
 

 
 

 

 
Energies 2022, 15, 3526. https://doi.org/10.3390/en15103526 www.mdpi.com/journal/energies 

Review 

A Review of Reinforcement Learning Applications to Control 

of Heating, Ventilation and Air Conditioning Systems 

Seppo Sierla 1,*, Heikki Ihasalo 1 and Valeriy Vyatkin 1,2,3 

1 Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 

FI-00076 Espoo, Finland; heikki.ihasalo@aalto.fi (H.I.); valeriy.vyatkin@aalto.fi (V.V.) 
2 Department of Computer Science, Electrical and Space Engineering, Lulea University of Technology,  

97187 Lulea, Sweden 
3 International Research Laboratory of Computer Technologies, ITMO University,  

197101 St. Petersburg, Russia 

* Correspondence: seppo.sierla@aalto.fi (S.S.) 

Abstract: Reinforcement learning has emerged as a potentially disruptive technology for control 

and optimization of HVAC systems. A reinforcement learning agent takes actions, which can be 

direct HVAC actuator commands or setpoints for control loops in building automation systems. The 

actions are taken to optimize one or more targets, such as indoor air quality, energy consumption 

and energy cost. The agent receives feedback from the HVAC systems to quantify how well these 

targets have been achieved. The feedback is captured by a reward function designed by the 

developer of the reinforcement learning agent. A few reviews have focused on the reward aspect of 

reinforcement learning applications for HVAC. However, there is a lack of reviews that assess how 

the actions of the reinforcement learning agent have been formulated, and how this impacts the 

possibilities to achieve various optimization targets in single zone or multi-zone buildings. The aim 

of this review is to identify the action formulations in the literature and to assess how the choice of 

formulation impacts the level of abstraction at which the HVAC systems are considered. Our 

methodology involves a search string in the Web of Science database and a list of selection criteria 

applied to each article in the search results. For each selected article, a three-tier categorization of 

the selected articles has been performed. Firstly, the applicability of the approach to buildings with 

one or more zones is considered. Secondly, the articles are categorized by the type of action taken 

by the agent, such as a binary, discrete or continuous action. Thirdly, the articles are categorized by 

the aspects of the indoor environment being controlled, namely temperature, humidity or air 

quality. The main result of the review is this three-tier categorization that reveals the community’s 

emphasis on specific HVAC applications, as well as the readiness to interface the reinforcement 

learning solutions to HVAC systems. The article concludes with a discussion of trends in the field 

as well as challenges that require further research. 

Keywords: reinforcement learning; machine learning; heating; ventilation; air conditioning;  

building energy simulator; indoor environment; artificial intelligence; thermal comfort 

 

1. Introduction 

Reinforcement learning (RL) is emerging as an advanced technique for HVAC 

control, due to its ability to process complex sensor information to achieve complex 

control objectives. Frequently, multi-objective optimization is performed to meet several 

targets, such as energy cost reduction [1], energy consumption reduction [2], management 

of thermal comfort [3] and management of indoor air quality [4]. However, various levels 

of abstraction are used in the problem formulation, so an assessment of this literature is 

needed to identify the works that are relevant for specific HVAC control problems. 

Furthermore, a critical look is needed to assess whether the chosen level of abstraction is 
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justified, with respect to eventual deployment of the RL controller to control physical 

HVAC equipment. Figure 1 shows a general concept of an RL agent controlling HVAC 

equipment. The RL agent is the controller. It is trained through interactions with the RL 

environment. The environment provides state information as input to the RL agent. The 

state could consist of measurements such as temperature and CO2 sensor measurements 

[5]. Based on the state, the agent outputs actions to the environment. For example, the 

actions could be setpoint values or control signals to HVAC equipment. The environment 

returns a reward, which quantifies how beneficial the outcome of the action was. The 

reward formulation is crafted to capture the control objectives of the HVAC application. 

Based on the immediate and long-term rewards, the RL agent is trained to take actions 

that are likely to result in better rewards in the future. Several approaches can be taken to 

construct the environment. One approach is to use the physical HVAC system as the 

environment, in which case it is practical to select a set of sensor measurements as the 

state and one or more actuator control signals or setpoint values as the actions. However, 

since the training of a RL agent can require many interactions with the environment, it is 

advantageous to train it in a virtual environment, such as a physics-based building 

simulator [6] or a data-driven model of the building [7]. The virtual environment could 

have the same state and action spaces as the physical environment. However, it is also 

possible to raise the level of abstraction, in which case the state and action spaces do not 

necessarily have a direct mapping to sensors and actuators [8]. As the level of abstraction 

is raised, important characteristics of HVAC equipment such as heat pumps or chillers 

may be ignored. In many of the reviewed papers, this leads to serious problems, such as 

failing to distinguish between kW of power consumption of a compressor and the kW of 

cooling or heating provided to the building. Thus, this review will critically assess the 

chosen level of abstraction in the reviewed works. 

 

Figure 1. Concept of an RL agent controlling HVAC equipment. 

Two key elements of the quality of the indoor environment are thermal comfort and 

indoor air quality. Thermal comfort can be a tricky concept for HVAC control, as 

established standards consider factors such as clothing insulation, for which there is no 

sensor data available [9]. Indoor air quality involves the consideration of pollutants such 

as carbon dioxide, particulate matter, nitrogen dioxide, ozone and volatile organic 

compounds [9]. Modern building automation systems often have the instrumentation in 

place for carbon dioxide measurement, but in general, there is limited measurement data 

on indoor pollutants, which would be available for HVAC control systems. For these 

reasons, even though RL is a technique that can handle large state spaces, RL practitioners 

cannot include the full complexity of the quality of the indoor environment into the RL 

problem formulation. This raises the question of what kind of simplifications are 

acceptable, to still benefit from the capabilities of RL and to achieve progress over 
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conventional control techniques that are commonly used in building automation systems. 

A common approach in RL research on HVAC control is to only consider indoor 

temperature and to construct the RL environment with one equation that defines indoor 

temperature as a linear function of outdoor temperature and HVAC power (e.g., [10,11]). 

This approach only maintains the average indoor temperature of the building within 

thermal comfort limits, while optimizing energy cost or energy consumption related 

targets. However, this has three problems: 

1. Applications for real buildings must ensure thermal comfort separately in every zone 

of the building, rather than maintaining the average temperature of the entire 

building. 

2. It is unclear if a reinforcement learning agent that has been trained in a linear 

environment could be generalized to handle non-linear dynamics of real-world 

HVAC equipment, and a much larger state and action space with temperature 

measurements and HVAC actuators in several zones of the building. 

