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Abstract: Wellbore instability is one of the main problems of the oil industry, causing high costs in
the drilling operation. Knowing about the mechanical properties of involved formations and in-situ
stresses is a privilege gained by determining an appropriate mud weight window (MWW). To this
aim, a three-dimensional (3D) finite-element model was simulated in ABAQUS to analyze in-situ
stresses and determine the MWW in the drilling operation of wellbore-D in the Azar oilfield. The
results from the 3D finite model revealed that the Azar oilfield is structurally under the impact of a
complex tectonic system dominated by two reverse faults with a configuration of σH > σh > σv across
the Sarvak Formation. The amount of vertical, minimum, and maximum horizontal stresses was
90.15, 90.15, and 94.66 MPa, respectively, at a depth of 4 km. Besides, the amount of pore pressure and
its gradient was 46 MPa and 11.5 MPa/km, respectively. From drilling wellbore-D in the direction
of the maximum horizontal stress, the lower limit of the MWW was obtained at 89 pcf. In this case,
the results showed that the wellbore with a deviation angle of 10◦ is critical with a mud weight
lower than 89 pcf. It caused the fall of the wellbore wall within the plastic zone sooner than other
deviation angles. Also, in the case of drilling wellbore in the direction of minimum horizontal stress,
the lower limit of the MWW was 90.3 pcf. Moreover, in the deviation angle of approximately 90◦, the
wellbore wall remained critical while the mud weight was below 90.3 pcf. Comparison of the results
of numerical and analytical modeling showed that the modeling error falls within an acceptable value
of < 4%. As a result, the wellbore with the azimuth of the maximum horizontal stress needed less
mud weight and decreased the drilling costs. This particular research finding also provides insights
for obtaining the lower limit of the mud weight window and determining the optimal path of the
well-bore when using directional drilling technology.
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1. Introduction

Wellbore instability is one of the main issues in the oil industry that causes a substantial
yearly expenditure to drilling operators. Incidentally, an appropriate determination of
mud weight window (MWW) is required to identify the physicochemical properties of
underground formations [1]. Ganguli and Sen [2] reported that well instability in drilling
operations is dominantly related to rock properties, in-situ stresses, and pore pressures.
Before proceeding to the drilling wellbore, the underground formations are in equilibrium.
Once drilling operations initiate, in-situ stresses are loaded to the wellbore due to the
removal of rocks, and a load of stresses leads to failure in the wellbore wall. As a rebuttal
to this point, it could be argued that drilling fluids would exert in-situ stress on the
wellbore wall and redistribute the induced stress through rocks surrounding the wellbore
in succession [3]. To control induced stresses on the wellbore wall, it is essential to utilize
drilling fluids with the appropriate MWW. Shear and tensile failures are the major causes
of mechanical instability in boreholes [4]. In this regard, borehole orientation with respect
to in-situ stresses should be considered to avoid wellbore failure.

There are several important functions that drilling mud can provide. One of the
most significant functions is an original contribution to cool and lubricate the drilling bit.
Also, the drilling mud provides further support to the transport of cuttings to the surface
area and controls the pressure of underground formations [5]. The hydraulic energy is
transmitted through the drillstring to the tools and drilling bit. The pressure of drilling mud
is designed in the traditional system to control fluid flow from underground formations into
the wellbore. According to Awal et al. [6], the pressure of drilling mud ranges from 100 psi
to 200 psi, and is greater than the pore pressure of underground formations. It is believed
that a more significant amount of drilling mud pressure retains the wellbore stability while
having in-situ pressure [7]. Incidentally, other approaches should be undertaken to attain
optimum drilling mud pressure (ODMP) by considering rock properties and the wellbore’s
in-situ pressures. In addition, it is necessary to accurately determine rock strength as a
crucial factor in wellbore stability because in-situ pressures affect the behavior of rocks [8].

