

DG Ploss Vmin RPL BVVM
Bus (kW) (p.u) MI I SVSMI SACMI MOF

SPBO

SOS

HHO

0.3886 7 1.2583
0.8920 30 0.9603
0.3569 25 0.8065
0.2659 21 1.8492
0.9996 30 1.1064
0.6385 24 0.8378
0.1932 25 0.8445
0.8978 6 0.8708
0.3390 11 1.1104

24
30
13
3
28
13
13
25
30

11.82320.99410.0560 0.0022 0.0705 0.4469 0.0734

21.47690.99230.1018 0.0029 0.0916 0.2791 0.0925

15.25840.99390.0723 0.0024 0.0728 0.5691 0.0922

Table 14. Comparison of results for simultaneous DS and 2 PV-DG and 1 GT-DG allocation (case-7)
for 118-bus test system.

DS DG
Metho Size DS . DG Ploss Vmin RPL BVVM
d  (MVA Bus 2% Bus (W) (pw) Mr 1 OVoMI SACMI MOE
(MW)
R)
27782 50 4.0000 35
SPBO 23608 79 2.8293 110 333é0300.96190.2566 0.1130 03348 0.9484 (0.2827
2.3492 110 2.8887 72
22048 83 34070 35
SOS 26761 11124584 111~ *77096090.2870 0.1323 03430 (0.9705 0.3079
22088 51 2.6265 72
2.0932 55 2.8687
HHO 25559 70 24563 74 4()Of430.96040.3089 0.1650 0.3468 1.0668 0.3353
0.9833 50 3.1374 110

From the convergence characteristics of case-7 (as displayed in Figure 8), it may be
noted that the SPBO algorithm converges to the optimal value within 30 iterations for both
test systems, which is the fastest among the three algorithms.
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Figure 8. CC of optimization algorithms for case-7. (a) 33-bus test system; (b) 118-bus test system.

The results of simultaneous allocation of D-STATCOMs and one PV-DG and two GT-
DGs using the SPBO, SOS, and HHO algorithms are presented in Tables 15 and 16 for both
test systems. The optimal effective sizes of the D-STATCOMs and DGs are (1.1024 MVAr,
3.0533 MW), (1.3173 MVAr, 3.3508 MW), and (0.2186 MV Ar, 3.2191 MW) for the 33-node
test system as obtained by SPBO, SOS, and HHO, respectively. Similarly, for the 118-node
test system, the optimal effective sizes of the D-STATCOMs and DGs are in sequence
(7.7064 MV Ar, 8.8736 MW), (6.3977 MVAr, 8.8652MW), and (1.7736 MV Ar, 9.1159 MW)
as obtained by SPBO, SOS, and HHO, respectively. The SPBO algorithm once again re-

ports the minimum MOF for both test systems, which is 0.0892 p.u. and 0.2964 p.u., re-
spectively.

Table 15. Comparison of results for simultaneous DS and 1 PV-DG and 2 GT-DG allocation (case-8)
for 33-bus test system.

DS DG
Metho Size DS DG Ploss Vmin RPL BVVM
: I SACMI MOF
d (MVA Bus Size Bus (kW) (p.u) MI I SVSMI SACMI MO
R) (MW)

0.3544 31 1.2310 24

SPBO 0.3790 25 1.0075 30 11.49390.99410.0545 0.0018 0.0705 0.6917 0.0892
03690 7 0.8148 13
03586 6 1.7039 23

SOS 05685 32 0.7775 13 18.67460.99040.0885 0.0066 0.1134 0.5821 0.1082
0.3902 32 0.8694 30
0.1192 32 1.0559 24

HHO 0.0235 7 1.1075 30 19.60310.99360.0929 0.0033 0.0763 0.7405 0.1174
0.0759 31 1.0557 12
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Table 16. Comparison of results for simultaneous DS and 1 PV-DG and 2 GT-DG allocation (case-8)
for 118-bus test system.

DS DG
Metho Size DS . DG Ploss Vmin RPL BVVM
d (MVA Bus 0% Bus (W) (pw) MI 1 OvoMI SACMI MOF
(MW)
R)
3.0000 31 2.8295 110
SPBO 2.3483 110 3.1552 50 312i6630.96240.2409 0.1101 0.3303 1.3042 0.2964
2.3581 79 2.8889 72
1.8613 110 2.5055 113 352,005
SOS 22476 79 2.6688 73 3 0.96230.2712 0.1195 0.3313 1.2840 0.3159
2.2888 38 3.6909 50
0.3557 71 2.6719 73
HHO 04810 44 3.1776 50 373;18000.95760.2880 0.1646 0.3702 1.3422 0.3437
09369 74 3.2664 110

From the convergence characteristics of case-8 (as displayed in Figure 9), it may be
noted that the SPBO algorithm converges to the optimal value within 30 iterations for the
33-node and 118-node test systems, which is the fastest among the three algorithms.
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6.2. Statistical Analysis