3. Indoor air quality is ignored. 

These problems could be addressed with a more sophisticated RL environment. A 

few reviews assume that the development of building energy models is so laborious that 

any control approaches that require such models will be rejected by the industry [12–14]. 

Thus, they exclude approaches that require the development of a data-driven or physics-

based building energy model to serve as the training environment of the RL agent. 

Consequently, the great majority of papers applying RL to HVAC control were excluded 

from these reviews. The papers that were included to these reviews had unacceptably 

long training times, since the physical building itself was used as the training 

environment. For this reason, the authors concluded that RL is a problematic approach 

for HVAC control. Other reviews consider the use of building energy models as a 

legitimate approach for training a RL agent [15–17]. In each of these reviews, the focus of 

the analysis is on the reward. The analyses reveal that RL is well suited to multi-objective 

optimization for problems involving a trade-off between occupant comfort and cost 

saving or reduction of energy consumption. 

The focus of previous reviews on RL for HVAC control can be stated with reference 

to Figure 1. Ma et al. [9] review the state space formulations in the literature from the 

perspective of capturing thermal comfort and indoor air quality. The types of algorithms 

used to implement the RL controller are categorized in [15–17]. Several reviews focus on 

the different reward formulations in the literature [15–17]. Some of the reviews only cover 

RL as one of many potential control techniques and do not provide an analysis that would 

systematically assess the reviewed works with respect to some aspects of Figure 1 [12,13]. 

The most relevant previous reviews are identified as [9,15–17]. In [9], authors 

consider RL as one of several machine learning techniques applicable to HVAC systems. 

The authors selected a set of articles that apply RL to simultaneously achieve energy 

savings while maintaining an acceptable indoor environment. The focus of the analysis is 

to identify the different state variables and how frequently each variable has been used in 

the selected set of articles. In [15], the authors review RL applications to demand a 

response, and identify four major categories of demand response resources. One of these 

categories are HVAC systems. For each paper, the authors identify the type of HVAC 

resource and the type of demand response mechanism. The authors observe that most 

works use RL to perform a trade-off between energy efficiency and occupant comfort. 

They further identify two general approaches: some works specify hard constraints for 

the quality of the indoor environment, whereas others permit the RL agent to temporarily 

drive the environment out of the comfortable zone in case the energy-efficiency related 

benefits are sufficiently high. In [16], works are categorized according to a primary and 

secondary optimization objective. The primary objective is either energy cost or energy 

consumption minimization. The secondary objective is usually thermal comfort, but in 

some cases, indoor air quality of lighting comfort is being optimized. In [17], authors 
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elaborate on the various dimensions of the indoor environment that can and should be 

included in RL optimization. In addition to thermal comfort and indoor air quality, 

authors identified a number of factors considered only by the minority of the research, 

namely, occupancy schedules, shaping occupant behaviour, occupant feedback and 

lighting comfort. In summary, all of these prior reviews are structured around the opti-

mization objectives for the RL agent. Each of them identified a common tradeoff of energy 

efficiency or cost minimization that must be balanced with respect to maintaining an ac-

ceptable indoor environment. The metrics for the indoor environment and the available 

information from the building that is available as state information for the RL agent is 

most comprehensively discussed in [9,17]. 

None of the reviews assess how the action space has been constructed and how this 

impacts the possibilities to apply the RL controller in a BACS (Building Automation Con-

trol System) context. The action space of a RL controller can have one or more outputs, 

and a single RL agent may control several zones of a building. Thus, a RL controller could 

have a similar input/output structure to SISO (Single Input, Single Output) controllers 

typically found in the basic control layer of a BACS or to MIMO (Multiple Input, Multiple 

Output) controllers typically found in the supervisory control layer of a BACS [18]. How-

ever, the works analyzed in this paper generally do not state whether they belong to one 

of these two layers or whether they partially or completely implement both layers. It is 

difficult for the reader to position the works in a BACS context, since most authors are 

vague about whether the RL actions should be mapped to actuators, setpoints of the basic 

control layer or something else. In the latter case, a critical analysis of the literature is 

required to determine if the chosen level of abstraction has retained key characteristics of 

the HVAC systems that need to be considered in the optimization, and if the chosen action 

space can support further work aiming at deployments. To assess these issues, the focus 

of this review is on the action space formulations. 

The aim of this review is to identify the action formulations in the literature and to 

assess how the choice of formulation impacts the level of abstraction at which the HVAC 

systems are considered. The objective of the review is to organize the literature according 

to the action space formulation and to assess how this formulation impacts the modelling 

of HVAC systems and the possibilities to interface to developed RL agents to real HVAC 

systems. 

The paper is structured as follows. Section 2 presents the methodology for searching 

and categorizing the articles. Section 3 provides an overview of the articles. Section 4 an-

alyzes the articles in detail. The subsection headings of Section 4 are according to the cat-

egorization presented in Section 2. Section 5 concludes the paper with a summary and 

discussion of the main research gap being filled by this review. 

2. Methodology 

The following search string was used in the Web of Science database: 

“reinforcement learning” AND (heating OR ventilation OR “air conditioning” OR 

cooling OR HVAC) 

The search was limited to articles published since 2013. 

In total, 13 review articles were found. One of these was not related to HVAC. Ntako-

lia et al. [19] was ignored since it focused on district heating systems without addressing 

HVAC. Dong et al. [20] discuss the applicability of RL for modelling occupant behavior 

in buildings; such techniques could be applied in the environment of Figure 1, but the 

paper does not identify such applications. Reviews that investigated control or machine 

learning research broadly, with only a very brief treatment of RL articles, were also ig-

nored [21–23]. The remainder of the review articles have been discussed in the introduc-

tion Section 1. 

The search string resulted in 278 articles, all of which has been assessed manually for 

inclusion in this review. The scope of this review is the applications of RL to manage 
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HVAC systems for the purpose of controlling the indoor environment of buildings. Spe-

cifically, the following criteria were defined to exclude articles from this review: 

 Articles were excluded if they discussed RL as a potential technology but did not 

present a solution based on RL (e.g., [24]). Applications of RL to clone other kinds of 

controllers such as model predictive controllers are also excluded [25]. 

 An article is excluded if a backup controller is used to override the RL agent, in case 

the agent would take an action that would violate indoor environment requirements 

[26–30]. 

 An article was excluded if it did not provide sufficient details to determine whether 

the action space was binary, discrete or continuous [31–34]. 