Moreover, by applying the facilities and requirements to exploit hydrocarbon from
wells, drilling operations are more complicated as the parameters further affect well stability.
Forecasting the wellbore wall’s stability is considered a critical point in drilling operations
because wellbore instability leads to enormous costs and pauses the production process [9].
Wellbore instability has mainly resulted from mechanical [10] and chemical [11] factors or a
combination of both. The mechanical factor may refer to rock failure while drilling due
to a low rate of rock strength. In addition, the chemical factor arises when the interaction
between the rock and drilling fluid is damaged. There are various chemicals in the drilling
fluid that physically and chemically interact with formations, result in the production of
swelling stress, and alleviate the mechanical strength of the wellbore wall [12]. Chemical
treatments can focus on changing the chemical composition of formations and forming
chemical sealants in fractures [10,13]. Also, wettability alteration treatments attempt to
change filter cake from oil-wet to water-water in terms of enhancing fracture healing while
using oil-based muds [14].

Despite all the efforts toward ensuring wellbore stability in recent years, the oil
industry has several problems such as stuck pipes and lost circulation that lead to the
collapse of wellbores. It is now well established from various studies that an appropriate
plan is required to optimize drilling conditions, determine the MWW, and define the angle
of deviation in terms of wellbore stability. Factors that influence drilling operations in
underground formations are geo-mechanical factors such as in-situ stress and pore pressure,
and mechanical properties such as Poisson’s ratio, Young’s modulus, and compressive
strength [15]. A systematic understanding of how these factors impact wellbore instability
can help determine the MWW in drilling operations. This particular research points to the
need for obtaining the lower limit of the mud weight window and determining the optimal
path of the wellbore when using directional drilling technology.
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2. Numerical Modeling of Wellbore Stability

Several models of induced stress in a circular wellbore have been proposed, predicting
the desirable mud pressure using 2D or 3D failure criteria. The linear elastic model is
perhaps the most prevalent technique among the presented models. To predict borehole
breakout, the Mohr–Coulomb failure criterion is frequently used, and is based on the
concept that principal stresses of σ1 and σ2 rise in a linear manner during failure. By the
way, there is no effect on rock strength from the intermediate principal stress of σ3.

Manshad et al. [16] applied some reliable analytical and numerical methods, e.g.,
Mohr–Coulomb and modified Lade, to calculate wellbore instability and estimate Iran’s
MWW and drilling direction. The accuracy of mud pressure results is validated by the
finite difference method and elastoplastic model and has demonstrated the highest MMP
(minimum mud pressure) from the Mohr–Coulomb method. Manshad et al. [16] reported
that an inclination of 20◦ is required to obtain the MMP for a wellbore. Yamamoto et al. [17]
analyzed chemical and geomechanical data from the Zakum field’s shale instability in the
UAE and concluded that drilling fluid and bedding plane are the main cause of wellbore
instability. A geomechanical model is also used to predict wellbore instability and estimate
in-situ pressures [18]. A necessary consequence of their study is the effect of wellbore
inclination on breakout pressure. Waragai et al. [19] presented an operation guideline to
eliminate the severity of wellbore instability in Nahr Umr shale formation in the offshore
field in UAE after the prohibition of using diesel in water-based drilling mud. This study
found that mechanical failure is imputed from the mud invasion into a lamination, and
effective wellbore cleaning plays a significant role, especially with a wellbore angle between
30◦ and 50◦. As a result of the guideline implementation, no wellbore with sidetracking has
been noticed. Waragai et al. [19] inferred that the guideline works, and wellbore instability
problems could be mitigated by following it. Han et al. [20] showed that a combination of
tectonic movements and inappropriate MWW cause fractures on shale formation in the
Phu Horm field and, therefore, the wellbore instability issue. As a suggestion, the drilling
strategy can be modified while applying proper components and inhibitors to prevent the
intrusion of drilling mud [21] into the fractures of underground formations.

Furthermore, a geo-mechanical model was applied by Alsubaih [22] to determine
the ODMP in the Tanuma shale formation, Iraq. The results from 45 deviated wellbores
showed that shear failure of wellbores causes the pipes to stick. In a study investigating
the wellbore stability, Tutuncu et al. [23] reported that fundamental processes to prevent
stuck pipes know about underground formations’ in-situ pressures and rock properties.

