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Abstract: In a quest to solve the multi-objective optimal planning problem using a simple parame-
ter-free metaheuristic algorithm, this paper establishes the recently proposed student psychology-
based optimization (SPBO) algorithm as the most promising one, comparing it with the other two 
popular nonparametric metaheuristic optimization algorithms, i.e., the symbiotic organisms search 
(SOS) and Harris hawk optimization (HHO). A novel multi-objective framework (with suitable 
weights) is proposed with a real power loss minimization index, bus voltage variation minimization 
index, system voltage stability maximization index, and system annual cost minimization index to 
cover various technical, economic, and environmental aspects. The performances of these three al-
gorithms are compared extensively for simultaneous allocation of multitype distributed generations 
(DGs) and D-STACOM in 33-bus and 118-bus test systems considering eight different cases. The 
detailed analysis also includes the statistical analysis of the results obtained using the three algo-
rithms applied to the two test distribution systems. 

Keywords: distributed generators; simultaneous allocation; D-STATCOM; student psychology-
based optimization; Harris hawk optimization; symbiotic organism search optimization 
 

1. Introduction 
1.1. General 

Within the power system structure hierarchy, power distribution networks (PDNs) 
are designed to deliver the electric energy produced by the central bulk generating sta-
tions to the customers through a web of transmission grids. However, for various reasons, 
including the widespread use of cables, undersized conductors, radial configuration, and 
inadequate reactive power support at the distribution level, the PDN is frequently accom-
panied by a poor voltage profile, an unstable operational mode, and excessive energy 
losses. Furthermore, the escalation in energy demand, soaring fuel costs, fast-depleting 
energy reserves, and global efforts to harvest clean and green energy have compelled the 
power distribution network operators (PDNO) to seek out alternative network planning 
approaches [1] to improve system performance while satisfying environmental and eco-
nomic requirements. The distribution network planning (DNP) entails augmenting dis-
tributed generators (DGs) [2], reconfiguring the network topology (the process of chang-
ing the state of sectionalizing and tie switches) [3], compensating for reactive power [4], 
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and combining these techniques [5,6]. Over time, DNP has evolved as a complex, combi-
natorial, and multi-objective optimization problem that aims to determine the optimal 
combination of planning approaches and optimal device allocation (DGs, reactive power 
compensating equipment), and to alter the status of switches (tie switches and sectional-
izing switches) to meet the techno-economic and environmental requirements while ad-
hering to several operating system constraints. As a result, optimal DNP necessitates effi-
cient metaheuristic approaches [7]. 

Amidst the rise in fuel cost, the cost of energy production by the traditional genera-
tors has escalated. However, due to technological advancement, energy production by 
renewable sources, viz. solar and wind, is becoming more affordable [8]. This enforces the 
integration of renewable distributed generation on a wide scale into the existing grid. The 
incorporation of DGs can bring several opportunities to PDNOs not only in terms of im-
provement in the technical performance (power loss reduction, voltage profile enhance-
ment, and acceptable voltage stability margin) of the system but also in terms of several 
economic (reduction in energy loss cost and deferral of system upgrade) and environmen-
tal benefits (reduction in greenhouse gas emissions). Nevertheless, the wrong assignment 
of DGs can be detrimental to the system. Therefore, DG deployment is challenging and 
strenuous for the PDNOs to reap all the benefits. As a result, the optimal allocation of DGs 
(OADG) requires an efficient optimization technique [2].  

As the number of nonlinear loads in the PDN grows, reactive power shortage causes 
unacceptable voltage magnitude, resulting in voltage collapse. This can be solved through 
network reconfiguration (NR), allocation of shunt capacitors banks (SCBs), on-load tap 
changers (OLTC), and deployment of custom power devices (CPD). However, owing to 
the sluggish dynamic response and associated power quality issues, NR, SCBs, and OLTC 
are replaced by CPDs such as dynamic voltage restorers (DVRs), distribution static com-
pensators (D-STATCOMs), and unified power quality conditioners (UPQCs) to ensure 
safer and quality power delivery to the end users [9]. A voltage source converter-based 
D-STATCOM is a shunt-connected controller that offers rapid reactive power exchange 
with a smooth operational performance. D-STATCOM is most favored for reactive power 
management in the PDN as it comes with low cost, compact size, less harmonic injection, 
and simple control algorithms [9,10]. Optimal allocation (location and capacity) of D-
STATCOMs can assure their effective utilization. 

1.2. Related Works 
Considering the plethora of advantages that DGs can offer, various methods are sug-

gested by preceding researchers to augment DGs into the PDN to improve system perfor-
mance. The presence of continuous and discrete decision variables, nonlinear objective 
functions, and various operational constraints have made the OADG problem a complex 
optimization problem. Different heuristic, analytical, metaheuristic, and hybrid methods 
are proposed to solve the OADG problem [11]. Different versions of the improved sto-
chastic fractal search algorithm (iSFSA), which is the combination of the original fractal 
search algorithm embedded with 10 different chaotic maps, are used to select the best 
sizes and locations for inserting DGs into the PDN for minimizing the real power loss 
(RPL) [12]. The optimal number of DGs are then selected after comparing the results of 
OADG obtained for different numbers of DGs. Authors in [13] have proposed a new hy-
brid multiverse optimization (HMO) algorithm to solve OADG in a multi-objective frame-
work considering four different objectives, viz. energy loss, overall voltage deviation 
(OVD), overall voltage stability margin (OVSM), and energy not served (ENS). The said 
objectives are combined to formulate the multi-objective function (MOF), where the 
weights associated with each objective are determined using the analytical hierarchy pro-
cess (AHP). An adaptive equilibrium optimizer (AEO) [14] is used to efficiently allocate 
biomass-based DGs to simultaneously reduce polluting gas emissions, minimize annual 
energy loss costs, and maximize surplus energy sales profits. A quasi-oppositional chaotic 
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symbiotic organisms search (QOCSOS) is suggested in [15] to optimally allocate DGs op-
erating at unity and non-unity power factors to improve the technical performance (RPL, 
voltage deviation, and voltage stability index) of the system. Simultaneous sizing and 
placement of unity power factor (UPF) DGs are investigated in [16] using a novel manta 
ray foraging optimization (MRFO) algorithm to diminish RPL considering the different 
number of DGs. The research suggested that the allocation of three DGs has resulted in 
maximum RPL minimization. A hybrid approach, which is the joint execution of a genetic 
algorithm (GA) and stain bowerbird optimization (SBO), is developed in [17] for solving 
OADG in a multi-objective formulation consisting of RPL, VD, emission, and costs asso-
ciated with power import from the grid and fixed and variable costs of the DGs. The effect 
of the allocation of DGs in a reconfigured network is analyzed in [18], considering an im-
proved equilibrium optimization algorithm (iEOA). 

DNP considering optimal deployment of D-STATCOMs are envisaged in several 
works of literature. Yuvraj et al. [19] have presented a method to determine the optimal 
capacity of D-STATCOM using the bat algorithm (BA) at a predetermined location (ob-
tained by voltage sensitivity index) to diminish the RPL. Ant colony optimization (ACO)-
based D-STATCOM allocation is proposed in [20] to minimize the real power loss RPL, 
voltage deviation (VD), and installation, operation, and annual maintenance costs. In [21], 
a gravitational search algorithm (GSA) is used to optimally allocate D-STATCOM units to 
minimize RPL, VD, and annual energy loss (AEL) costs. Authors in [22] have obtained an 
optimal rating of D-STATCOM using a whale optimization algorithm (WOA) to reduce 
RPL and improve the voltage profile where the optimal injection node for D-STATCOM 
is obtained using a voltage stability index (VSI). A nature-inspired cuckoo search optimi-
zation (CSO) technique is presented to assign optimal D-STATCOM units to minimize 
RPL considering different load models viz commercial, residential, and industrial loads 
[23]. DNP considering the optimal allocation of D-STATCOM using a differential evolu-
tion algorithm (DEA) is carried out in [24] to minimize the RPL and maximize savings. A 
modified sine cosine algorithm (mSCA) is proposed to simultaneously optimize the place-
ment and capacity of multiple D-STATCOM units to curb RPL and VD [25]. Considering 
discrete values for locations and continuous values for the size of D-STATCOMs, a dis-
crete-continuous version of GA is proposed in [26] to optimally allocate D-STATCOMs 
for minimizing annual energy loss cost and annual investment cost while considering in-
dustrial, residential, and commercial load profiles. An improved bacterial foraging algo-
rithm (iBFA) is proposed to solve the optimal placement and sizing of a single D-STAT-
COM unit to reduce RPL, minimize VD, and improve VSI [27].  

Though some researchers dealt with optimal DNP considering DGs [11–18] and D-
STATCOMs [20–27] separately, it is interesting to analyze the system performance con-
sidering the simultaneous allocation of DGs and D-STATCOMs. A novel multi-objective 
approach based on a lightning search algorithm (LSA) is proposed in [28] to allocate DGs 
and D-STATCOMs considering linear variation in feeder load from 50% to 160%. Later, a 
curve-fitting technique (CFT) is applied to determine the optimal sizes of the devices for 
different load levels. A nature-inspired cuckoo search algorithm (CSA) is applied for sim-
ultaneous optimal assignment of DGs and D-STATCOMs in a multi-objective mathemat-
ical formulation [29]. A modified flower pollination (mFP) approach is proposed in [30] 
to optimally place D-STATCOM and photovoltaic DGs simultaneously in a multi-objec-
tive formulation consisting of RPL minimization, load balancing index minimization, and 
maximization of voltage profile improvement. The VSI predetermines the photovoltaic 
(PV) DG and D-STATCOM insertion buses. A novel whale optimization algorithm (WOA) 
is proposed to simultaneously allocate DGs and D-STATCOMs at buses predetermined 
by a loss sensitivity factor (LSF), aiming to minimize the RPL and operating cost of devices 
[31]. Authors in [32] have applied a hybrid firefly algorithm (FA) and particle swarm op-
timization (PSO) algorithms for optimal allocation of PV-DGs and D-STATCOMs, consid-
ering several technical, economic, and environmental indices in a multi-objective frame-
work. The optimal rating and placement of DGs and D-STATCOMs are computed using 
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a hybrid lightning search (LS) and simplex method (SM) and LSF, respectively, to arrest 
the RPL of the PDN [33]. Simultaneous optimal sizing and sitting of PV-DGs and D-STAT-
COMS considering uncertainties associated with solar irradiance and the system load is 
addressed using a modified ant lion optimizer (MALO) [34]. Simultaneous allocations of 
DGs and different shunt compensators (SCs), viz. SCB, static var compensator (SVC), and 
D-STATCOM, are envisaged using a bald eagle search (BES) in [35] to curb RPL. The effect 
of simultaneous allocation of DGs and SCs on the PDN is studied in terms of RPL, reactive 
power loss, total VD, and stability index, both with and without allocation of devices. In 
[36], optimal DNP is investigated for simultaneous allocation of PV-DGs with battery en-
ergy storage and D-STATCOMs. A joint allocation of DGs and D-STATCOMs combined 
with NR is discussed in [37] to minimize RPL, improve feeder load balancing and arrest 
VD using ant colony optimization combined with a fuzzy multi-objective approach.  