 Most works use a model of a building and HVAC as the environment for training the 

RL agent. Usually, this model is made in a building energy simulator such as Ener-

gyPlus, which has the capability to model heat transfer between adjacent building 

zones. In case a self-made building simulator was used, and it was not clear whether 

it had such a capability, the article was excluded [35]. 

 Although HVAC energy consumption forecasting is usually done with supervised 

learning time-series forecasting techniques (e.g., [36–38]), a few authors have used 

RL for this purpose [39,40]. Articles about forecasting were not selected. 

 Occupant behavior is relevant to the environment in Figure 1. Approaches for using 

RL to model this aspect of the environment have been excluded from this review [41]. 

 This review is limited to HVAC applications in buildings, so other kinds of HVAC 

applications for systems such as batteries [42], seasonal thermal energy storage [43], 

vehicle cabins [44], fuel cells [45] and waste heat recovery from engines [46,47] are 

out of scope. 

 HVAC solutions for managing the waste heat of ICT systems are in scope of this re-

view only if they focus on the building that houses the HVAC systems (e.g., [48]). In 

this case, the management of the indoor environment is concerned with ensuring the 

lifetime of the server hardware. Solutions focusing on the internals of servers (e.g., 

[49]) are out of scope. Solutions that did not directly optimize the indoor temperature 

or other environmental variables are out of scope (e.g., Linder et al. [50] minimize 

total cooling airflow). It is necessary to scope this review with respect to what kind 

of structure housing ICT equipment is considered a building. This scoping decision 

was done so that data centers were considered buildings, but edge data centers [51–

53] are out of scope. 

 Management of district heating networks is considered out of scope [54,55], unless it 

involves the management of the indoor environment within the end user buildings 

[56]. With respect to geothermal energy, there are two approaches: to distribute the 

geothermal energy extracted from the wells through a district heating network 

[57,58] or directly to a heat exchanger in a building [59]. This article only considers 

systems inside buildings. 

 Solutions for optimizing the operation of HVAC equipment are considered out of 

scope if there is no application to manage the indoor environment [60,61], or if the 

problem formulation is constructed so that the indoor environment is not affected in 

any way [62–64]. Approaches that penalized the RL agent for failing to meet heating 

or cooling demand were excluded if the penalty was not expressed in terms of indoor 

environmental variables [65]. Also, solutions for controlling physical phenomena 

such as thermal convection is out of scope [66] if the work is general and not applied 

to a building context. 

Figure 2 presents the articles that were selected for inclusion in this review, organized 

by the publisher and publication year. A steady growth in publication activity is observed. 

This figure, and all the other charts in this paper, are based on manually selected articles 

and metadata that was collected from them. The metadata includes the publisher, year of 
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publication, country of affiliation of the first author, as well as a 3-tier categorization that 

is described next. 

 

Figure 2. Articles included in the review. 

A 3-tier categorization was applied to each article. The subsection structure of Section 

4 is organized according to these tiers. Tier 1 captures how the HVAC solutions considers 

the possible existence of multiple zones in the building. Table 1 presents the tier 1 catego-

ries. Tier 2 captures the type of control being performed: whether the RL agent selects an 

action or determines a value for an action. Table 2 presents the Tier 2 categories. The Tier 

2 categorization was performed by examining the action space formulation. Tier 3 cap-

tures the variables of the indoor environment that are being managed by the RL. These 

variables are temperature, humidity and air quality. Each combination of one or more of 

these variables is a Tier 3 category. Table 3 presents all such combinations that were en-

countered in the reviewed articles. A more detailed discussion of variables of the indoor 

environment is presented in Section 3. The tier 3 categorization was performed by exam-

ining the reward formulation. 

Table 1. Tier 1 categories. 

Tier 1 Category Description 

Single zone 

The authors assume that indoor environment is uniform within 

the zone. In some cases, the zone is a room. In other cases, the 

zone can be an entire building, modelled at a level of abstraction 

at which conditions such as temperature are uniform throughout 

the building. 

Independent zones 

Actions taken to adjust the indoor environment in one zone do 

not impact the indoor environment in other zones. Heat transfer 

between zones is either not modelled or not possible due to the 

zones not being adjacent. There is no shared HVAC equipment. 

Interdependent zones 

Actions taken to adjust the indoor environment in one zone may 

impact the indoor environment in other zones, due to heat 

transfer between adjacent zones or due to shared HVAC 

equipment, for example. 

Table 2. Tier 2 categories. 

Tier 2 Category Description 

Binary 

The RL agent selects between on/off actions or increase/decrease 

actions. In the latter case, the agent may also have the option of doing 

nothing. 
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Discrete 
The RL agent selects one of several possible actions, such as one of 

several possible setpoint values. 

Continuous The RL agent determines a continuous value for one or more actions. 

Hybrid 
A combination of two or more of the following: binary, discrete or 

continuous. 

Table 3. Tier 3 categories. 

Tier 3 Category 

Temperature 

Temperature & humidity 

Air quality 

Temperature & air quality 

Temperature, humidity & air quality 

3. Overview of the Analyzed Articles 

In general, the works discussed in this section use RL for multi-objective control. 

Common objectives involving HVAC and other distributed energy resources are renewa-

bles time shifting [67], price-based demand response [1], incentive-based demand re-

sponse [68,69], electricity bill minimization under a real-time pricing scheme [70] and 

maximizing self-consumption of rooftop photovoltaic generation [71]. In some cases, one 

of the objectives relates to the quality of the indoor environment, and such works are in 

the focus of this review. Unlike basic building automation systems, RL can simultaneously 

consider some or all of the following information: current and future weather (e.g., [72]), 

current and future electricity prices (e.g., [73]), occupancy (e.g., [74]), demand response 

programs (e.g., [26]), as well as several variables related to the indoor environment (listed 

in Table 3). Due to the thermal storage capacity of building structures, or phase change 

materials that have been installed for this purpose [75], and the possibility to allow small 

deviations in the indoor environment, RL opens opportunities for novel optimization ap-

proaches. As has been explained in Sections 1 and 2, some reviews have already been 

published in this area, and the focus of this paper is on the approaches that authors have 

taken to manage the indoor environment, and how these approaches are reflected in the 

formulation of the action space of the RL agent. 