The supremacy of the SPBO algorithm among the other two parameter-free optimi-
zation algorithms, namely SOS and HHO, is further established by conducting a statistical
analysis. Tables 17 and 18 report the statistical features such as the minimum MOF, max-
imum MOF, average MOF, and standard deviation of MOF for the results obtained by the
three algorithms for solving optimal planning of the PDN considering all cases except the
base case for both test systems. It may be noted that the SPBO algorithm yields the mini-
mum value for all statistical features considered across all cases and for both test systems.
The SPBO algorithm is also found to be the most robust algorithm of the lot, as it reports
the minimum of the standard deviation value for all the considered cases. The box plots
of the results (shown in Figures 10 and 11) obtained by different studied algorithms for
optimal PDN planning also reveal the superiority of the SPBO algorithm over other com-
pared algorithms.

Table 17. Statistical performance of different methods for 33-bus system.

Cases Methods Mmh;g; m Maximum MOF A;\I:(r;l:ge SD of MOF

SPBO 0.6825 0.6825 0.6825 0.0000

2 SOS 0.6835 0.6940 0.6895 0.0028
HHO 0.6950 0.8223 0.7499 0.0321

SPBO 0.4652 0.4652 0.4652 0.0000

3 SOS 0.4660 0.4771 0.4698 0.0025
HHO 0.4666 0.6141 0.5330 0.0546

SPBO 0.3634 0.3634 0.3634 0.0000

4 SOS 0.3642 0.3780 0.3680 0.0031
HHO 0.3680 0.5707 0.4489 0.0785

SPBO 0.2825 0.2902 0.2838 0.0014

5 SOS 0.3146 0.3707 0.3420 0.0151
HHO 0.3328 0.5394 0.4372 0.0525

SPBO 0.3057 0.3108 0.3070 0.0014

6 SOS 0.3180 0.3464 0.3314 0.0067
HHO 0.3220 0.5289 0.4303 0.0607

SPBO 0.2827 0.2846 0.2832 0.0006

7 SOS 0.3079 0.3420 0.3257 0.0089
SPBO 0.6825 0.6825 0.6825 0.0000

SOS 0.6835 0.6940 0.6895 0.0028

8 HHO 0.6950 0.8223 0.7499 0.0321
SPBO 0.4652 0.4652 0.4652 0.0000

Table 18. Statistical performance of different methods for 118-bus system.
Cases Methods Minimum Maximum MOF Average SD of MOF
MOF MOF

SPBO 0.6201 0.6201 0.6201 0.0000

2 SOS 0.6203 0.6277 0.6238 0.0021
HHO 0.6230 0.6594 0.6332 0.0081

SPBO 0.2735 0.2737 0.2735 0.0000

3 SOS 0.2737 0.2818 0.2768 0.0025
HHO 0.2737 0.3062 0.2836 0.0081

SPBO 0.1350 0.1350 0.1350 0.0000

4 SOS 0.1353 0.1460 0.1376 0.0025

HHO 0.1388 0.1803 0.1571 0.0137
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SPBO 0.0656 0.0757 0.0703 0.0025
5 SOS 0.0771 0.1074 0.0946 0.0076
HHO 0.0774 0.2266 0.1353 0.0385
SPBO 0.1050 0.1111 0.1069 0.0015
6 SOS 0.1139 0.1440 0.1253 0.0073
HHO 0.1143 0.2376 0.1583 0.0299
SPBO 0.0734 0.0861 0.0801 0.0033
7 SOS 0.0925 0.1268 0.1039 0.0079
SPBO 0.0922 0.2156 0.1372 0.0339
SOS 0.0892 0.0989 0.0940 0.0020
8 HHO 0.1082 0.1316 0.1150 0.0064
SPBO 0.1174 0.3025 0.1888 0.0475
06 |+ - 3 SPBO
SOS
HHO
0.5k -
% 04f -
=
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Figure 10. Box plots for 33-node test system.
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Figure 11. Box plots for 118-node test system.

7. Conclusions

Case6 Case7 Case8

A novel MOF has been developed to assess the performance of three parameter-free
metaheuristic algorithms (SPBO, SOS, and HHO) for simultaneous allocation of D-STAT-
COM and multitype DGs with seven different cases. The MOF included four indices such
as RPLMI, BVVMI, SVSMI, and SACMI, accounting for the technological, economic, and
environmental benefits of the planning in active distribution networks in the presence of
solar PV-DGs, GT-DGs, and D-STATCOMSs on two standard test systems (33-bus and 118-
bus). The simulation findings clearly indicate that the SPBO method is preferable to the
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SOS and HHO algorithms for solving the optimum planning of PDN because it is more
resilient, has a faster convergence rate, and is statistically more promising.
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