Moreover, Wang et al. [24] applied a two-dimensional (2D) finite-element model to
simulate symmetrical fractures on the wellbore wall affected by anisotropic in-situ stresses
and fracture length. By the way, the stress distribution is also calculated by considering
fracture breadth before and after fracture bridging. However, in this numerical research,
the leaking-off of fluid from the wellbore wall and fracture surface is neglected, given
no information about fracture behavior after bridging and the effect of fluid inside the
rock. Gomar et al. [25] used a finite-element model to assess the distribution of wellbore
stress supported by the four failure criteria in terms of the wellbore wall’s stability. The
results showed that a minimum MWW is required for wellbore stability. Chen et al. [26]
examined a series of 3D heterogeneous tunnel models considering varying joint dip angles
with the aim of understanding the zonal disintegration phenomenon. They found that
zonal disintegration is induced by the stress redistribution of surrounding rock masses.
Chen et al. [26] also realized that the model with a larger inclination angle is damaged
further before the final collapse of the wellbore.

The literature on wellbore stability misses the importance of the wellbore’s deviation
angle and azimuth. Concerning the availability of geo-mechanical data, this research
investigates the optimization of the drilling route, i.e., the wellbore’s deviation angle and
azimuth, in wellbore-D of the Azar oilfield, Iran. To this aim, a three-dimensional (3D)
finite-element model in ABAQUS is simulated to analyze in-situ stresses and determine
the MWW in the drilling operation of wellbore-D in the Azar oilfield. Drawing upon
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this strand of research into the appropriate plan, this research attempts to evaluate the
mechanical properties of rock, elasticity modulus, properties of rock failure, pore pressure,
and in-situ stress of wellbore in various deviation angles.

3. Materials and Methods
3.1. Modeling Analysis

A 3D finite-element numerical model was first applied by ABAQUS software, a
powerful tool and perfect source of various elements to solve the issues in the geophysical
model, to simulate a wellbore instability from the Sarvak Formation in the Azar oilfield,
Ilam Province, Iran. Gomar et al. [25] stated that analytical solutions can be used for the
distribution of principal stresses around a smooth circular wellbore wall. To better simulate
the actual bottom wellbore conditions of lost circulation, the 3D finite-element model allows
the simulation of wellbore circulation and fluid loss at the same time [27]. In a dynamic
state, the 3D finite-element model was used to predict lost circulation with drilling mud
in the Azar Oilfield’s wellbore-D and compute the principal stresses around the deviated
wellbore. The model was then constructed by changing the deviation angle and wellbore
extension to obtain the lower limit of the MWW. The analysis in ABAQUS consisted of three
stages: pre-processing, processing, and post-processing. The discreteness of the geometric
model was performed in the pre-processing stage, and appropriate elements were applied
to compensate for limited components. Other stages were coded here in instructions known
for software analytics. The instructions were then typed into Notepad as input files. In
ABAQUS, this task is performed by ABAQUS/CAE. Figure 1 shows an overview of the
stages by ABAQUS analysis.
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3.2. Physical Properties of the Sarvak Formation

Petrophysical parameters of the Sarvak Formation, including porosity and density,
were obtained from well-logs data. The amount of porosity changes with depth can be seen
in Figure 2, and its average amount for the Sarvak Formation is 5.5%. The amount of bulk
density was calculated for various formation depths by density log (Figure 3). The average
density in the Sarvak Formation is 2.55 gr/cm3. Well test, the time recorded for production
rate and wellbore pressure, was also conducted to determine the formation’s permeability.
Measuring this parameter was obtained in the laboratory using the repeat formation tester
(RFT) tool. The average permeability value in the X and Y directions is 0.84 mD and, in the
Z direction, is 0.51 mD.
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3.3. Mechanical Properties of the Sarvak Formation