With respect to indoor environment, most of the works in this review only consider 

thermal comfort. A minority of authors use standard metrics for thermal comfort, such as 

Predicted Mean Vote (PMV), Predicted Percentage of Dissatisfied (PPD) [9], or Standard 

Effective Temperature (SET) [3]. These are computed based on factors such as tempera-

ture, humidity, clothing insulation and metabolic rate. In practice, the only factors that 

can be controlled by the RL agent are temperature and humidity, so default values are 

generally assumed for the other factors. Often a building energy simulator that is used to 

implement the environment of the RL agent is used to compute PMV or PPD. However, 

most researchers use a simplified and proprietary definition of thermal comfort. Fre-

quently, an explicit definition is not provided or justified, but it can be discovered by ex-

amining the formulation of the reward of the RL agent. The most common approaches 

involve computing the deviation from an ideal temperature value or the deviation from a 

minimum or maximum temperature limit. For achieving uniform thermal comfort within 

a room, the variation of temperature across the room is minimized [76]. A more unusual 

approach is to consider thermal comfort to be satisfied if the HVAC is always on whenever 

indoor temperature is out of bounds [35]. In addition to thermal comfort, indoor air qual-

ity is an important aspect of the indoor air environment, with CO2 levels being the most 

obvious and common control target. In our review, the great majority of works ignored 

air quality. The control objectives impact the level of detail that should be captured in the 

environment. Building energy simulators are a very common approach for implementing 
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the environment (e.g., [6]). An alternative approach is to construct a data-driven black box 

model of the building and its HVAC systems (e.g., [7]). 

In addition to buildings occupied by humans, data centers have become a major focus 

of HVAC research due to their high energy consumption. Several authors have applied 

the concept of thermal comfort to datacenters, arguing that occasional minor deviations 

from ideal temperature and humidity have a tolerable impact on the lifetime of server 

hardware. Thus, they have applied RL to achieve a good tradeoff between HVAC energy 

consumption and indoor environments. None of these authors referred to any standard 

for datacenter indoor environment, and all of them proposed original formulations for 

acceptable deviations to indoor temperature, and in some cases humidity also. These 

works are included in this review. Two approaches emerged from this literature. In data 

centers with hot and cool zones, the RL agent could be used both for allocating the heat 

generating computational tasks to cooler zones and to control HVAC. Authors who did 

not model hot or cool zones were only concerned with HVAC control. 

According to the majority of the reviewed works, building automation systems often 

employ a fairly long control time step, e.g., 15 min, so many authors use this as the control 

time step for the RL agent. The interaction between the RL agent and the environment in 

Figure 1 occurs once per control time step. When a building energy simulator is used to 

implement the environment, the simplest approach is to set the simulation time step equal 

to the control time step (e.g., [77]). However, to ensure an accurate simulation, some au-

thors run the simulator with a shorter timestep, e.g., 5 min, in which case the simulator 

takes several steps adding up to 15 min before the next interaction with the RL agent is 

performed. Some works use longer control timesteps such as 20 min [78] or 60 min [79]. 

Depending on how the environment has been implemented, and how long it takes for the 

system to stabilize after a control action, a shorter control time step could result in unstable 

feedback to the RL agent [80]. It is notable that these timesteps may be too long for some 

specific applications, such as adjusting the ventilation of a room in response to occupancy 

changes. Further research is needed to determine suitable timesteps for such applications. 

Figure 3 presents the number of articles in each of the Tier 1 categories. 

 

Figure 3. Number of articles in Tier 1 categories. 

Figure 4 presents a sunburst chart of the 3-tier categorization of the articles. 
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Figure 4. Sunburst chart of the 3-tier categorization of the articles. 

Figure 5 presents a Sankey chart, in which the bar on the left is the country of affilia-

tion of the first author, and the bar to the right is the Tier 1 category under which the 

article was categorized. The width of each flow is proportional to the number of articles 

that authors in the country on the left hand side of the flow contributed to the category on 

the right hand side of the flow. 



Energies 2022, 15, 3526 10 of 27 
 

 

 

Figure 5. Sankey chart relating the country of affiliation of the first author (left) to the Tier 1, Tier 2 

and Tier 3 categories. 

4. Categorization of the Selected Articles 

4.1. Single Zone 

Figure 6 provides an overview of the works in the single zone category. 
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Figure 6. Distribution of single zone works by Tier 2 categories. 

4.1.1. Binary 

Temperature 

The simplest RL HVAC controller makes on/off control decisions for an HVAC sys-

tem that heats or cools a room. Some authors do not elaborate on any details of what kind 

of HVAC equipment is used, so the output of the RL agent is simply to turn the heating 

on or off [8,81]. Other authors specify the type of HVAC equipment, such as valves for 

underfloor heating systems [82], heat pump [83] or valves for chilled water flow [84]. Oth-

ers consider the special characteristics of available HVAC equipment, such as a heat pump 

and an auxiliary heating element, aiming to avoid activation of the less energy efficient 

auxiliary heating element [85]. In some cases, a single zone may have a heating and a 

cooling element, both of which support binary control, resulting in four possible combi-

nations [86]. However, there is no situation in which it makes sense to turn on the heating 

and cooling at the same time, so other authors have simplified the action space to three 

possible actions: off, heating on and cooling on [87]. In addition to penalizing temperature 

deviations from a setpoint, frequent switching of the on/off heating element can be penal-

ized if it is perceived as annoying to the occupant, due to the noise involved, for example 

[88]. An alternative approach to binary control is to allow the RL agent to add or subtract 

a fixed value from the temperature setpoint [89–91]. A double binary control approach 

involves all the possible combinations of on/off control of two heating elements in a hot 

water tank [92]. Usually, binary actions from the RL agent are sent directly to on/off actu-

ators, but another approach is to map the action to a low and high temperature set-point 

of a thermostat [93]. 

Another approach for binary temperature control involves user input for increasing 

or decreasing temperature. The goal of minimizing energy consumption is balanced with 

the goal of thermal comfort when the user is present. The RL tries to anticipate the periods 

of occupancy. With this problem formulation, thermal comfort is defined as a temperature 

at which the user’s preference is satisfied. The preference is satisfied if the user does not 

use the user interface to request changes [2,94]. 

Air Quality 

Indoor PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) con-

centrations are managed in a naturally ventilated building by an agent that takes a binary 

decision to open or close a window. The problem formulation is simple: the goal is to 

minimize indoor PM2.5 and decisions are taken based on sensor information on indoor and 

outdoor PM2.5 [95]. 
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Temperature & Air Quality 

Natural ventilation without HVAC can be used to manage both indoor air quality 

and indoor temperature. Especially in some large cities, concentrations of outdoor pollu-

tants may be so high that opening the window decreases indoor air quality. In the absence 

of HVAC, a RL agent that decides to open or close a window is the simplest solution for 

achieving the best tradeoff between indoor air quality and thermal comfort [96]. Another 

solution combining windows and HVAC uses two possible actions for windows (open or 

closed) and three possible actions for HVAC (AC on, heating on, HVAC off). This results 

in six possible combinations, but since the system will never open the windows with the 

heating on, the action space consists of only five possible actions [78]. 