As previously mentioned, metaheuristic techniques are becoming more popular for 
solving exclusive OADG, exclusive D-STATCOM allocation (OADS), and simultaneous 
DG and D-STATCOM allocations (SOADGDS). The recently proposed student psychol-
ogy-based optimization (SPBO) technique [38] is based on the psychology of students 
striving to be the best student by continuously improving their class performance. The 
algorithm’s key benefit is that it lacks any algorithm-specific parameters (ASPs). As a re-
sult, it can be used to tackle any optimization problem without worrying about tuning its 
ASPs. Furthermore, the supremacy of the SPBO algorithm over 10 state-of-the-art me-
taheuristic approaches, including PSO [39], teaching learning-based optimization (TLBO) 
[40], cuckoo search algorithm (CSA) [41], symbiotic organism search [42], success-history-
based adaptive differential evolution (SHADE) [43], and grey wolf optimization (GWO), 
[44] has been established by comparing the results on CEC 2015 benchmark functions in 
[38]. Authors in [45,46] have suggested the SPBO algorithm to solve the OADG problem. 
Another parameter-free metaheuristic (PFM) optimization technique, a symbiotic organ-
ism search (SOS) [42], follows the various symbiotic relationships that occur between or-
ganisms in an environment to enhance their survival chances. After being used to tackle 
a variety of real-world engineering challenges, SOS has evolved into a global optimizer. 
The SOS’s improved performance comes from balancing exploration and exploitation 
without the use of algorithmic parameters [47]. Harris hawk optimization [48] is yet an-
other recently proposed PFM optimization approach for solving real-world optimization 
problems. 

1.3. Motivations 
In light of the above discussion, it is observed that the DNP, which involves alloca-

tion of exclusive devices [11–27] to a combination of devices [28–37], can be framed as a 
single objective [12,16,19,23,25,35] or a multi-objective [11,13–15,17,20–22,24,26–34,36,37] 
optimization problem, and can have fewer decision variables [11–27] or a fairly large num-
ber of decision variables [28–37], and nonlinear objective function(s). Furthermore, the 
decision variables may be binary (on or off), discrete (location of devices), or continuous 
(sizes of devices), or any mix of the three. The penetration limit of DGs is always increas-
ing as technology advances. It reduces grid real-power import, resulting in a poor power 
factor. Therefore, as DG penetration increases, the amount of reactive power compensa-
tion required also increases proportionately. Hence, the constraints on the sizes of DGs 
and D-STATCOMs are dynamic and flexible. As an exception, NR has strict radiality and 
topological constraints [3]. Therefore, other DNP regimes, except for NR, do not have a 
known global optimum. 

Furthermore, complying with the “no free lunch theorem” [49], several metaheuristic 
algorithms have recently been proposed to solve complex engineering problems. Power 
system engineers are implementing different optimization algorithms [7,9–37,45,46] to 
search for the optimal solution to DNP. Despite the non-iterative feature of the analytical 
approaches, metaheuristic approaches are getting widespread attention for solving DNP 
problems simply because metaheuristic approaches are flexible and efficient in handling 



Energies 2022, 15, 3433 5 of 37 
 

 

combinatorial optimization problems [7,11]. A compact review of the recently proposed 
metaheuristic approaches implemented to solve OADG, OADS, and SOADGDS are pre-
sented in Table 1. 

Table 1. Summary of related works. 

Ref. Year 
Planning 
Approach Methods 

Objective 
Function Number of ASPs 

Selection of 
Weights in the 

MOF 
Review Remarks 

[7] 2021  OADG 
Different 
PSO vari-

ants  

Cost and 
Emission 

Refer [7] 
w1 = 0, w2 =1 
w1 = 1, w2 =0 
w1 = 1, w2 =1 

Technical factors are not considered. 
For MOF, both objectives are given 

equal priority.  
Results revealed that hierarchical PSO 

has performed better. 

[12] 2018  OADG iSFSA RPL 
Maximum diffusion 

number = 5 
- 

OADG is solved considering single ob-
jective only  

The results are compared with SFS and 
PSO.  

The control parameters of PSO are de-
termined experimentally.  

[13] 2019  OADG HMO 
Energy 

Loss, OVD, 
OVSM, ENS 

Wormhole existence 
probability = 0.2–1.0 
Control parameter 

(m) = 0.5 
Maximum chaotic it-

erations = 20 

AHP 
w1 = 0.3940 

w2 = 0.2593 w3 = 
0.1970 

w4 = 0.1497 

AHP is adopted to decide the optimal 
values of weights in the MOF. 

DGs operating at UPF and non-unity 
power factor (N-UPF) are considered. 

Too many control parameters to be 
tuned. 

[14] 2021 OADG AEO 
Benefits and 
cost of util-

ity 

Generation rate con-
trol parameter (Gp) = 
0.5, Constant related 
to exploration ability 
(a1) = 2 Constant re-
lated to exploitation 

ability (a2) = 1 

- 

Results are compared with GWO, RAO, 
and DE. 

Biomass DGs are considered. 
Too many control parameters to deal 

with. 
Technical parameters are not included 

in the objective function (OF). 

[15] 2020  OADG QOCSOS 
RPL, VD, 

1/VSI 
Jumping rate (Jr) = 0.4 

w1 = 1 
w2 = 0.6 
w3 = 0.35 

Weights in the OF are subjectively as-
signed.  

DGs operating at UPF and N-UPF are 
considered. 

Missing economic analysis. 

[16] 2021 OADG MRFO RPL 
Somersault factor 

(SF)  
-- 

The performance of the MRFO is highly 
sensitive to the number of search agent, 

maximum iteration and SF. 
Only single objective is considered. 

[17] 2021 OADG 

Hybrid GA- 
SBO algo-
rithm (H-
GASBO) 

RPL, VD, 
Emission, 

Cost 

Greatest step size(α) 
= 0.94  

Mutation probabil-
ity(p) = 0.05  

Percent of the differ-
ence between the up-
per and lower limit 

(Z) = 0.02 

NR 

Too many control parameters to be 
tuned. 

MOF considers, technical, economic 
and emission factors. 

[18] 2020 
OADG and 

NR 
IEO  TPL, 1/TVSI 

a1 = 2 
a2 = 1  

Generation probabil-
ity (GP) = 0.5 

w1 = 0.7  
w2 = 0.3 

Weights in the OF are subjectively as-
signed.  

Too many control parameters to be 
tuned. 

Economic factor is missing in the MOF. 

[19]  2017 OADS BA RPL 
Loudness = 0.5 
Pulse rate = 0.5 

- 
Considers minimization of the RPL 

only. 
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[20] 2018 OADS ACO 
RPL, VD, 

Cost 
α = 1 
β =2 

w1 = 0.5  
w2 = 0.3  
w3 = 0.2 

Weights used to combine multiple ob-
jectives are randomly selected.  

The values of control parameters are 
not tunned. 

[21] 2019  OADS GSA 
RPL, VD, 
AEL costs 

NR 
w1 = 1 
w2 = 1 
w3 = 1 

Allocation of single D-STATCOM unit 
is considered.  

All objectives are given equal im-
portance. 

[23] 2020 OADS CSO RPL 

2 (Discovery rate of 
alien egg, Pa = 0.25, 
Dimension Search 

Space = 1or 3) 

- 

LSF is used to identify the D-STAT-
COM insertion buses. 

Empirical analysis is conducted to de-
termine the optimal parameter setting. 

Only single objective is considered. 

[24] 2020 OADS DE 

Total energy 
loss cost and 
total cost of 

D-STAT-
COM) 

Crossover rate (Cr) = 
0.8  

Scaling factor (F) = 1 

Penalty factors 
are set at 0.1 for 
both the objec-

tives. 

Penalty factor is used to handle the 
constrained optimization problem. 
Single D-STATCOM is allocated. 

[25] 2021  OADS mSCA RPL a = 2 - 
Considers minimization of the RPL 

only. 

[26] 2021  OADS DC-GA 

Annual cost 
function of 

energy 
losses and 
annualized 
investment 

cost 

NR NR 

Placement and sizing of the D-STAT-
COM are obtained by the discrete and 
continuous part of the codification re-

spectively. 
Technical factors are not considered in 

the OF 

[27] 2021  OADS iBFA 
PL, VD, 
1/VSIk 

Run-length unit  
Step size 

w1 = 0.5 
w2 = 0.25 
w3 = 0.25 

Allocation of single D-STATCOM unit 
is considered. 

Weights in the MOF are subjectively as-
signed.  

Economic factor is not considered in 
the MOF. 

[28] 2017  OADGDS LSA 
RPL, TVD, 

VSI 
Maximum channel 

time 

w1 = 0.4  
w2 = 0.3 
w3 = 0.3 

Optimal allocation of DG and D-STAT-
COM are carried out by varying feeder 

loads linearly in the range 0.5 to 1.6. 
Weights in the MOF are subjectively as-

signed.  
Economic factor is not considered in 

the MOF 

[29] 
2018 

 
OADGDS CSA 

RPL and 
Cumulative 
voltage de-

viation 
(CVD) 

Discovery rate of al-
ien egg = 0.25 Dimen-

sion search space = 
1or 3 

w1 = 0.7  
w2 = 0.3 

VSI and LSF are used to pre locate DG 
and D-STATCOM injection buses re-

spectively.  
CSA is used to determine the size of the 

devices. 
Weights in the MOF are subjectively as-

signed.  
Economic factor is not considered in 

the MOF. 

[31] 2019 OADGDS WOA 

RPL, Oper-
ating cost of 
DGs and D-
STATCOMs 

Linearly decreasing 
weight (a) = 2 Coeffi-
cient describing spi-

ral shape (b) 

w1 = 0.6  
w2 = 0.4 

Location is obtained through LSF and 
size by WOA. 

Weights in the MOF are subjectively as-
signed.  

[32] 2021  OADGDS 
Hybrid FA 

with sine co-

RPL level, 
short circuit 

level, VD 

Cmin = 0.5 Cmax = 2.5;  
α = 1/3; 

c1i = 2.5 c1f = 0.5,  

w1 = 0.3 
w2 = 0.2 
w3 = 0.2 

The values weights in the MOF are 
based on practical indicators. 
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sine acceler-
ation coeffi-
cients PSO 

level, Net 
Saving level, 

environ-
mental pol-
lution re-
duction 

level  

c2i =0.5 c2f = 2.5; 
ci =0.5 cf = 2.5; 
∂ = 2, δ = 0.5 

w4 = 0.2 
w5 = 0.1 

[33] 2021 OADGDS 

Hybrid LS-
SM optimi-
zation algo-

rithm 

 PL, VD, 
TOC 

Not Reported 
w1 = 0.5  
w2 = 0.25 
w3 = 0.25 

LSF is used to identify the DG & D-
STATCOM insertion buses.  