Knowing about the rock mechanics plays a fundamental role in drilling. In this regard,
two main factors should be considered, including in-situ pressures and the influence of
fluid forces in the wellbore. In the case of deep-well drilling, the overburden pressure
is considered as well. Poisson’s ratio (ν) is one of the main mechanical properties used
to estimate wellbore stresses. The static value of Poisson’s ratio was obtained using the
uniaxial compressive test on the cores taken from the Sarvak Formation, wellbore-D in the
Azar oilfield. The dynamic value of Poisson’s ratio was obtained in the laboratory using
an ultrasonic machine and acoustic log. In this study, the dynamic value of this parameter
obtained from the acoustic log is as follows.

v =

(
∆ts
∆tc

)2
− 2

2
((

∆ts
∆tc

)2
− 1
) =

V2
p − 2V2

s

2
(

V2
p − V2

s

) (1)

From Equation (1), ∆tc is the pressure wave time in microsecond per foot (µs/ft)
and ∆ts is the shear wave time in µs/ft. Vp and Vs are the velocities of P and S waves,
respectively, in km/s. In the study area, as shown in Figure 4, the average dynamic value
of Poisson’s ratio is about 0.32.

Energies 2022, 15, x FOR PEER REVIEW 6 of 20 
 

 

pressure is considered as well. Poisson’s ratio (ν) is one of the main mechanical properties 
used to estimate wellbore stresses. The static value of Poisson’s ratio was obtained using 
the uniaxial compressive test on the cores taken from the Sarvak Formation, wellbore-D 
in the Azar oilfield. The dynamic value of Poisson’s ratio was obtained in the laboratory 
using an ultrasonic machine and acoustic log. In this study, the dynamic value of this 
parameter obtained from the acoustic log is as follows. 

𝑣𝑣 =
�Δ𝑡𝑡𝑠𝑠Δ𝑡𝑡𝑐𝑐

�
2
− 2

2��Δ𝑡𝑡𝑠𝑠Δ𝑡𝑡𝑐𝑐
�
2
− 1�

=
𝑉𝑉𝑝𝑝2 − 2𝑉𝑉𝑠𝑠2

2�𝑉𝑉𝑝𝑝2 − 𝑉𝑉𝑠𝑠2�
 (1) 

From Equation (1), Δ𝑡𝑡𝑐𝑐 is the pressure wave time in microsecond per foot (μs/ft) and 
Δ𝑡𝑡𝑠𝑠  is the shear wave time in μs/ft. Vp and Vs are the velocities of P and S waves, 
respectively, in km/s. In the study area, as shown in Figure 4, the average dynamic value 
of Poisson’s ratio is about 0.32. 

 
Figure 4. Changes in the dynamic Poisson’s ratio (nud) vs. the depth (m) of wellbore-D in the Azar 
oilfield. 

Also, the achievement process of Young’s modulus in both static (Es) and dynamic 
(Ed) states is similar to Poisson’s ratio. The Ed value was calculated from Equation (2). 

𝐸𝐸𝑑𝑑 =
𝜌𝜌𝑏𝑏
Δ𝑡𝑡𝑠𝑠2

(
3Δ𝑡𝑡𝑠𝑠2 − 4Δ𝑡𝑡𝑐𝑐2

Δ𝑡𝑡𝑠𝑠2 − Δ𝑡𝑡𝑐𝑐2
) × 1.34 × 1010 (2) 

From Equation (2), 𝜌𝜌𝑏𝑏 is the density (gr/cm3). In the study area, as shown in Figure 
5, the value of Es is 41.5 GPa. 

Figure 4. Changes in the dynamic Poisson’s ratio (nud) vs. the depth (m) of wellbore-D in the Azar oilfield.

Also, the achievement process of Young’s modulus in both static (Es) and dynamic
(Ed) states is similar to Poisson’s ratio. The Ed value was calculated from Equation (2).