4.1.2. Discrete 

Temperature 

A common category of applications is a single zone temperature control, in which 

the RL agent selects a temperature setpoint from several predefined alternatives. The 

number of actions is equal to the number of possible setpoint values. An additional action 

may be included for turning the HVAC off [6,97]. As there are no other actions in single 

zone temperature control, the action space remains very manageable for RL techniques 

and it is practical to have many possible values for the setpoint; for example, Lork et al. 

use 15 actions [7]. In most cases, the setpoint is indoor temperature, but in the case of 

district heating, the action of the RL agent may involve setting the supply water setpoint 

[6]. A similar approach is applicable for water heating systems supplied by a boiler. In 

these cases, the indoor temperature setpoint is not affected by the action, but indoor tem-

perature can be used in the reward function to quantify thermal comfort [98]. When RL is 

used to set the indoor temperature setpoint, it is assumed that a lower-level controller 

exists for generating the control signals to the HVAC equipment. Thus, the level of detail 

captured in the environment should be appropriate with respect to the control objectives. 

As thermal properties of buildings and the behavior of HVAC systems are complex, a 

black box data-driven model can capture this complexity if sufficient data from the build-

ing is available [7]. If electricity prices vary during the day, it is possible to exploit lower 

prices to preheat or precool the building by using the buildings thermal mass as a passive 

energy storage. An environment that is constructed in a building energy simulator can 

capture these dynamics. In these cases, thermal comfort is defined in terms of a minimum 

and maximum indoor temperature, so the RL agent is penalized for going out of this 

range. An application of this approach in hot climates is to precool the building during 

low energy price periods to minimize the AC energy cost [99]. An alternative for using 

the building as a passive heat storage is to have a dedicated water tank for this purpose 

[100]. 

The majority of works in this category involved selecting a value for the temperature 

setpoint. However, Overgaard et al. [101] select one of three possible values for pump 

speed in a mixing loop connecting district heating pipelines to the terminal unit of a build-

ing’s floor heating system. 

Wei et al. [102] reject established concepts of thermal comfort and argue that a more 

relevant temperature control target in an office environment is to reduce the sleepiness of 

the occupants. The facial image of an occupant is processed to extract the eyes and to 

detect the level of sleepiness. The RL agent is rewarded for reducing sleepiness, which it 

does by selecting the temperature setpoint of the incoming air flow. As the control time 

step is 15 min, it is unclear how changes in the facial expression during this time should 

be considered. The method considers only one occupant, who is expected to sit in a pre-

defining and well-lit location. 
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Temperature & Humidity 

Works that consider both temperature and humidity usually involve sophisticated 

measured of thermal comfort such as PMV [103] or PPD [104], which are calculated by the 

building energy simulator used as the environment. Qiu et al. [80] use wet bulb tempera-

ture, which is a function of temperature and humidity. 

Air Quality 

To keep CO2 levels close to a setpoint, the RL agent chooses a percentage of the max-

imum ventilation rate of a HVAC device. The type of device is not specified in more detail. 

There are 14 possible discrete percentage values to choose from [105]. A similar approach 

with a more detailed description of HVAC equipment involves an underground subway 

station. Concentrations of particulate matter with an aerodynamic diameter less than 10 

μm (PM10) are managed. A variable frequency drive is used to control the ventilation fans, 

and the control action involves choosing one of 7 possible values for the frequency [106]. 

Temperature & Air Quality 

An RL agent determines a power setpoint for a heating/cooling system and the ven-

tilation air volume of a ventilation system. There are K1 choices for the heating/cooling 

system and K2 choices for the ventilation system, resulting in K1 × K2 actions to choose 

from. The authors do not elaborate what kind of HVAC system is used that can provide 

both heating and cooling with a single power setpoint. The agent is penalized both for 

temperature violations and CO2 violations [4]. 

4.1.3. Continuous 

Temperature 

The simplest RL agent taking continuous actions implements a SISO temperature 

controller of a single zone, so that the action is one continuous control signal to control, 

for example, the supply water temperature of a radiant heater [72,77,107] or supply air-

flow to a VAV unit [108]. In some cases, authors only define a power consumption de-

mand without elaborating on how this consumption would be split between equipment 

such as compressors, fans and pumps [11]. An alternative problem formulation assumes 

that indoor temperature in a room has a ‘schedule’, which defines the ideal temperature 

as a function of the time of day. The reward formulation minimizes deviations from this 

schedule [109]. 

Temperature & Humidity 

If humidity is considered in the thermal comfort measure, a straightforward ap-

proach for managing comfort is for the RL agent to adjust HVAC setpoints for humidity 

and temperature [110]. Other authors have developed solutions that target specific type 

of HVAC equipment. The discharge temperature of an air handling unit is controlled with 

the objective of maintaining relative humidity at 50% [111]. Free-cooled datacenters in-

volve management of temperature and humidity by adjusting airflow by means of open-

ing positions of supply, mixing and exhaust dampers [112]. 

4.1.4. Hybrid 

Temperature & Humidity 

A solution is presented for a single room with a variable refrigerant flow (VRF) sys-

tem and a humidifier, aiming at thermal comfort in terms of PMV. The discrete action 

space has 8 possible temperature setpoint values and an on/off value for the VRF, 3 set-

point values for the VRF air flow and a binary control for the humidifier. VRF systems are 

frequently used for building with multiple rooms, in which case there could be issues with 

the scalability of the address space [113]. A similar approach was used with a system 
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consisting of an air conditioner, humidifier and ventilation system. Each of these had an 

on/off control and the air conditioner additionally had 3 possible setpoint values for in-

door temperature and another 3 possible values for air flow rate, resulting in an action 

space of 40 actions [3], which also could have scalability problems for multi-zone build-

ings. 