Simplex method and elite opposite-
based learning is incorporated to im-

prove the performance of LSA. 
Weights in the MOF are subjectively as-

signed.  

[34] 2021  OADGDS MALO 

cost reduc-
tion, VD 

minimiza-
tion, and 
VSI en-

hancement 

Amax = 0.85  
Amin = 0.4 

NR 

Levy Flight is used to enhance the ex-
ploration of the basic ALO algorithm.  
Variation in solar irradiance and the 
load are considered for solving the 

OADGDS. 

[35] 2022 DGs & SRC BES RPL c1, c2, r, α - 

Only single objective is considered. 
Too many control parameters. 

Different SRC viz, SCB, SVC & D-
STATCOM are considered 

As noted in Table 1, several metaheuristic approaches are applied for solving multi-
objective combinatorial optimization problems like optimal DNP. However, most me-
taheuristic approaches require certain control parameters to balance the exploration and 
exploitation to yield an optimal solution. The selection of these control parameters is quite 
tedious and has a substantial impact on the algorithm’s performance. Therefore, recently, 
parameter-free metaheuristic (PFM) optimization techniques have been proposed. The 
student psychology-based optimization (SPBO) technique is a PFM algorithm proposed 
by Das et al. [27] that is based on the psychology of students to continuously perform 
better in their class performance. The authors in [27] also proved the supremacy of the 
SPBO algorithm over 10 state-of-the-art metaheuristic approaches by comparing the re-
sults of the CEC 2015 benchmark functions. Exclusive allocation of DGs using SPBO is 
proposed in [28]. The symbiotic organism search [29] is another PFM optimization tech-
nique that follows the various symbiotic relationships existing between organisms of an 
ecosystem to improve their survival opportunities. After being used to tackle a variety of 
real-world engineering challenges, SOS has evolved into a global optimizer. Enhancement 
in SOS’s performance is due to its capacity to strike a balance between exploration and 
exploitation without using algorithmic parameters [30]. The Harris hawk optimization 
[31] is yet another recently proposed PFM optimization approach for solving real-world 
optimization problems. 

Most metaheuristic techniques have ASPs, as shown in Table 1, and tuning these pa-
rameters introduces a new subproblem, increasing the computing cost. Furthermore, the 
appropriate ASP values significantly impact the quality of the optimal solution. As a re-
sult, PFM algorithms are logical for dealing with the DNP. VSI [29] and LSF [23,31,33] are 
two sensitivity techniques that a few researchers have utilized to identify the prospective 
locations for the deployment of the devices. The device’s ideal rating is then calculated 
using several metaheuristic methods. Technical, economic, and environmental considera-
tions must all be taken into account for a comprehensive and pragmatic optimal DNP. 
However, authors in [12,16,19,23,25,35] have established a single goal for addressing the 
optimal DNP. Few authors have looked at only the technical [13,15,18,27,28], the solely 
economic [14,24,26], or both the technical and economic aspects [20,21,31,33,34]. However, 
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[17,32] authors took technical, economic, and environmental concerns into account. The 
weighted sum multi-objective (WSMO) strategy is one of the most prominent approaches 
for combining multiple objectives. In the WSMO technique, each objective is given a 
weight and the values allocated to these weights are crucial in determining the overall 
objective function. As a result, selecting the most appropriate weight for each objective 
function is critical. However, except when the PDNO’s perspective and expertise are taken 
into account, these weights are usually picked at random. Lastly, most researchers have 
suggested DGs be powered by solar, wind, or biomass instead of having mixed energy 
sources. 

1.4. Contribution 
In the light of the above discussion, the major contributions of the current manuscript 

are outlined below.  
• Three recently surfaced parameter-free metaheuristic algorithms, viz. the student 

psychology-based optimization, symbiotic organism search optimization, and Harris 
hawk optimization, are implemented for optimal planning of a power distribution 
network. 

• Optimal allocations of seven different combinations of PV-DGs, gas-turbine-based 
DGs, and D-STATCOMs are studied. 

• Optimal planning combines technical, economic, and environmental indices using 
suitable weights derived from the analytical hierarchy process. 

1.5. Manuscript Organisation 
The paper is organized as follows: modeling of devices, viz. solar photovoltaic (PV) 

DGs, gas-turbine (GT) DGs, and D-STATCOMs are included in Section 2. Section 3 for-
mulates the weighted-sum-based multi-objective simultaneous allocation problem of DGs 
and D-STATCOMs using four indices. Three parameter-free metaheuristic (PFM) ap-
proaches are introduced in Section 4. In Section 5, the implementation of PFM to solve 
simultaneous OA-DG-DS problems is elucidated. Results and discussions are presented 
in Section 6 followed by the conclusions in Section 7. 

2. Modeling of Devices 
In this paper, the optimal planning of multitype DGs, viz. solar PV-DGs, gas-turbine 

DGs (GT-DG), and D-STATCOMs is carried out. A simplified two-node equivalent of a 
DN connected to DGs and a D-STATCOM is shown in Figure 1. A brief modeling aspect 
of solar PV-DG, GT-DG, and D-STATCOM is discussed below. 

 
Figure 1. A simplified two-node equivalent of a DN connected to DGs and DSTATCOM. 

2.1. Solar Photo Voltaic DG 
The output power of the solar photovoltaic DG (PV-DG) is sensitive to the panel 

characteristics and meteorological conditions of the site. Due to the intermittent nature of 



Energies 2022, 15, 3433 9 of 37 
 

 

the power produced by PV-DG, it is treated as a non-dispatchable DG. The following sets 
of Equations (1)–(5) [32] are used to attribute the power generated by the PV-DG.  

20
0.8
OT

c a
NT T S − = +  

 
 (1)

[ ]( 25)k sc i cI S I K T= + − (2)

k oc v cV V K T= −
 (3)

MPP MPP

oc sc

V IFF
V I

×=
×  (4)

PV k kP N FF V I= × × ×
 (5)

where Tc, Ta, and NOT represent the cell temperature, ambient temperature, and nominal 
cell operating temperature, respectively. Ki and Kv are the temperature coefficients for cur-
rent and voltage, respectively. Voltage and the current during maximum power point are 
designated as VMPP and IMPP, respectively. ISC and VOC are the short-circuit current and the 
open-circuit voltage, respectively, of the PV panel. N is the number of PV panels in use 
and FF is the fill factor of the PV panels. Voltage and current of the PV panel are denoted 
as Vk and Ik, respectively. An inverter-based SPV-DG can operate in lagging power factor 
mode, which allows the DG to inject reactive power into the grid in addition to real power. 
The reactive power injected by the PV-DG can be exposed as: 

tan( )PV PVQ P φ= ×  (6)

where ϕ is the power factor angle. 

2.2. Gas Turbine DG 
Gas-turbine-based DGs (GT-DGs) are attracting widespread attention as they offer 

higher operational efficiency (close to 80%), leave a smaller carbon footprint, and support 
a dispatchable mode of operation. They can also be utilized for cogeneration to provide 
combined heat and power. In GT-DGs, highly pressurized natural gas is used for energy 
conversion and its output power can be controlled by regulating the amount of natural 
gas supplied as the input fluid. Therefore, deterministic models are used to represent the 
GT-DGs. Furthermore, by connecting a suitable power electronics interface between the 
DG and the load, it can be operated at a lagging power factor.  

2.3. D-STATCOM 
D-STATCOM is a sophisticated device connected at the distribution voltage level to 

facilitate fast reactive power exchange for alleviating power quality issues. In the present 
work, a steady-state model of D-STATCOM is developed that can be used to study the 
steady-state impact of D-STATCOM on the DN. Consider a D-STATCOM connected to 
the (t + 1)th node (receiving node) of DN, as shown in Figure 1. This will modify the voltage 
of the corresponding node as: 

( ) ( )' ' ' '
1 1 ( )t t t t m m m m m m DSTATCOMU U R jX I R jX Iθ θ δ ψ+ +∠ = ∠ − + × ∠ − + × ∠  (7)

To exchange reactive power, the current supplied by the D-STATCOM and the com-
pensated node voltage must maintain a 90-degree phase difference. Therefore: 
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'
12 t

πψ θ += +  (8)

So, the rating of the D-STATCOM can be obtained as: 

' ' '
1 1 12DSTATCOM t t DSTATCOM tjQ U I πθ θ∗

+ + +
 − = ∠ ∠ + 
 

 (9)

where QDSTATCOM and IDSTATCOM represent the reactive power delivered and current sup-
plied by the D-STATCOM at (t + 1)th bus, respectively. 

3. Problem Formulation 
A simultaneous optimal allocation of DGs and D-STATCOM (OA-DG-DS) for a 

power distribution system is formulated considering the following indices for the overall 
performance enhancement of the system [33].  

3.1. Real Power Loss Minimization Index (RPLMI) 
Active power loss (APL) minimization is considered the most significant objective to 

improve the performance of the DN. Therefore, the effect of the allocation of DGs and D-
STATCOMs (devices) on APL reduction must be assessed. RPLMI is the ratio of the APL 
of the system with and without allocation of the devices. It is formulated to quantify the 
impact of device (DGs and D-STATCOMs) installations on APL minimization of the DN. 

device

base

PLOSSRPLMI
PLOSS

=  (10)

where PLOSSbase is the base case power loss (i.e., without allocation of any devices), and 
the APL of the system in the presence of devices is designated as PLOSSdevice. Equation (11) 
can be used to determine the system APL. 

2

1
( )

nbus

m
m

PLOSS I R m
=

= ×  (11)

An RPLMI having a unity value corresponds to no effect of the device allocation on 
APL minimization of the DN. A positive effect of device allocation is marked by an RPLMI 
value less than unity. An RPLMI value more than unity corresponds to an increase in the 
system’s APL in the presence of the devices and therefore is viewed as a negative system 
impact. 