Ed =
ρb

∆ts2

(
3∆ts

2 − 4∆tc
2

∆ts2 − ∆tc2

)
× 1.34 × 1010 (2)

From Equation (2), ρb is the density (gr/cm3). In the study area, as shown in Figure 5,
the value of Es is 41.5 GPa.
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Furthermore, the shear modulus was achieved by sonic and density logs. The static
value of shear modulus was calculated from Young’s modulus and Poisson’s ratio. Figure 6
shows dynamic and static shear modulus in the Sarvak Formation with an average static
shear modulus of 14.8 GPa.
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Moreover, the uniaxial compressive strength (UCS) of the Sarvak Formation in the
Azar oilfield was calculated in the laboratory. Figure 7 shows the UCS’s static value of the
Sarvak Formation at depths from 4100 m to 4720 m. The UCS’s static value was obtained
from the uniaxial compressive strength test with an average value of 79.2 MPa.
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Besides, the amounts of cohesion and friction angle for the Sarvak Formation were
obtained from triaxial compressive strength data with an average amount of 2.72 MPa and
40◦, respectively. In doing so, the tensile strength of the Sarvak Formation was used for
calculating the tensile failure in the well’s wall due to stress concentration. The tensile
strength of a rock type, about 1

8 to 1
12 UCS [28], can be measured via the Brazilian tensile

strength test. In this study, the average amount of the Brazilian tensile strength test was
8.57 MPa. Furthermore, Biot’s coefficient describes how much of the total stress and pres-
sure changes get converted to effective stress [29]. Biot’s coefficient measures the ratio of the
fluid volume squeezed out to the volume change of the rock if the latter is compressed while
allowing the fluid to escape. Biot’s constant is a complex function of several parameters,
including porosity, permeability, grain sorting, and confining pressure. A more practical
and affordable method uses sonic log and core data to calculate dynamic Biot’s coefficient
through Equation (4), where Ks and Kmin are bulk and grain modulus, respectively.

α = 1 −
(

Ks

Kmin

)
(4)

4. Stress Analysis Results

The stress analysis results from Figures 8 and 9 show that the Azar oilfield is struc-
turally under the impact of a complex tectonic system, dominated by two reverse faults
representing a pressure system, especially across the Sarvak Formation. There is a per-
pendicular fault near the Azar oilfield, which no longer exists after the Asmari Formation.
As per Figure 8, the direction of minimum and maximum horizontal stresses is according
to the reverse fault’s configuration (σH > σh > σv) in the Azar oilfield. This configuration
caused a horst in the central part of the Azar oilfield (Figure 9).
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Figure 9. The tectonic structure resulted from reverse faults performance in the Azar oilfield.

From the results of well instability analysis as a rose diagram (Figure 10), σH and σh
are directed at N30◦ E and N60◦ W, respectively. Inclination angles of 15◦, 30◦, 60◦, and 90◦

are represented by circles with different radii. Each circle has 360◦, representing azimuth
angles of wellbores. The minimum mud density (MMD) values in g/cm3 are shown in a
color bar on the right side of the rose diagram. In this example, at a certain depth, for a
wellbore with an inclination degree of 45◦ and an azimuth angle of N30◦ E, the MMD is
1 g/cm3. One point to be noted in the hemisphere plot of the MMD is that all values are
to avoid wellbore collapse or shear failure. Besides, the wellbore pressure is higher than
the formation pore pressure to avoid a drilling kick [30]. In the literature, the lower bound
of the mud window is the minimum mud weight required to achieve the desired degree
of wellbore stability. In this study, normal pore pressure is 1.01 g/cm3, and therefore, the
lower bound of MMW is the pore pressure plus the maximum swab pressure to avoid the
drilling kick, rather than the MMD to avoid the wellbore collapse.
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stress (Figure 11). 
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Figures 10 and 11 show rose diagram results of wellbore-D in the Azar oilfield. According
to the results, induced tensile fractures occur in azimuth 30◦ and 210◦ of NE–SW, indicating
the direction of maximum horizontal stress (Figure 10). In contrast, the wellbore collapse in
azimuth 120◦ and 300◦ shows the direction of minimum horizontal stress (Figure 11).
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The literature revealed that the issue of wellbore instability is referred to the mechanism
of principal stresses [31,32], while the role of in-situ stresses is mainly neglected. In this
study, the amount of in-situ stresses was determined to cover all mechanisms involved in the
wellbore instability of the Azar oilfield. In this regard, overburden pressure or vertical stress
(Sv) in an arbitrary depth of wellbore equals the weight of overburden above this depth. So,
the vertical stress of wellbore-D in the Azar oilfield was obtained from Equation (5).