Temperature, Humidity & Air Quality 

Two articles were found in which both binary and discrete control of various HVAC 

devices was used to control temperature, humidity and air quality. In the first article, a 

total of N discrete temperature setpoints are available to the RL agent, as well as a binary 

control action to turn the ventilation on/off, resulting in an action space with 2N actions 

[114]. In the second article, an RL agent controls the window opening, ventilation and 

awning. The awning supports binary control, the window supports 3 discrete setpoints 

and the ventilation supports 4 discrete setpoints. This results in 2 × 3 × 4 = 24 possible 

combinations, but the authors manually excluded undesirable combinations, resulting in 

a total of 10 combinations, so the action space consists of these 10 options [115]. 

4.2. Independent Zones 

Two approaches emerged in this section. One is to use a central agent to manage 

several zones, and another is to use one agent per zone. Figure 7 shows an overview of 

the works in the section. 

 

Figure 7. Distribution of works on independent zones by Tier 2 category. 

4.2.1. Binary 

Temperature 

A straightforward extension of the single zone approach is to have one central agent 

controlling several zones, or several single zone buildings. The advantages of this ap-

proach are unclear if the conditions in one zone do not impact any of the other zones. Two 

examples of this approach are as follows. A total of six residential buildings are considered 

with one binary action per building: turning a heater on or off. A centralized controller 

decides the action for each building, resulting in an action space with 26 actions [116]. A 

very similar problem occurs in the case of air conditioning, with four zones and the RL 

determining a binary control signal for the air conditioner in each zone [117]. Thus, having 
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a single agent manage several independent zones can be disadvantageous for reasons of 

computational complexity. 

Having a central RL solution for managing several independent zones can be advan-

tageous if advanced RL techniques are used to accelerate training of the RL agent(s). For 

example, domestic water heating for houses is considered, with a single RL agent in each 

house taking binary decisions for controlling the heating element of a hot water tank. The 

houses are independent and have different system states affected by occupant behavior. 

However, the houses and their heating systems are identical, so a multi-agent RL system 

is used to accelerate learning through faster state-space exploration, making use of the 

experiences that are obtained from all of the houses. The authors explicitly propose their 

method to housing communities or other groups of houses in which these assumptions 

can be made [118]. 

4.2.2. Discrete 

Temperature 

A straightforward approach is to have one agent per zone, which keeps the action 

space manageable even if there are many zones, since the number of actions does not grow 

exponentially with respect to the number of zones. In case of a VAV system, each agent 

controls the air flow rate to the zone, which has several possible discrete values [119]. 

Another work managed indoor temperature and hot water tank temperature, with the RL 

agent choosing from a discrete set of heating power setpoints. The system is replicated to 

several houses, with one agent per house [120]. 

An uncommon problem formulation involved the use of several diverse agents in a 

low exergy building. Heating is provided by a ground source heat pump and solar ther-

mal collector. RL is used to determine the mass flow rate of the water circulation loops to 

the solar thermal collector, the boreholes and the floor heating. 3 possible setpoint values 

are available for the solar thermal loop and 11 possible values are available for the other 

two loops. Three separate agents are trained independently to control each of these loops, 

and the authors justify this by explaining that each agent has independent goals [74]. This 

justification is questionable, since there is a shared environment that each agent affects 

through its actions, so a multi-agent approach could have been more appropriate. 

4.2.3. Continuous 

Temperature 

A data center building with two independent zones with dedicated HVAC systems 

is considered. In each zone, a temperature setpoint and a supply air mass flow rate is 

adjusted by the RL agent. The authors do not discuss possible advantages of using a single 

agent to control both zones [121]. 

Temperature & Humidity 

Historical building automation system data is used to train a data-driven model of 

the environment of the building and its HVAC. The objective is to minimize consumption 

and to optimize the thermal comfort in terms of PPD if the building is occupied. There are 

three AHUs with the following continuous actions: damper position, valve status for the 

pipes supplying the heating and cooling coils and fan speed. A separate RL agent is 

trained for each AHU. The agents are independent [122]. 

4.3. Interdependent Zones 

Figure 8 provides an overview of the works in this category. 
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Figure 8. Distribution of works on interdependent zones according to Tier 2 categories. 

4.3.1. Binary 

Temperature 

Binary outputs from a RL agent can be used to achieve a control similar to continuous 

control. This can be done by adding/subtracting a predefined small value to/from a tem-

perature setpoint. The action of the RL agent is interpreted as add or subtract. The size of 

the action space is 2N, where N is the number of thermally interdependent zones [123]. 

An unconventional problem formulation for interdependent zones involves separate 

buildings in an isolated microgrid. The microgrid has a virtual tariff, so the RL agents 

have a financial interdependency in their environment. This has been exploited to coordi-

nate the control of hot water tanks in the buildings. A reward function has been defined 

to permit temperature fluctuations in an electric water heater tank, penalizing for devia-

tions from a temperature preferred by the users [124]. 

4.3.2. Discrete 

4.3.2.1. Temperature 

The selection of discrete setpoint values in a building with multiple interdependent 

zones builds on the research in the single zone case. A separate setpoint is selected for 

each zone, for example to react to occupancy patterns or individual occupant preferences 

or to prioritize comfort in different parts of the building. In most cases, a single RL agent 

will be used to make the decisions for all zones, which leads to scalability issues. Consider 

a basic case with only two zones [125]. The acceptable user comfort is defined as a 2 °C 

interval, with 5 different setpoint values in this interval. For two zones, there are 52 = 25 

possible combinations, and each of these combinations is an action. Thus, the output layer 

of the neural network used to implement the RL agent has 25 nodes. This approach has 

scalability issues, since a building with 10 zones would require 510 = 9,765,625 nodes in the 

output layer, and a building with 20 zones would require 520 = 95,367,431,640,625 nodes. 

Another similar approach involves two zones and two possible setpoint values, resulting 

in 22 = 4 actions [126]. Although the scalability issues are not as severe with only two pos-

sible setpoint values, there will be problems with large multi-zone buildings, since with 

10 zones, the size of the output layer would be 210 = 1024, and with 20 zones it would be 

220 = 1,048,576. The above-mentioned works only consider two zone buildings and do not 

discuss scalability. A general multi-zone approach with N zones and 4 different setpoint 

values is presented by Yuan et al. [127]. This results in 4N actions, and the authors admit 

that with an already n = 4, a significantly longer training time was observed as a practical 

issue that made the research more laborious. The general case of m possible setpoint val-

ues and z zones results in an action space of mz actions [128,129]. 
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The interdependency of multiple building zones is due to physical dependencies be-

tween the zones. One such dependency is the heat transfer between adjacent zones. This 

is especially relevant in works that use the solid structures of the building as a passive 

thermal storage, so that the RL will precool or preheat the building during low price pe-

riods [79]. Another dependency is due to an AHU that serves several zones. Such papers 

model the AHU and VAV systems in some detail using a residential house model [126] or 

a building energy simulator [127] as the environment. To achieve uniform temperature 

across a room, Sakuma & Nishi [76] use computational fluid dynamics simulation soft-

ware; the RL agent controls fan directions, so the action space has three actions for each 

fan: left, center and right. The great majority of papers do not consider how the RL trained 

in such virtual environments would perform when deployed to a physical building, and 

they do not discuss whether it would be necessary to develop a custom environment for 

each building. However, a few authors have investigated this with a generic house model 

that was used as the environment, after which the RL agent was deployed to a unique 

physical house, in which it was able to achieve nearly as good energy cost savings as in 

the training phase [126]. 