3.2. Bus Voltage Variation Minimization Index (BVVMI)  
DNs being radial experience a wide variation of the bus voltage. The fluctuation in 

bus voltage gets more pronounced as the location of the bus goes farther from the substa-
tion. If the bus voltage variation is not maintained within a prescribed limit, it can lead to 
detrimental system performance. The effectiveness of device allocation on voltage profile 
enhancement can be observed using the bus voltage variation minimization index 
(BVVMI) as: 

se

device

ba

VDBVVMI
VD

=  (12)

The VDbase denotes the voltage deviation (VD) of the base case scenario, whereas the 
VD of the DN in the presence of devices is represented by VDdevice. Equation (13) is em-
ployed to determine the VD of the DN. 
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2

1
( )

nbus

i s
i

VD U U
=

= −  (13)

where Us and Ut are the substation and the bus voltage magnitude, respectively. 
A BVVMI having a unity value corresponds to no effect of the device allocation on 

the bus voltage variation. A positive effect of device allocation is marked by a BVVMI less 
than unity. A BVVMI value more than unity is reflected as a negative system impact in the 
presence of the devices. 

3.3. System Voltage Stability Maximization Index (SVSMI) 
An increased percentage of sensitive and nonlinear loads into the DN requires fast 

and adequate reactive power support for maintaining secure and stable network opera-
tion. Lack of reactive power support may force the DN into the insecure mode of opera-
tion, leading to system blackouts. Installation of DGs (operating in lagging power factor 
mode) and D-STATCOMs can significantly improve the secure operation of the DN. In 
this regard, the voltage stability index (VSI) [34] of the DN can be computed using Equa-
tion (14) to access the state of the security and stability of the network.  

24 2
1 1 1 1( 1) 4 4eff eff eff eff

t t m t m t m t m tVSI t U P X Q R P R Q X U+ + + +   + = − × − × − × + ×     (14)

where 1
eff
tP+  and 1

eff
tQ +  represent the effective active and reactive load demand for (t + 1) 

bus, respectively. Furthermore, mR  and mX are resistance and reactance, respectively, 
of the branch connecting the t and t + 1 buses.  

A VSI closer to unity indicates better system stability, whereas a VSI closer to zero 
indicates an unstable system operating mode. The bus corresponding to the least VSI 
value of the DN is called a critical bus. Therefore, a system voltage stability maximization 
index (SVSMI) is developed using Equation (15), as the ratio of the reciprocal of the volt-
age stability index of the DN’s critical bus with and without device consideration to assess 
the influence of device allocation on the stability margin. 

1/
1/

device
c
base
c

VSISVSMI
VSI

=  (15)

The values of SVSMI can be less than unity, equals unity, or more than unity. Alloca-
tion of devices will be considered beneficial for an SVSMI value less than unity as it cor-
responds to a value of VSI of the critical bus closer to unity in the presence of the devices 
compared to the DN without devices. 

3.4. System Annual Cost Minimization Index (SACMI) 
When no devices are installed in the DN, the distribution utility (DU) has to meet the 

annual cost of purchasing power from the upstream grid and leverage the penalty for 
emissions caused by the outsourced power from the thermal stations. Equation (16) shows 
clearly how much DUs pay each year in the base case. 

8670 8670base base real base reac sub device
sub sub sub sub em sub gridAC P k Q k k P E= × × + × + × × ×  (16)

However, when different devices are introduced, the capital cost and operation and 
maintenance cost of the devices has also to be shared by the DU as formulated in (17). 

8670 8670 8670device device device real device reac device
sub sub sub sub em sub grid em DG DGAC C P k Q k k P E k P E= + × × + × + × × × + × × ×  (17)
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device
device device

device

ICC OM
LS

= +  (18)

However, in the presence of the devices, energy purchase cost and emission cost will 
be significantly reduced, causing the net annual cost to be substantially less than that with-
out the installation of devices. 

The impact of device allocation on the annualized cost borne by the DU is measured 
by the system annual cost minimization index (SACMI), which is defined as the ratio of 
the annual cost borne by DU with and without the allocation of devices. 

device

base

ACSACMI
AC

=  (19)

3.5. Multi-Objective Function(MOF) 
The allocation of the individual and a combination of devices can significantly affect 

the performance of the DN by diminishing power loss, boosting the voltage profile, and 
enhancing the stability margin. Moreover, in the deregulated framework, the owners of 
the devices must earn economic benefits, which incentivize them to invest in sophisticated 
devices. Therefore, the allocation of the devices must be envisaged to ensure the technical 
and economic benefits. Hence, considering the above facts, both the technical factors, viz. 
APLRI, VDMI, and VSII, and the economic factor ACMI are suitably combined to formu-
late the multi-objective function as exposed in Equation (20). 

1 2 3 4.min( )MOF w RPLMI w BVVMI w SVSMI w SACMI= + × + × + ×  (20)

where w1, w2, w3, and w4 are the constants that can be adjusted to prioritize the influence 
of individual factors on the overall MOF. The values of these weights are finalized using 
an AHP, as described below. 

3.6. Analytical Hierarchy Process (AHP) 
An AHP requires a priority matrix (PM) formulated up front to capture the pair-wise 

significance between the considered multiple-objective functions. PM is a square matrix 
with rows equal to the number of objective functions (NOF). Elements of each row of the 
PM signify the relative importance of each objective function compared to the other ob-
jective functions. The degree of importance is represented on a scale from 1 to 9, with 1 
meaning both objectives are of equal importance and 9 meaning the concerned objective 
function is highly significant compared to the other objective functions. The formation of 
a PM is often guided by the expertise and requirement of the decision maker. The present 
work considers the following PM. 

1 3 6 9
0.3333 1 2 3
0.1667 0.5 1 1.5
0.1111 0.3333 0.6667 1

K

 
 
 =
 
 
 

 (21)

The rows of the PM represent RPLMI, BVVMI, SVSMI, and SACMI, respectively. It 
can be seen that the objective of power loss minimization is given the highest priority 
against the annual cost reduction, whereas it is made moderately significant as compared 
to the objectives of voltage deviation and voltage stability index, respectively. Further-
more, the voltage stability index objective is given more importance than the voltage devia-
tion objective.  

The suitable values of the weights can be computed from the PM (K) using the fol-
lowing equation. 
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=

= =

=
∏

 ∏
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Following the above process, the weights of the MOF are computed as w1 = 0.6207, w2 

= 0.2069, w3 = 0.1034, and w4 = 0.0690. 

4. Parameter-Free Metaheuristic (PFM) Algorithms 
Population-based metaheuristic algorithms are inherently the most preferred ap-

proaches to solve the simultaneous optimal allocation problems, though they are usually 
computationally burdensome. Therefore, parameter-free metaheuristic algorithms are the 
natural choice of researchers for solving this class of problems. In this paper, three such 
parameter-free metaheuristic algorithms (SPBO, SOS, and HHO) are considered to solve 
the planning problem formulated in the previous section. 

4.1. Student Psychology Based Optimization (SPBO) 
Student psychology-based optimization (SPBO) begins with an initial population of 

the prospective solution vectors that represent the performance of N students of a class in 
D different subjects. The fitness of the initial population is determined by evaluating the 
objective function that resembles the overall marks secured by the students in the class 
examination. The students often try to enhance their overall class performance by securing 
better marks in each subject offered to them and trying to be the topper of the class. A 
student’s performance in a subject is influenced by factors like the student’s interests, mo-
tivation/incentives for the subject, efficiency, and capability of the student to handle the 
subject. Therefore, the entire class is divided into four groups of students based on the 
students’ psychology to perform in the examination. Group-I represents the student with 
the highest overall marks in the examination. S/he is called the best student or topper of 
the class. A student who belongs to this group puts valiant efforts into each subject com-
pared to any other student of the class to maintain his/her first position in the class. There-
fore, the performance of Group-I students can be expressed as: 

( )1
, , ,( 1)k k k k

best j best j best j rjp p rand p pα+ = + − × × −  (23)

The updated and the previous performance of the best student in the jth subject is 
represented as 1

,
k
best jp + and ,

k
best jp  respectively.  k

rjp  denotes the past performance in the 
jth subject of a random student of the class. α is a switching parameter, which can assume 
a value of 0 or 1. rand is a random number in the range [0, 1] drawn from a normal distribution. 

Students who have performed well in the respective subjects are subject-wise good 
students (SGS) and are placed in Group-II. Because of the stated factors, SGS, though per-
forming well in a particular subject, might have average performance in some other sub-
jects. Therefore, the selection of students to Group-II is a random process. Some students 
in Group-II may try to be in Group-I by endeavoring to undertaken similar efforts as the 
topper of the class, and their improvement in performance can be defined in (24). 

( )1
, , , ,
k k k k
i j best j best j i jp p rand p p+ = + × −  (24)

Where 1
,
k
i jp

+   and ,
k
i jp  are the performances of the ith student in the jth subject in the kth 

and (k + 1)th iterations, respectively. Again, some SGS may apply effort that is more than 
the average effort of the class, as well as in line with the effort made by the best student. 
It can be modelled as in (25): 
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( ) ( )1
, , , , ,
k k k k k k
i j i j best j i j i j avgp p rand p p rand p p+ = + × − + × −  (25)

where k
avgp  is the average class performance in a kth iteration. 

Students with average performance in a subject are included in Group-III and called 
subject-wise average students (SAS). Since students’ psychologies are different for differ-
ent subjects, they are randomly included in Group-III. These students may improve their 
overall performance, as mentioned in (26): 

( )1
, , ,
k k k k
i j i j avg i jp p rand p p+ = + × −  (26)

Students who do not have any structured effort to improve their performance and 
often perform poorly in the class belong to Group-IV and are referred to as below-average 
students (BAS). BAS apply random efforts to the subject to improve their overall score 
and therefore their performance improvement can be expressed as in (27): 

( )1 min max min
,
k
i j j j jp p rand p p+  = + × −   (27)

Where max
jp  and min

jp  are the maximum and minimum marks of the jth subject. 
Here, the psychology of different students to continuously upgrade their class per-

formances reflects the intrinsic philosophy of optimization. The step-by-step implemen-
tation procedure of the SPBO Algorithm 1 is illustrated below. 

Algorithm 1 Pseudocode for SPBO algorithm 

Input:  

Class size (N) 
Maximum number of iterations (Kmax) 
Number of design variables (D) 
Upper and lower bound of the design variables 

Output: Best solution (Pbest) 

1. Randomly initialize the class performance uniformly spread within the upper and 
lower bound of the design variables. 

2. Evaluate the objective function. 
3. Select the best solution Pbest. 
4. Set the iteration counter: k = 1. 
5. while k < Kmax. 
6.   for i = 1: D. 
7.       for j = 1: N. 
8.              if student belongs to Group-I. 
9.             Update student performance using Equation (23). 
10.          else if student belongs to Group-II. 
11.             if rand < 0.5. 
12.                Update student performance using Equation (24). 
13.             else. 
14.                Update student performance using Equation (25). 
15.            end if. 
16.          else if student belongs to Group-III. 
17.             Update student performance using Equation (26). 
18.          else. 
19.             Update student performance using Equation (27). 
20.         end if. 
21.     end for. 
22.     Evaluate the objective function using current class. 
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23.      if current class is better than previous class. 
24.          Update previous class with current class. 
25.      end if. 
26.   end for. 
27. end while. 