Sv =
∫ z

0
ρ(z)gdz = ρgz (5)

where ρ(z) shows density as a function of depth (z), Earth’s gravity acceleration (g), and
average density of overburden layers (ρ). Also, Equation (6) was proposed for offshore
drilling operations in which a column of water exists above the formation.

Sv = ρwgzw +
∫ z

zw
ρ(z)gdz ≈ ρwgzw + ρg(z − zw) (6)

where ρw denotes the density of water and zw is the depth of water. The water density was
assumed to be 1.03 gr/cm3 [31]. Due to the high cost of using the well-logging method,
data collection is usually associated with a range of hydrocarbons contained, and routinely,
there are sections in the upper parts of the wellbore where log-recording activities have not
been performed. Hence, the density of these sections in the formation was assessed by the
linear interpolation of data obtained from well logs. In this study, an average density of
about 2.3 gr/cm3 was considered for the Sarvak Formation. From Figure 12, the Sv value
for the depth of 4400 m is 99.17 MPa.
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Moreover, existing pore pressure recognizes its critical role in the distribution of stress
in wellbores. Equations (7) and (8) present the minimum (Sh) and maximum (SH) horizontal
stress values.

Sh =
ν

1 − ν

(
SV − αPp

)
+ αPP +

E
1 − ν2 εx +

νE
1 − ν2 εy (7)

SH =
ν

1 − ν

(
SV − αPp

)
+ αPP +

νE
1 − ν2 εx +

E
1 − ν2 εy (8)

In these equations, V is Poisson’s ratio, α is the Biot’s coefficient, Pp is the pore pressure,
εx and εy are respectively the strain indicator in the direction of the minimum and maximum
horizontal stress, and sentence SV − αPp is recognized under the title of effective vertical
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stress. As there is no result of the leak-off test (LOT) in the Azar oilfield, parameters εx and
εy are calculated using a trial-and-error method. The results from these strain parameters
showed that the stress regime would be in reverse regime (i.e., SV ≤ Sh ≤ SH). So, the
minimum horizontal stress amount equals vertical stress, and therefore, the proportion of
the maximum horizontal stress towards vertical stress is 1.05 (Figure 13).
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Furthermore, Eaton’s equation was applied to determine the amount of pore pressure
in the wellbore-D of the Azar oilfield. The data reported here appear to support the
assumption that the drilling operation is in an ultra-balance condition with a mud pressure
of 200 pounds per square inch.

Ppg = OBG −
(
OBG − Png

)
(

∆tm + (∆tml − ∆tm)e−cZ

∆t
)

3

(9)

In Equation (9), OBG and Png are the overburden and hydrostatic pressure gradients,
respectively. ∆t, ∆tm, and ∆tml are the sonic compressional transit time (DTC) of formation,
rock matrix, and mudline, respectively. Z and c denote the depth and compaction constant,
respectively. Figure 14 illustrates pore pressure changes from Eaton’s equation and mud
pressure in the wellbore-D of the Azar oilfield. As shown in Figure 14, the pore pressure
gradient of the Sarvak Formation is about 11.5 MPa/km.