An alternative RL problem formulation involves choosing actions to change the be-

havior of occupants, or to relax the thermal comfort requirements for spaces with low 

occupancy. This approach has been simulated in a multi-zone environment with dedi-

cated HVAC for each zone. No thermal interdependency between zones has been simu-

lated. However, since the RL agent’s actions are recommendations for occupants to move 

between zones, and since the authors define thermal comfort requirements in terms of 

occupancy, the zones are interdependent [130]. 

In most works categorized under the multi-zone case, the zones are located in the 

same building. However, in the case of households connected to a district heating net-

worked powered by a central combined heat and power production plant, the thermal 

interdependency occurs through the district heating network. One such work was en-

countered, in which each household has an energy consumption profile specifying hourly 

consumption. The RL agent takes actions to adjust these profiles in order to avoid con-

sumption peaks at the central plant. The adjustments are done so that the agent is penal-

ized for causing thermal discomfort, defined in terms of PMV [56]. 

4.3.2.2. Air Quality 

An office building with 16 zones, two chillers and four air handling units was con-

trolled by a single RL agent. Unlike the majority of works that were encountered in this 

review, the action space was not constructed with separate actions for each zone. Rather, 

the actions were damper positions for each air handling unit and setpoints for chilled wa-

ter temperature and cooling water temperature for the chillers. Each action had 3 or 4 

possible values, resulting in an action space with 972 possible combinations of values for 

these six actions [131]. 

4.3.2.3. Temperature and Air Quality 

A straightforward application of single agent technology involves a school building 

with 21 zones of three different types: classrooms, offices, laboratories and a gym. There 

are 12 possible values for the temperature setpoint and 6 possible values for the CO2 set-

point [5], resulting in scalability issues as discussed in Section 4.3.2.1. A sophisticated 

work addressing such issues involved a multi-zone building, with AHU and VAV models 

in the environment. The AHU has a VFD powering a fan that supplies air to the VAV 

boxes and a cooling coil connected to a chiller. To keep the action space manageable, 

multi-agent RL is used. There is one agent with a control action for the air supply rate to 

each zone and one additional agent with a control action for the position of the damper at 

the inlet of the AHU. Each agent has a separate reward, which penalizes the agent accord-

ing to its contribution to the fan and chiller power consumption as well as deviations from 

acceptable temperature and CO2 levels; the deviations are only penalized if occupants are 
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present. As temperature in one zone affects neighboring zones, the agents share their ob-

servations for indoor temperature [132]. 

4.3.2.4. Temperature, Humidity and Air Quality 

A straightforward extension of the approaches for temperature control discussed in 

Section 4.3.2.1 involves the joint control of HVAC and windows for control of tempera-

ture, humidity and air quality. PMV is used for thermal comfort and CO2 as a proxy for 

air quality [133]. The authors note severe scalability issues with the action space in a multi-

zone setting, so they propose an original neural network architecture to mitigate the com-

putational complexity. 

4.3.3. Continuous 

Temperature 

Using continuous values for setpoints avoids much of the computational complexity 

encountered in Section 4.3.2. For example, the RL action can be the power percentage of 

the VAV unit in each zone of a building [134], air mass flow setpoint for a variable volume 

fan and a temperature setpoint for a cooling coil [135] or continuous values for valves that 

distribute cooling water to zones from a centralized chiller [136]. Further multi-zone com-

plexity involves considering diverse zones with different occupancy profiles. Such a solu-

tion is presented for the case of a centralized chiller and three zones [137]. Each of the 

zones is large, but the authors did not subdivide them further out of concerns for compu-

tational complexity. In the remainder of this subsection, novel and unconventional solu-

tions are discussed in more detail. 

A multi-agent system is used, so that one agent controls one zone with a single con-

tinuous action that is interpreted either as a cooling or heating power command, depend-

ing on whether its value is negative or positive. It is not discussed how this signal is 

mapped to underlying control loops or HVAC equipment [138]. 

A multi-zone building is considered, with thermal comfort in each zone being cap-

tured as a deviation from a reference temperature. The importance of maintaining comfort 

in each zone can be different, and this is expressed with a weighting factor in the reward 

function. The action of the RL agent involves setting the value of a tuning parameter that 

adjusts the relative weights of energy consumption and thermal comfort-related targets 

in the reward function [139]. 

A datacenter with two zones is modelled. One of the zones is cooled with a direct 

expansion system and the other one is cooled with a chiller. They are interdependent, as 

both systems use the same cooling tower. The intake airflow for the direct expansion sys-

tem is precooled by two evaporative coolers: directive (DEC) and indirect (IEC). A single 

RL agent determines the values of 5 setpoints: DEC outlet air temperature, IEC outlet air 

temperature, chilled water-loop outlet water temperature, direct expansion cooling coil 

outlet air temperature (to zone 1) and chiller cooling outlet air temperature (to zone 2) 

[48]. An alternative approach for a two-zone datacenter involves the RL agent determin-

ing values for setpoint temperature and supply fan air mass flow rate for each zone [140]. 

A multi-zone datacenter approach involves assigning computational tasks to server racks 

and performing continuous adjustment to the airflow rate for each rack [141]. In summary, 

the application to data centers is similar to regular buildings from the RL perspective, 

unless the additional complexity of allocating computational tasks is included in the prob-

lem formulation. 

Unless otherwise specified, the zones that are discussed in this paper are located 

within a building or a building complex. However, for power grid peak shaving, a similar 

RL approach can also be applied when the zones are buildings within the geographic area 

of the section of the grid that is being balanced [73,142]. In this case, the interdependency 

of the zones is due to their joint impact on the power grid. 
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Temperature & Humidity 

A building with several zones is modelled with a building simulator that captures 

heat transfer through building structures. Temperature and humidity setpoints are ad-

justed for each zone by a dedicated agent. The agent is penalized according to energy 

consumption and thermal discomfort, which is quantified in terms of PMV. A multi-agent 

approach is used to minimize the sum of the penalties for each agent [143]. 