4.2. Symbiotic Organisms Search (SOS) 
The symbiotic organisms search (SOS) is a promising search algorithm where the 

symbiotic interactions between heterogeneous organisms to produce better organisms 
continually showcases the natural optimization process. It begins with an ecosystem that 
represents a population of organisms as in (28): 

1 2 3[ ... ]TNOG OG OG OG OG=  (28)

where N represents the size of the ecosystem and each organism shall have D components 
(equal to the no of the optimization variable) as in (29): 

1 2 3[ ... ]i i i i iDOG og og og og= , (i = 1,2,3…N) (29)

The degree of survival of individual organisms is obtained by the functional evalua-
tion of the ecosystem. The ecosystem is then iteratively subjected to three phases of sym-
biotic relationships, viz. the mutualism phase, communalism phase, and parasitism phase, 
till the predefined maximum number of iterations is reached. The basic operations of the 
stated symbiotic phases are elucidated below. 

4.2.1. Mutualism Phase 
In this phase, both participating organisms get benefits from the relationship. Here, 

an individual organism OGi fosters a mutualism interaction with another randomly se-
lected organism OGj (i ≠ j) from the ecosystem as modeled in (28) and (29) and produces 
two new organisms. Depending on the better rate of survival of the current organisms, 
previous-generation organisms get replaced.  

( )1(0,1)new
i i bestOG OG rand OG MV Bf= + × − ×  (30)

( )2(0,1)new
j j bestOG OG rand OG MV Bf= + × − ×

 
(31)

1 2( , )MV mean Bf Bf=
 (32)

where rand is a uniformly distributed random number in the interval [0, 1], and the benefit 
factors corresponding to individual organisms are represented by Bf1 and Bf2, respectively. 
Bf1 and Bf2 stochastically assigned a value of either one or two. The mutual vector (MV) 
mimics the mutualism interaction between the organisms involved. 

4.2.2. Communalism Phase 
A communalism relationship is one where one of the organisms benefits from the 

symbiotic relationship without affecting the other organism. So, for two organisms, OGi 
and OGj (i ≠ j), drawn from the ecosystem, the communalism relationship is established, 
such that only OGi gets benefits, whereas OGj remains unaffected, as mentioned in Equa-
tion (33): 

( )( 1,1)new
i i best jOG OG rand OG OG= + − × −  (33)

4.2.3. Parasitism Phase 
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In the parasitism interaction, one of the involved species referred to as a parasite ben-
efits immensely, whereas the other one, referred to as a host, is subjected to sheer suffer-
ing. To model this interaction, at first, a parasite vector (PV) is generated by copying and 
randomly altering some variable of the carrier of parasite OGi. Then the PV interacts with 
a randomly selected host organism OGj. If PV has a higher rate of survival, then it replaces 
the host in the ecosystem. 

The step-by-step implementation procedure of the SOS Algorithm 2 is elucidated be-
low. 

Algorithm 2 Pseudocode for SOS algorithm 

Input:  

Ecosystem size (N) 
Maximum number of iterations (Kmax) 
Number of design variables (D) 
Upper and lower bound of the design variables 

Output: Best solution (OGbest) 

1. Randomly initialize the ecosystem within the upper and lower bound of the de-
sign variables. 

2. Evaluate the objective function.  
3. Select the best solution OGbes. 
4. Set the iteration counter: k = 1. 
5. for k = 1: Kmax. 
6.    for i = 1: N. 
7.        Perform mutualism phase using Equations (30)–(31). 
8.        Update the ecosystem if the current organism is better than previous. 
9.        Perform Communalism phase using Equation (33). 
10.        Update the ecosystem if the current organism is better than previous. 
11.        Perform parasitism phase. 
12.        Update the ecosystem if the current organism is better than previous. 
13.    end for. 
14.  Update OGbest. 
15. end for. 

4.3. Harris Hawk Optimization (HHO) 
Harris hawks (HH) are the most intelligent raptors found in the deserts of North 

America. The cooperative predation activity of HH, which includes searching for prey, 
surprising the prey, and attacking the prey, curates the structure of the Harris hawk opti-
mization (HHO). Here, the initial population of the solution represents the random place-
ment of the hawks and the prey (rabbit) is designated as the best solution. The initial pop-
ulation is iteratively guided through three stages of the algorithm unless a stopping crite-
rion is encountered. The three stages of the algorithm are stage-I, the exploration stage, 
stage-II, the transition between exploration and exploitation stage, and stage-III, the ex-
ploitation stage. 

Stage-I: HH searches for the prey either by sitting on a tall tree to scan the desert or 
by following the locations of the gaggle (which are closer to the prey). Citing equal prob-
ability for the above two perching behaviors, HH may update their placements as exposed 
in (32): 

( )( )
1

max min

2 ; 0.5

0.5

k k k
r rk

k k k
prey mean mean

HH rand HH rand HH q
HH

HH HH rand HH rand HH HH q
+

 − ∗ − ∗ ∗ ≥= 
− − ∗ + ∗ − <

 (34)

where HHk+1 and HHk represent in sequence the placement of HH in the (k + 1)th and kth 
iterations. a rand is a random number in the interval [0, 1]. The placement of the rabbit is 
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presented as k
preyHH , k

rHH  and k
meanHH  represent the placement of a randomly se-

lected HH and the average placement of the gaggle in the kth iteration, respectively. The 
average placement of the gaggle can be computed as follows: 

1

1 N
k k
mean i

i
HH HH

N =

=   (35)

Stage-II: The performance of any optimizer depends on its ability to shift from the 
exploration to exploitation phase swiftly. Stage-II of HHO presents the transition from the 
exploration to exploitation stage. During the hunting, the prey gets tired as its energy is 
utilized in escaping from the predator. The dynamics of escaping energy is modelled in (36): 

0
max

2 (1 )kE E
k

= −  (36)

where k, kmax, and E0 are the current iterations, maximum iteration, and initial energy, re-
spectively. 

|E| > 1 indicates the exploration, as the HH search for a different location to find the 
rabbit, whereas exploitation sets in for |E| < 1. 

Stage-III: This stage models the interaction of HH and the prey (rabbit) as four differ-
ent perching tactics displayed by the HHs. The following four perching scenarios are 
framed based on the rabbit’s attempt to escape the hunt (Pprey < 0.5 implies the rabbit 
avoids the predation and Pprey ≥ 0.5 implies the rabbit falls prey to the HH) and the dynamics 
of the escaping energy. 

Scenario-1: Soft besiege (|E| ≥ 0.5 and Pprey ≥ 0.5). 
The following equations model the soft besiege strategy. 

1k k k k
preyHH H E J HH HH+ = Δ − ∗ ∗ −  (37)

k k k
preyHH HH HHΔ = −

 
(38)

2 (1 )J rand= ∗ −
 

(39)

Scenario-2: Hard Besiege (|E| < 0.5 and Pprey ≥ 0.5). 
Hard besiege can be modeled as follows: 

1k k k
preyHH HH E HH+ = − Δ  (40)

Scenario-3: Soft besiege with a progressive rapid dive (|E| ≥ 0.5 and Pprey < 0.5). 
The following equations model the soft besiege with a progressive dive of HH. 

1 1 1

1 1

; ( ) ( )
; ( ) ( )

k
k

k

Y f Y f HH
HH

Z f Z f HH
+  <

=  <
 (41)

where: 

1
k k k
prey preyY HH E J HH HH= − ∗ ∗ −  (42) 

1 1 * ( )Z Y S LD D= +  (43) 

where D is the no of design variables, S is a random vector of length D, and LD is levy 
distribution. 

Scenario-4: Hard besiege with progressive rapid dive (|E| < 0.5 and Pprey < 0.5). 
Hard besiege with progressive dive of HH can be modeled as follows: 
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1 2 2

2 2

; ( ) ( )
; ( ) ( )

k
k

k

Y f Y f HH
HH

Z f Z f HH
+  <

=  <
 (44)

where: 

2
k k k
prey prey meanY HH E J HH HH= − ∗ ∗ −  (45)

2 2 * ( )Z Y S LD D= +
 

(46)

The step-by-step implementation procedure of the HHO Algorithm 3 is presented 
below. 

Algorithm 3 Pseudocode for HHO algorithm 

Input:  

Population size (N) 
Maximum number of iterations (Kmax). 
Number of design variables (D) 
Upper and lower bound of the design variables 

Output: Best solution (HHprey) 

1. Randomly initialize the positions of HH uniformly spread within the upper and 
lower bound of the design variables. 

2. Evaluate the objective function.  
3. Select the best solution HHprey. 
4. Set the iteration counter: k = 1. 
5. for k = 1: Kmax. 
6.    for i = 1: N. 
7.       Update E using Equation (36). 
8.       if |E| ≥ 1. 
9.          Update the position of HH using Equation (34). 
10.       else. 
11.          if Pprey ≥ 0.5 and |E| ≥ 0.5. 
12.             Update the position of HH using Equation (37). 
13.          elseif Pprey ≥ 0.5 and |E| < 0.5. 
14.             Update the position of HH using Equation (40). 
15.          elseif Pprey< 0.5 and |E| ≥ 0.5. 
16.             Update the position of HH using Equation (41). 
17.          elseif  Pprey< 0.5 and |E| < 0.5. 
18.             Update the position of HH using Equation (44). 
19.          end if 
20.       end if 
21.   end for 
22. end for. 

5. Implementation of PFM Algorithms for Simultaneous OA-DG-DS Problem   
In this work, the SPBO algorithm and the other two parameter-free optimization al-

gorithms are used as tools to determine the optimal location and size of the devices (D-
STATCOMs, PV-DGs, and GT-DGs) separately and concurrently to minimize the pro-
posed MOF. The optimal planning of the DN considers the following eight cases: 
Case-1: DN without allocation of any devices; 
Case-2: DN with exclusive D-STATCOMs allocation; 
Case-3: DN with exclusive PV-DGs allocation; 
Case-4: DN with exclusive GT-DGs allocation; 
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Case-5: DN with simultaneous D-STATCOMs and PV-DGs allocation; 
Case-6: DN with simultaneous D-STATCOMs and GT-DGs allocation; 
Case-7: DN with simultaneous D-STATCOMs with 2 PV-DGs and 1 GT-DG allocation; 
Case-8: DN with simultaneous D-STATCOMs with 1 PV-DG and 2 GT-DGs allocation. 

In the present work, DGs are operated at a combined load-power factor. Allocation 
of DGs is accomplished by considering these as negative loads at the respective candidate 
buses. Similarly, for D-STATCOM allocation, its equivalent current is subtracted from the 
corresponding bus current. A common approach is proposed to solve the OADGDS prob-
lem using the three PFM algorithms, as explained in the subsequent sections for the above-
mentioned cases.  