Figure 15 represents the results of in-situ stresses (i.e., the vertical, minimum, and
maximum horizontal stress) and pore pressure obtained from wellbore-D of the Azar oilfield.
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4.1. 3D Model’s Geometry

The first phase of the 3D model construction is the creation of intended geometry,
including a block of porous media with a well diameter of 17.78 cm (7 inches). Dimensions
of the constructed model are 583 × 400 × 583 cm. Since this study aims to determine the
optimal route for drilling operations in the Azar oilfield, changes in the deviation angle
or curvature beam should be considered. Figure 16 illustrates a schematic view of the 3D
model from the wellbore-D in the Azar oilfield. At first, the wellbore is vertical, and then it
deviates from the vertical state with a 15-degree slope per 100 ft.
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At last, the wellbore finds a horizontal state. With the porosity and fluid in rocks, the
modeling analysis moved further to the depths and caused changes in the geo-mechanical
behavior of the Sarvak Formation. On the other hand, an elastic model with no considera-
tion of porosity and pore fluid creates a hypothesis with an immense error in understanding
the process. This is because pore spaces [33], pore fluids, and their connection within the
wellbore play a crucial role in addressing the issues of the drilling operation. In this re-
gard, lack of porosity causes an increase in shear and tensile strengths, resulting in an
invalid outcome.

The top part of the model was located at a depth of 4000 m. In this field, the value of
vertical stress resulting from the overburden weight at a depth of 4000 m is 90.15 MPa in
the Z direction. The estimated minimum and maximum horizontal stresses are 90.15 MPa
and 94.66 MPa, respectively. In other words: Kh = σh

σv
= 1 and KH = σH

σv
= 1.05. Also, pore

pressure is 46 MPa, and the pore pressure gradient is 11.5 MPa/km.

4.2. Boundary Conditions and Modeling Steps

The boundary conditions of a numerical model include variables such as stress and
displacement. If in the intended model the behavior of a material is elastic, the grid
boundary distance to the center of mode from each side will be five times more than the
dimensions of the model range, which is considered the highest amount in this study due
to the poroelastic behavior of the material [25,34]. In the constructed models, the plates
perpendicular to the coordinate axis have zero displacement, and the model’s surface has
zero displacement along with the z-axis. Also, the circumstances of pore pressure on the
external zones of models have been applied. By applying the initial conditions, the strata
condition was simulated. In an ideal situation, information about in-situ stresses was
obtained from the in-situ measurements in the Azar oilfield.

In the Azar oilfield, the pore pressure element of C3D8P, 8-node trilinear displacement,
and pore pressure were used from ABAQUS by considering the freedom degree of pore
pressure and 3D model. The shape of this element was categorized in the hexagonal type
with a structured form of the mesh-scaling method. It is noteworthy that the mesh scaling’s
size is partly changed and is finer, close to the wellbore, with no impact on the amount
and distribution of displacements and stresses. In this numerical model, the elements and
nodes are 26,957 and 29,738, respectively.

Moreover, there were two main phases in the proposed 3D model, including a geostatic
step, creating a primary balanced model, and a drilling step. In the geostatic step, changing
the shape and displacement of the model was negligible, and all initial conditions, including
in-situ stresses, volumetric forces, boundary conditions, and pore pressure, were defined.
In the drilling step, while drilling the wellbore, the number of stresses and displacements
was increased in the wellbore-D. After the drilling operation, mud pressure was applied to
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the wellbore, resulting in a balance in changing the number of stresses and plastic strain in
the wellbore wall. Since the regime stress is in the reverse state, the suitable azimuth for
drilling accords maximum horizontal stress. Also, minimum mud pressure was related to
the stability of the wellbore.