4.3.4. Hybrid 

Temperature 

Data center HVAC control ideally considers both the server load and indoor temper-

ature conditions. The data center building is divided into different kinds of zones, such as 

cool, warm and hot zones, so the load is directed to servers in the cool zone when possible. 

The choice of server is a discrete action, whereas the temperature and flow setpoints are 

continuous actions. There are two approaches to handle this discrete-continuous action 

space. One approach is to use a two time-scale solution for load scheduling and HVAC 

control [144]. The other approach is to use a multi-agent architecture, with separate agents 

handling the discrete and continuous actions [145]. 

5. Conclusions 

5.1. Summary 

A minority of the works were categorized under independent zones. The entire mo-

tivation for the research in this category is questionable and poorly motivated since it 

would be equally possible to have a single agent for each zone. In other words, the solu-

tions presented in the single zone Tier 1 category could simply be replicated to each zone. 

In this case, the computational load is proportional to the number of zones. However, in 

the independent zones case, when one agent is used to control several independent zones, 

this can result in an exponential growth of the action space, especially if the action space 

is discrete. Thus, the independent zones problem formulation has clear computational 

disadvantages. With one exception, the reviewed works did not present arguments about 

why the independent zones formulation would be advantageous. The exceptional work 

considered identical houses and heating systems, and it applied a multi-agent RL system 

to accelerate learning through faster state-space exploration, making use of the experi-

ences that are obtained from all houses. As can be seen in Figure 3, only a few authors are 

working in this area, which is an indication of it being a less promising line of research. 

According to Figure 3, the focus of the research is shifting to problem formulations 

involving interdependent zones. As has been discussed in Section 5, this can result in ac-

tion spaces that grow exponentially with respect to the number of zones. In a laboratory 

context, this situation can be navigated in a brute force way by using sufficient computa-

tional resources while limiting the number of zones used in the research. However, a more 

elegant and scalable approach would be to use multi-agent RL. Unfortunately, only a few 

of the reviewed works made use of this advanced technique, so it is unclear whether 

multi-agent RL will become a major research trend in HVAC systems. 

Only some of the works provided a clear description of the ICT architecture in which 

the RL agent would operate. In some cases, the actions of the RL agent could be mapped 

directly to HVAC actuators, and generally such works did not elaborate on what impact 

the innovation would have to building automation systems. Most reviewed works in-

volved changing the setpoints of control loops managed by building automation systems, 

positioning the RL agent into a higher-level system. Such a higher-level system could be 

a HEMS (Home Energy Management System), BEMS (Building Energy Management Sys-

tem) or VPP (Virtual Power Plant), but there is a lack of linkage to HEMS, BEMS or VPP. 

Since HEMS, BEMS and VPPs are subjects of active research, establishing stronger linkage 

to them would be a direction for further research. 
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In conclusion, the applications of RL to HVAC is a body of research that has experi-

ence continued significant growth over the last several years. Most recently, the growth 

has been driven by applications to interdependent zones, using RL approaches support-

ing continuous action spaces. The action space tends to grow rapidly as the number of 

zones increases, resulting in a computational complexity that can be a strain for high per-

formance computing resources. This problem is partially addressed by using continuous 

instead of discrete action spaces. However, a more potential approach for solving this 

problem would be the use of multi-agent RL, which had very limited applications in the 

body of research reviewed in this article. Key recommendations for further research based 

on this review would be the application of multi-agent RL as well as better linkage to 

HEMS and BEMS systems. 

5.2. Contribution 

In Section 1, it was stated that the aim of this review is to identify the action formu-

lations in the literature and to assess how the choice of formulation impacts the level of 

abstraction at which the HVAC systems are considered. Figure 9 illustrates the main gap 

being filled by knowledge gained in this review. The RL system from Figure 1 is presented 

on the left of Figure 9. On the right of Figure 9, key HVAC related systems of smart, en-

ergy-efficient buildings are presented. The gap in the literature is how the RL agent on the 

left can be connected to the systems in a physical building on the right. Based on our re-

view, three general approaches exist, and these are illustrated with the three dashed lines 

in Figure 9: 

 Control signal: the action of the RL agent may be directly sent to the actuator through 

the building automation system’s PLC (programmable logic controller). This applies 

to the ‘binary’ and ‘continuous’ action categories in Table 2. In case of a binary action, 

mapping the action to the binary I/O (input/output) of the PLC is straightforward. In 

case of a continuous action, an analog actuator must be used, and some scaling is 

required in the PLC according to the specification of the actuator. Some of the re-

viewed articles clearly specified an actuator such as a heating element or valve, so 

this approach is directly applicable to deploying the RL agent to a real building. 

However, some articles were more vague and just discussed turning heating or ven-

tilation on or off, without specifying the actuator or type of HVAC equipment, even 

though several actuators may be involved in a large building.  

 Setpoint adjustment: in some cases, the action of the RL agent can be directly con-

nected to the setpoint input of a building automation control loop, such as a temper-

ature control loop. This applies to the ‘discrete’ and ‘continuous’ categories in Table 

2. However, for some articles using a continuous action space, it is not clearly stated 

whether the action should be mapped directly to the analog I/O or to the setpoint 

input of a control loop. 

 Planning: in some cases, the RL agent takes actions to anticipate future situations. 

These are generally financial incentives to shift energy consumption to certain times 

of the day to benefit from tariffs, real-time electricity prices or demand response pro-

grams. Intelligent RL agents can learn the thermal dynamics of buildings and de-

velop strategies such as precooling a dedicated cold storage or, in the absence of such 

a storage, using the building’s thermal mass as a storage. The strategies respect the 

requirements for the indoor environment. 

The main gap being filled by this review is illustrated by the dashed lines in Figure 

9, which map the action output of the RL agent to different systems in the physical build-

ing. In general, this mapping has not been explicitly specified in the reviewed articles, 

although in some cases it is straightforward to infer. For the purpose of stimulating ap-

plied research, it is desirable that the authors specify this mapping explicitly. For the co-

herence of the body of research in RL applications to HVAC, it is desirable that the 
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research community establish an understanding of whether the three mappings presented 

in Figure 9 are the only ones or if additional kinds of mappings exist. 

 

Figure 9. Main gap being filled by this review. 
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