5.1. Initialization  
The initial population contains N individuals and each individual has D components. 

Each individual (Xi) corresponds to a potential solution vector to the optimization prob-
lem. The composition of the solution vector shall vary depending on the optimal planning 
strategy. For case-2, case-3, and case-4, the solution vectors shall contain sizes of the three 
individual devices (D-STATCOMs, PV-DGs, or GT-DGs) followed by their location 
strings, which are generated using Equation (45). Similarly, for the remaining cases, the 
solution vector shall contain sizes of the six individual devices (combination of D-STAT-
COMs, PV-DGs, and GT-DGs as per the cases) followed by their location strings, which 
are generated using Equation (48). 

[ ]1 2 3 1 2 3, , , , ,i device device device device device deviceX size size size loc loc loc=  (47)

[ ]1 6 1 6,..., , ,...,i device device device deviceX size size loc loc=  (48)

These solutions are randomly generated within the stipulated ranges of the devices, 
as mentioned in Table 1, to be equally distributed throughout the whole solution space as 
defined by Equations (47) and (48). 

,min ,max ,min( )device device device devicesize size rand size size= + −  (49)

,min ,max ,min( ( ))device device device deviceloc round loc rand loc loc= + −  (50)

It is to be noted that each optimization technique uses different metaphors to refer to 
the population, best solution vector, etc. For example, the initial population or the solution 
vector in SPBO, SOS, and HHO are called a class, an ecosystem, and placements of hawks, 
respectively, where each individual may be termed as the performance of the student (as 
in SPBO), an organism (as in SOS), or position of the Harris hawk (as in HHO). Similarly, 
the best solution vector of the algorithm is known as the performance of the best student, 
best organism, and position of the prey (rabbit) in SPBO, SOS, and HHO, respectively. 

5.2. Updation  
The generated initial population for the respective planning schemes is then itera-

tively updated to yield the best planning solution unless the stopping criteria are met. 
However, each optimization technique employs its own mechanism to update the initial 
population. For example, in SPBO, the initial population is first subjected to functional 
evaluation to determine the best student. Furthermore, based on this functional evalua-
tion, the population is segregated into four groups. Then the performance of each student 
belonging to different groups (Group-I, Group-II, Group-III, and Group-IV) are updated 
using Equations (23)–(27), respectively, as mentioned in Section 4.1. In the SOS optimiza-
tion technique, the fitness of the initial ecosystem is obtained by evaluating the MOF. Then 
each organism of the ecosystem is updated by simulating the three symbiotic interactions, 
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namely mutualism, communalism, and parasitism, between the organisms of the current 
ecosystem as exposed in Equations (30)–(33), respectively. The fitness of the initial popu-
lation of HHO is also obtained by evaluating the MOF. Then, the initial HH population is 
modified in three stages of the algorithm: stage-I (exploration), stage-II (balances explora-
tion and exploitation), and stage-III (exploitation). In stage-I, HH updates their placement 
using Equation (34) to improve exploration. The balance between exploration and exploi-
tation is achieved in stage-II using Equation (35). The exploitation of the HH population 
is enhanced in stage-III by simulating four different scenarios as discussed in Section 4.3 
using Equations (37), (40), (41), and (44), respectively. 

5.3. Implementation Steps  
The graphical illustration of the optimal planning of the DN considering different 

planning schemes as implemented using the metaheuristic techniques is envisaged in Fig-
ure 2. 
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Figure 2. Implementation of optimization tools for the optimal planning of DN. 

6. Results and Discussions 
The efficacy of the proposed approaches is epitomized by considering two standard 

test systems, i.e., 33-node and 118-node radial PDN [3]. The MOF, which is the amalgam-
ation of different technical and economic factors for the optimal planning of the PDN, is 
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evaluated using a backward–forward sweep load flow [50]. For each metaheuristic ap-
proach, population size and a maximum number of iterations of 50 and 100 are set, re-
spectively. The best results of 30 independent trial runs of the algorithms are reported. 
The description of the test systems and the sizes of the devices considered are presented 
in Table 2. All simulations were performed on a laptop (Intel(R) Core (TM) i3-6006U CPU 
@2.00 GHz, 4GB RAM) using a MATLAB 2016a software package. 

Table 2. Description of test systems and devices. 

Test System TPL, kW 
TQL, 
kVAr kW kVAR 

Test 
System TPL, kW 

TQL, 
kVAr 

33-node 37,150 2300 210.9824 143.0219 0.9038 2000 2000 
118-node 22,710 17,041 12,981 978.7196 0.8688 4000 3000 

6.1. Performance Assessment of PFM Algorithms 
The suitability of the three parameter-free optimization algorithms, SPBO, SOS, and 

HHO, for the optimal allocations of single-type devices and different combinations of the 
devices is assessed by considering the above-mentioned eight cases for each test system. 

The best results attained by the SPBO, SOS, and HHO algorithms for exclusive D-
STATCOM allocations (case-2) for the two test systems are presented in Tables 3 and 4, 
respectively. 

Table 3. Comparison of results for exclusive D-STATCOM allocation (case-2) for 33-bus test system. 

Method DS Size 
(MVAR) 

DS Bus Ploss 
(kW) 

Vmin (p.u.) RPLMI BVVMI SVSM
I 

SACM
I 

MOF 

SPBO 
0.8167  7 

146.5795 0.9496 0.6947 0.3050 0.5613 0.0014 0.6201 0.9799 30 
0.5465 15 

SOS 
1.0316   30 

146.2087 0.9488 0.6930 0.3073 0.5697 0.0014 0.6203 0.5275   15 
0.7850 7 

HHO 
1.0737   30 

146.9252 0.9490 0.6964 0.3109 0.5680 0.0013 0.6230 0.6580   14 
0.4773 7 

Table 4. Comparison of results for exclusive D-STATCOM allocation (case-2) for 118-bus test system. 

Method 
DS Size 
(MVAR) DS Bus 

Ploss 
(kW) Vmin (p.u.) RPLMI BVVMI 

SVSM
I 

SACM
I MOF 

SPBO 
2.7412   110 

936.3917 0.9178 0.7214 0.4673 0.6753 0.0019 0.6825 3.0000   71 
3.0000 50 

SOS 
2.7598   110 

929.6233 0.9155 0.7162 0.4795 0.6914 0.0018 0.6835 2.9322   50 
2.8516 71 

HHO 
2.8169   110 

939.5813 0.9161 0.7238 0.5137 0.6874 0.0016 0.6950 1.9906   50 
2.8887 71 

A net optimal reactive power of 2.3431 MVAr, 2.3441 MVAr, and 2.2090 MVAr is 
injected by the D-STATCOMs in the 33-bus test system, as reported by SPBO, SOS, and 
HHO, respectively. Similarly, for the 118-bus test system, the net optimal reactive power 
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injected by the D-STATCOMs are 8.7412 MVAr, 8.5436 MVAr, and 7.6962 MVAr, respec-
tively, as obtained by the SPBO, SOS, and HHO. Because of the lowest D-STATCOM ca-
pacity reported by HHO, the SACMI is the minimum for both test systems when opti-
mized by HHO. However, owing to the larger capacities of D-STATCOMs as achieved by 
SPBO and SOS, it leads to better improvement in technical indices than HHO. However, 
in terms of improvement in the overall performance, the SPBO algorithm obtains the best 
MOF value of 0.6201 and 0.6825 among the three algorithms for both the test systems, 
respectively. 

The convergence characteristic of the three algorithms for case-2 are compared in 
Figure 3 for 33-node and 118-node test systems, respectively. As noted from the figures, 
the SPBO algorithm has a better convergence speed as it settles to the optimal value within 
30 iterations for both the test systems.  

 
(a) 

 
(b) 

Figure 3. CC of optimization algorithms for case-2. (a) 33-bus test system; (b) 118-bus test system. 

The exclusive allocation of three PV-DGs in 33-node and 118-node PDN are recorded 
in Tables 5 and 6, respectively. The total real power injection by the three PV-DGs for the 
33-node test system is 3.5861 MW, 3.6195 MW, and 3.5665 MW, as achieved by SPBO, SOS, 
and HHO, respectively. Similarly, for the 118-node test systems, the net real power injec-
tion obtained by SPBO, SOS, and HHO is in sequence 10.3908 MW, 10.4210 MW, and 
10.5184 MW, respectively. As noted from Tables 5 and 6, SPBO leads the table in terms of 
the minimum value of MOF compared to the other two algorithms for both test systems. 
Furthermore, the integration of PV-DGs has improved performance indices (RPLMI, 
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BVVMI, SVSMI, and SACMI) for both test systems compared to that of exclusive DSTAT-
COM insertion. 

Table 5. Comparison of results for exclusive PV-DG allocation (case-3) for 33-bus test system. 

Method DG Size 
(MW)) 

DG Bus Ploss 
(kW) 

Vmin (p.u.) RPLMI BVVMI SVSM
I 

SACM
I 

MOF 

SPBO 
1.3114   24 

78.6331 0.9803 0.3727 0.0433 0.2296 0.1369 0.2735 1.3384   30 
0.9363 13 

SOS 
1.3503   24 

78.8536 0.9801 0.3737 0.0425 0.2318 0.1293 0.2737 0.9454   13 
1.3238 30 

HHO 
1.3778   30 

78.6346 0.9807 0.3727 0.0451 0.2249 0.1415 0.2737 1.3129   24 
0.8758 14 

Table 6. Comparison of results for exclusive PV-DG allocation (case-3) for 118-bus test system. 

Method 
DG Size 

(MW) DG Bus 
Ploss 
(kW) Vmin (p.u.) RPLMI BVVMI 

SVSM
I 

SACM
I MOF 

SPBO 
3.8704   49 

686.0218 0.9561 0.5285 0.2346 0.3817 0.7130 0.4652 3.4615   71 
3.0589 110 

SOS 
3.2596   110 

685.0649 0.9562 0.5278 0.2349 0.3816 0.7293 0.4660 3.6949   49 
3.4665 71 

HHO 
3.2988   71 

682.2693 0.9556 0.5256 0.2394 0.3861 0.7377 0.4666 3.6066   109 
3.6130 50 

Figure 4 depicts the convergence curves of the three algorithms as applied to exclu-
sive PV-DGs allocations to minimize the MOF. From the said figure, it is evident that the 
convergence speed of the SPBO algorithm is the fastest, followed by HHO and SOS, which 
proves the efficiency of the SPBO algorithm to solve the optimal PV-DG allocation. 

 
(a) 
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(b) 

Figure 4. CC of optimization algorithms for case-3. (a) 33-bus test system; (b) 118-bus test system. 