4.3. Verification Analysis of 3D Model

There were two stages that the proposed 3D model considers for modeling the drilling
route in the wellbore-D of the Azar oilfield, including the azimuth of the wellbore in the
directions of maximum and minimum horizontal stress. Analytical relations of Kirsch’s
equation were applied to validate the numerical modeling process. These analytical re-
lations can determine the distribution of stresses around the wellbore. Figures 17 and 18
show the radial and axial stress distribution, respectively, around the wellbore-D in the
Azar oilfield. The results indicated a good agreement between the numerical modeling and
analytical solution with a modeling error of <4%.
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The modeling evidence on wellbore instability revealed that applying higher mud
pressure leads to no shear failure in the wellbore-D’s wall. Incidentally, the lower limit of
the mud window was determined to prevent any downfall of the wellbore-D’s wall in the
Azar oilfield. ABAQUS modeling results showed that the lower limit of the MWW is 89 pcf.
As indicated in Figure 19, a value lower than the MWW leads to a shear failure around
a 10-degree deviation angle of the wellbore wall. Taken together, these results support
the notion that the drilling operation in the Sarvak Formation caused a downfall of the
wellbore-D with the approximate MMW of 75 pcf.
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when the mud pressure is less than the lower limit of MWW.

Also, Figure 20 presents starting the plastic zone in the horizontal wellbore at a mud
pressure less than the MWW. In this case, the lower limit of the MWW is 90.3 pcf. As a
result, a shear failure occurs in the deviation angle of 90◦. Therefore, drilling the wellbore
with the azimuth of maximum horizontal stress requires less mud weight, which lessens
the cost of the drilling operation. Together, these results follow essential aspects from the
analysis performed before the modeling that points to the reverse and strike-slip faults
regime in the Azar oilfield. It can be considered as the most appropriate azimuth for
maximum horizontal stress with the slightest dispute.
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Figure 20. The azimuth of drilling direction in minimum horizontal stress, considering mud pressure
less than the mud weight window.

5. Conclusions

Wellbore instability is one of the main issues in oilfields while drilling an angular oil
well. Determining the mud weight window is a practical solution for controlling wellbore
instability. This study aimed to calculate the lower limit of the mud weight window in the
Azar oilfield’s wellbore-D. The first set of analyses referred to constructing a 3D model
with the finite element method. In this method, characteristics of a porous media, including
porosity, permeability, pore pressure, percentage of saturation, and specific weight, were
represented. The 3D finite-element model in ABAQUS was designed to determine the
modeling and analysis solution for the wellbore’s deviation angle and azimuth in the Azar
oilfield. The optimization of the drilling route was investigated to analyze in-situ stresses
and determine the MWW in drilling operations. Kirsch’s equation was used to validate
numerical modeling. Analytical relations of Kirsch’s equation showed an acceptable error
to validate the numerical modeling process. The results showed that the drilling wellbore
in the direction of the maximum horizontal stress needs lower mud weight compared to
the direction of the minimum horizontal stress. In short, it can be stated that the active
stress regime is a pressure system in the Azar oilfield that has created a combination of
reverse and strike-slip faults throughout the structure. It is a prominent finding from this
analysis that lower mud weight would reduce the cost of the drilling operation. Besides,
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these achievements on the wellbore instability would help us establish greater accuracy
on this matter and provide valuable insights into the drilling of wellbores in petroleum
engineering.
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Abbreviations

MWW, mud weight window; 2D, two-dimensional; 3D, three-dimensional; MPa, mega
Pascal; psi, pound-force per square inch; pcf, pounds per cubic foot; MMP, minimum mud
pressure; ODMP, optimum drilling mud pressure; mD, millidarcy; %, percent; m, meter;
µs/ft, microsecond per foot; ∆tc, pressure wave time; ∆ts, shear wave time; Vp, P-wave
velocity; Vs S-wave velocity; km/s, kilometer per second; GPa, gigapascal; UCS, uniaxial
compressive strength; Ks, bulk modulus; Kmin, grain modulus; α, Biot’s coefficient; σH,
maximum horizontal stress; σh, minimum horizontal stress; σv, vertical stress; ◦, degree;
gr/cm3, gram per cubic centimeter; LOT, leak-off test; V, Poisson’s ratio; Pp, pore pressure;
εx, strain indicator in the direction of the minimum horizontal stress; εy, strain indicator in
the direction of the maximum horizontal stress; OBG, overburden pressure gradient; Png,
hydrostatic pressure gradient; DTC, sonic compressional transit-time.
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