Tables 7 and 8 compare the optimal results for allocating three GT-DGs on the 33-
node and 118-node test systems. The net sizes of GT-DG as computed by SPBO, SOS, and 
HOH are 3.6087 MVA, 3.5487 MVA, and 3.6297 MVA, respectively, for the 33-node test 
system and 10.8680 MVA, 10.6280 MVA, and 10.5540 MVA, respectively, for the 118-node 
test system. As GT-DGs operate at a 0.9 power factor, their sizes are marginally larger 
than the PV-DGs. SPBO achieves minimum MOF value for both the test systems, which 
proves its supremacy over the other two algorithms considered. 

Table 7. Comparison of results for exclusive GT-DG allocation (case-4) for 33-bus test system. 

Method DG Size 
(MW) DG Bus Ploss 

(kW) Vmin (p.u.) RPLMI BVVMI SVSM
I 

SACM
I MOF 

SPBO 
1.0915   24 

18.9542 0.9941 0.0898 0.0022 0.0939 0.1973 0.1350 1.3138   30 
0.8425 13 

SOS 
0.8376   13 

18.6561 0.9937 0.0884 0.0030 0.1039 0.2097 0.1353 1.0832   24 
1.2730 30 

HHO 
0.9702   12 

20.9962 0.9941 0.0995 0.0027 0.0708 0.1934 0.1388 0.9245   24 
1.3720 30 

Table 8. Comparison of results for exclusive GT-DG allocation (case-4) for 118-bus test system. 

Method 
DG Size 

(MW) DG Bus 
Ploss 
(kW) Vmin (p.u.) RPLMI BVVMI 

SVSM
I 

SACM
I MOF 

SPBO 
3.5252   50 

384.4106 0.9603 0.2961 0.1543 0.3474 0.7300 0.3634 3.2370   71 
3.0190 110 

SOS 
2.9805   110 

384.7075 0.9603 0.2964 0.1576 0.3473 0.7492 0.3642 3.3001   50 
3.2846 71 

HHO 
3.4403   50 

395.6196 0.9605 0.3048 0.15 79 0.3458 0.7356 0.3680 3.4589   71 
2.5994 110 
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The convergence characteristic of three considered algorithms for optimal GT-DG 
allocation to minimize the MOF for 33-node and 118-node test systems are shown in Fig-
ure 5, respectively. It can be noted from Figure 5 that the SPBO algorithm achieves the 
fastest convergence speed as compared to SOS and HHO algorithms for both the test sys-
tems. Further, the SPBO algorithm converges to the optimal results within 10 iterations 
for both the test systems. 

 

 
(a) 

 
(b) 

Figure 5. CC of optimization algorithms for case-4. (a) 33-bus test system; (b) 118-bus test system. 

The outcomes of simultaneous allocation of D-STATCOMs and PV-DGs using the 
studied algorithms are presented in Tables 9 and 10 for both test systems. The optimal 
effective sizes of the D-STATCOMs and PV-DGs are (1.9081 MVAr, 2.9477 MW), (1.8138 
MVAr, 3.3573 MW), and (1.3148 MVAr, 3.1555 MW) for the 33-node test system as ob-
tained by SPBO, SOS, and HHO, respectively. Similarly, for the 118-node test system, the 
optimal effective sizes of the D-STATCOMs and PV-DGs are in sequence (7.0012 MVAr, 
9.9368 MW), (5.6637 MVAr, 9.2612 MW), and (7.0693 MVAr, 10.4279 MW) as obtained by 
SPBO, SOS, and HHO, respectively. It can be noted that the effective sizes of the individ-
ual devices for simultaneous allocation (case-5) are smaller as compared to that of alloca-
tion of individual devices (case-2 and case-3). The minimum MOF for both test systems is 
recorded by the SPBO algorithm, which is 0.0656 p.u. and 0.2825 p.u., respectively. 

  



Energies 2022, 15, 3433 27 of 37 
 

 

Table 9. Comparison of results for simultaneous DS and PV-DG allocation (case-5) for 33-bus test system. 

Method 
DS Size 
(MVAR) 

DS  
Bus 

DG Size 
(MW) 

DG  
Bus 

Ploss  
(kW) 

Vmin  
(p.u.) RPLMI BVVMI SVSMI SACMI MOF 

SPBO 
0.4219   25 1.1474  24 

12.3286 0.9940 0.0584 0.0030 0.1004 0.2655 0.0656 0.4862   12 0.9677  30 
1.0000 30 0.8326 13 

SOS 
0.6266  8 0.8735  32 

18.8355 0.9936 0.0893 0.0022 0.0905 0.1726 0.0771 0.9076  30 0.9020  13 
0.2796 25 1.5818 23 

HHO 
0.3089  7 1.1902  24 

17.5064 0.9928 0.0830 0.0043 0.0955 0.2195 0.0774 0.2515  11 1.0323  30 
0.7544 30 0.9330 13 

Table 10. Comparison of results for simultaneous DS and PV-DG allocation (case-5) for 118-bus test 
system. 

Method 
DS Size 
(MVAR) 

DS  
Bus 

DG Size 
(MW) DG Bus 

Ploss  
(kW) 

Vmin  
(p.u.) RPLMI BVVMI SVSMI SACMI MOF 

SPBO 
2.7327   50 4.0000  35 

356.7143 0.9609 0.2748 0.1406 0.3427 0.6873 0.2825 2.3494   110 3.1050  71 
1.9191 72 2.8318 110 

SOS 
1.6192   75 2.8933  112 

397.2199 0.9602 0.3060 0.1690 0.3482 0.7775 0.3146 2.1201   109 3.3768  71 
1.9244 51 2.9911 34 

HHO 
2.5026   89 3.8947  71 

454.8666 0.9611 0.3504 0.1330 0.3407 0.7609 0.3328 2.7468   35 3.2659  35 
1.8199 110 3.2673 109 

The convergence characteristic for simultaneous allocation of D-STATCOMs and PV-
DGs by the three algorithms for the 33-node and 118-node test systems are shown in Fig-
ure 6. The SPBO algorithm converges to the optimal results at about 40 iterations for both 
test systems, which is the minimum among the three algorithms. The faster convergence 
speed of the SPBO algorithm is also evident from the said figures. 

 
(a) 
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(b) 

Figure 6. CC of optimization algorithms for case-5. (a) 33-bus test system; (b) 118-bus test system. 

The results of simultaneous allocation of D-STATCOMs and GT-DGs using SPBO, 
SOS, and HHO algorithms are presented in Tables 11 and 12 for both the test systems. The 
optimal effective sizes of the D-STATCOMs and GT-DGs are (1.9081 MVAr, 2.9477 MW), 
(1.8138 MVAr, 3.3573 MW), and (1.3148 MVAr, 3.1555 MW) for the 33-node test system as 
obtained by SPBO, SOS, and HHO, respectively. Similarly, for the 118-node test system, 
the optimal effective sizes of the D-STATCOMs and GT-DGs are in sequence (7.0012 
MVAr, 9.9368 MW), (5.6637 MVAr, 9.2612 MW), and (7.0693 MVAr, 10.4279 MW) as ob-
tained by SPBO, SOS, and HHO, respectively. It can be noted that the effective sizes of the 
individual devices for simultaneous allocation (case-5) are smaller as compared to that of 
allocation of individual devices (case-2 and case-3). The minimum MOF for both the test 
systems is recorded by the SPBO algorithm, which is 0.1050 p.u. and 0.3057 p.u., respec-
tively. 

Table 11. Comparison of results for simultaneous DS and GT-DG allocation (case-6) for 33-bus test 
system. 

Method 
DS Size 
(MVAR) 

DS 
Bus 

DG Size 
(MW) 

DG 
Bus 

Ploss 
(kW) 

Vmin 
(p.u.) RPLMI BVVMI SVSMI SACMI MOF 

SPBO 
0.1221 21 1.0814 30 

11.2484 0.9956 0.0533 0.0012 0.0542 0.9942 0.1050 0.4485 7 0.8108 13 
0.2837 32 1.0657 24 

SOS 
0.1301 31 0.7209 13 

13.0950 0.9934 0.0621 0.0033 0.0843 0.9899 0.1139 0.0905 9 1.1221 30 
0.6526 6 0.8086 25 

HHO 
0.1045 30 0.9969 12 

13.3973 0.9934 0.0635 0.0031 0.0790 0.9935 0.1143 0.4822 30 0.9305 30 
0.6184 3 0.9628 24 

Table 12. Comparison of results for simultaneous DS and GT-DG allocation (case-6) for 118-bus test 
system. 

Method DS Size 
(MVAR) 

DS  
Bus 

DG Size 
(MW) 

DG Bus Ploss  
(kW) 

Vmin  
(p.u.) 

RPLMI BVVMI SVSMI SACMI MOF 

SPBO 
1.8630   40   3.4937  50    

317.4696 0.9679 0.2446 0.0902 0.2843 1.5769 0.3057 1.9242   80   2.8152  72    
1.3316 96 3.0296 110 

SOS 1.1757   99   2.8903  110   328.5501 0.9617 0.2531 0.1027 0.3359 1.5626 0.3180 
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1.6938   34   2.8180  72    
1.6039 83 3.3801 50 

HHO 
2.0581   86   2.7324  110   

338.2096 0.9651 0.2605 0.1021 0.3075 1.5996 0.3220 2.4914   40   3.3486  50    
0.3537 113 3.3498 71 

The convergence characteristic for simultaneous allocation of D-STATCOMs and GT-
DGs by the three algorithms for the 33-node and 118-node test systems are shown in Fig-
ure 7. The SPBO algorithm shows a faster convergence speed than the SOS and HHO al-
gorithms for both test systems. Furthermore, the SPBO algorithm converges to the optimal 
results within 30 and 40 iterations for the 33-node test systems and 118-node test systems, 
respectively, the minimum among the three algorithms. 

 
(a) 

 
(b) 

Figure 7. CC of optimization algorithms for case-6. (a) 33-bus test system; (b) 118-bus test system. 

The simultaneous allocation of D-STATCOMs and two PV-DGs and one GT-DGs us-
ing the SPBO, SOS, and HHO algorithms are presented in Tables 13 and 14 for both test 
systems. The optimal effective sizes of the D-STATCOMs and DGs are (1.6375 MVAr, 
3.0251 MW), (1.9040 MVAr, 3.7934 MW), and (1.4300 MVAr, 2.8257 MW) for the 33-node 
test system as obtained by SPBO, SOS, and HHO, respectively. Similarly, for the 118-node 
test system, the optimal effective sizes of the D-STATCOMs and DGs are in sequence 
(7.4882 MVAr, 9.7180 MW), (7.0897 MVAr, 8.4920 MW), and (5.3633 MVAr, 8.4624 MW) 
as obtained by SPBO, SOS, and HHO, respectively. The SPBO algorithm reports the min-
imum MOF for both test systems, which is 0.0734 p.u. and 0.2827 p.u., respectively. 
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Table 13. Comparison of results for simultaneous DS and 2 PV-DG and 1 GT-DG allocation (case-7) 
for 33-bus test system. 

Metho
d 

DS 
Size 

(MVA
R) 

DS 
Bus 

DG 
Size 

(MW) 

DG 
Bus 

Ploss  
(kW) 

Vmin 
(p.u.) 

RPL
MI 

BVVM
I SVSMI SACMI MOF 

SPBO 
0.3886 7 1.2583 24   

11.8232 0.9941 0.0560 0.0022 0.0705 0.4469 0.0734 0.8920 30  0.9603 30   
0.3569 25 0.8065 13 

SOS 
0.2659 21  1.8492 3   

21.4769 0.9923 0.1018 0.0029 0.0916 0.2791 0.0925 0.9996 30  1.1064 28   
0.6385 24 0.8378 13 

HHO 
0.1932 25 0.8445 13   

15.2584 0.9939 0.0723 0.0024 0.0728 0.5691 0.0922 0.8978 6 0.8708 25   
0.3390 11 1.1104 30 

Table 14. Comparison of results for simultaneous DS and 2 PV-DG and 1 GT-DG allocation (case-7) 
for 118-bus test system. 

Metho
d 

DS 
Size 

(MVA
R) 

DS 
Bus 

DG 
Size 

(MW) 

DG 
Bus 

Ploss  
(kW) 

Vmin 
(p.u.) 

RPL
MI 

BVVM
I SVSMI SACMI MOF 

SPBO 
2.7782 50  4.0000 35   

333.030
2 

0.9619 0.2566 0.1130 0.3348 0.9484 0.2827 2.3608 79  2.8293 110  
2.3492 110 2.8887 72 

SOS 
2.2048 83  3.4071 35   

372.553
0 

0.9609 0.2870 0.1323 0.3430 0.9705 0.3079 2.6761 111 2.4584 111  
2.2088 51 2.6265 72 

HHO 
2.0932 55  2.8687 50   

400.943
1 0.9604 0.3089 0.1650 0.3468 1.0668 0.3353 2.5559 70  2.4563 74   

0.9833 50 3.1374 110 

From the convergence characteristics of case-7 (as displayed in Figure 8), it may be 
noted that the SPBO algorithm converges to the optimal value within 30 iterations for both 
test systems, which is the fastest among the three algorithms. 

 
(a) 
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(b) 

Figure 8. CC of optimization algorithms for case-7. (a) 33-bus test system; (b) 118-bus test system. 

The results of simultaneous allocation of D-STATCOMs and one PV-DG and two GT-
DGs using the SPBO, SOS, and HHO algorithms are presented in Tables 15 and 16 for both 
test systems. The optimal effective sizes of the D-STATCOMs and DGs are (1.1024 MVAr, 
3.0533 MW), (1.3173 MVAr, 3.3508 MW), and (0.2186 MVAr, 3.2191 MW) for the 33-node 
test system as obtained by SPBO, SOS, and HHO, respectively. Similarly, for the 118-node 
test system, the optimal effective sizes of the D-STATCOMs and DGs are in sequence 
(7.7064 MVAr, 8.8736 MW), (6.3977 MVAr, 8.8652MW), and (1.7736 MVAr, 9.1159 MW) 
as obtained by SPBO, SOS, and HHO, respectively. The SPBO algorithm once again re-
ports the minimum MOF for both test systems, which is 0.0892 p.u. and 0.2964 p.u., re-
spectively. 

Table 15. Comparison of results for simultaneous DS and 1 PV-DG and 2 GT-DG allocation (case-8) 
for 33-bus test system. 

Metho
d 

DS 
Size 

(MVA
R) 

DS 
Bus 

DG 
Size 

(MW) 

DG 
Bus 

Ploss  
(kW) 

Vmin 
(p.u.) 

RPL
MI 

BVVM
I 

SVSMI SACMI MOF 

SPBO 
0.3544 31  1.2310 24   

11.4939 0.9941 0.0545 0.0018 0.0705 0.6917 0.0892 0.3790 25  1.0075 30   
0.3690 7 0.8148 13 

SOS 
0.3586 6 1.7039 23   

18.6746 0.9904 0.0885 0.0066 0.1134 0.5821 0.1082 0.5685 32  0.7775 13   
0.3902 32 0.8694 30 

HHO 
0.1192 32 1.0559 24  

19.6031 0.9936 0.0929 0.0033 0.0763 0.7405 0.1174 0.0235 7 1.1075 30   
0.0759 31 1.0557 12 

 

  



Energies 2022, 15, 3433 32 of 37 
 

 

Table 16. Comparison of results for simultaneous DS and 1 PV-DG and 2 GT-DG allocation (case-8) 
for 118-bus test system. 

Metho
d 

DS 
Size 

(MVA
R) 

DS 
Bus 

DG 
Size 

(MW) 

DG 
Bus 

Ploss  
(kW) 

Vmin 
(p.u.) 

RPL
MI 

BVVM
I SVSMI SACMI MOF 

SPBO 
3.0000 31  2.8295 110  

312.663
1 0.9624 0.2409 0.1101 0.3303 1.3042 0.2964 2.3483 110 3.1552 50   

2.3581 79 2.8889 72 

SOS 
1.8613 110 2.5055 113  352.025

3 0.9623 0.2712 0.1195 0.3313 1.2840 0.3159 2.2476 79  2.6688 73   
2.2888 38 3.6909 50 

HHO 
0.3557 71  2.6719 73   

373.800
4 

0.9576 0.2880 0.1646 0.3702 1.3422 0.3437 0.4810 44  3.1776 50   
0.9369 74 3.2664 110 

From the convergence characteristics of case-8 (as displayed in Figure 9), it may be 
noted that the SPBO algorithm converges to the optimal value within 30 iterations for the 
33-node and 118-node test systems, which is the fastest among the three algorithms. 

 
(a) 

 
(b) 

Figure 9. CC of optimization algorithms for case-8. (a) 33-bus test system; (b) 118-bus test system. 
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6.2. Statistical Analysis 
The supremacy of the SPBO algorithm among the other two parameter-free optimi-

zation algorithms, namely SOS and HHO, is further established by conducting a statistical 
analysis. Tables 17 and 18 report the statistical features such as the minimum MOF, max-
imum MOF, average MOF, and standard deviation of MOF for the results obtained by the 
three algorithms for solving optimal planning of the PDN considering all cases except the 
base case for both test systems. It may be noted that the SPBO algorithm yields the mini-
mum value for all statistical features considered across all cases and for both test systems. 
The SPBO algorithm is also found to be the most robust algorithm of the lot, as it reports 
the minimum of the standard deviation value for all the considered cases. The box plots 
of the results (shown in Figures 10 and 11) obtained by different studied algorithms for 
optimal PDN planning also reveal the superiority of the SPBO algorithm over other com-
pared algorithms. 

Table 17. Statistical performance of different methods for 33-bus system. 

Cases Methods 
Minimum 

MOF Maximum MOF 
Average 

MOF SD of MOF 

2 
SPBO 0.6825  0.6825 0.6825 0.0000 
SOS 0.6835 0.6940 0.6895 0.0028 

HHO 0.6950  0.8223 0.7499 0.0321 

3 
SPBO 0.4652 0.4652 0.4652 0.0000 
SOS 0.4660 0.4771 0.4698  0.0025 

HHO 0.4666 0.6141 0.5330 0.0546 

4 
SPBO 0.3634 0.3634 0.3634 0.0000 
SOS 0.3642 0.3780 0.3680 0.0031 

HHO 0.3680 0.5707 0.4489 0.0785 

5 
SPBO 0.2825 0.2902 0.2838 0.0014 
SOS 0.3146 0.3707 0.3420 0.0151 

HHO 0.3328 0.5394 0.4372 0.0525 

6 
SPBO 0.3057 0.3108 0.3070 0.0014 
SOS 0.3180 0.3464 0.3314 0.0067 

HHO 0.3220 0.5289 0.4303 0.0607 

7 
SPBO 0.2827 0.2846 0.2832 0.0006 
SOS 0.3079 0.3420 0.3257 0.0089 

SPBO 0.6825 0.6825 0.6825 0.0000 

8 
SOS 0.6835 0.6940 0.6895 0.0028 

HHO 0.6950 0.8223 0.7499 0.0321 
SPBO 0.4652 0.4652 0.4652 0.0000 

Table 18. Statistical performance of different methods for 118-bus system. 

Cases Methods 
Minimum 

MOF Maximum MOF 
Average 

MOF SD of MOF 

2 
SPBO 0.6201     0.6201     0.6201    0.0000 
SOS 0.6203     0.6277     0.6238    0.0021 

HHO 0.6230     0.6594     0.6332    0.0081 

3 
SPBO 0.2735     0.2737     0.2735    0.0000 
SOS 0.2737     0.2818     0.2768    0.0025 

HHO 0.2737     0.3062     0.2836    0.0081 

4 
SPBO 0.1350     0.1350     0.1350    0.0000 
SOS 0.1353     0.1460     0.1376    0.0025 

HHO 0.1388     0.1803     0.1571    0.0137 
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5 
SPBO 0.0656     0.0757     0.0703    0.0025 
SOS 0.0771     0.1074     0.0946    0.0076 

HHO 0.0774     0.2266     0.1353    0.0385 

6 
SPBO 0.1050     0.1111     0.1069    0.0015 
SOS 0.1139     0.1440     0.1253    0.0073 

HHO 0.1143     0.2376     0.1583    0.0299 

7 
SPBO 0.0734     0.0861     0.0801    0.0033 
SOS 0.0925     0.1268     0.1039    0.0079 

SPBO 0.0922     0.2156     0.1372    0.0339 

8 
SOS 0.0892     0.0989     0.0940    0.0020 

HHO 0.1082     0.1316     0.1150    0.0064 
SPBO 0.1174     0.3025     0.1888    0.0475 

 
Figure 10. Box plots for 33-node test system. 

 
Figure 11. Box plots for 118-node test system. 

7. Conclusions 
A novel MOF has been developed to assess the performance of three parameter-free 

metaheuristic algorithms (SPBO, SOS, and HHO) for simultaneous allocation of D-STAT-
COM and multitype DGs with seven different cases. The MOF included four indices such 
as RPLMI, BVVMI, SVSMI, and SACMI, accounting for the technological, economic, and 
environmental benefits of the planning in active distribution networks in the presence of 
solar PV-DGs, GT-DGs, and D-STATCOMs on two standard test systems (33-bus and 118-
bus). The simulation findings clearly indicate that the SPBO method is preferable to the 
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SOS and HHO algorithms for solving the optimum planning of PDN because it is more 
resilient, has a faster convergence rate, and is statistically more promising.  
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