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Abstract: The use of energy sharing models in smart grids has been widely addressed in the literature.
However, feasible technical solutions that can deploy these models into reality, as well as the correct
use of energy forecasts are not properly addressed. This paper proposes a simple, yet viable and
feasible, solution to deploy energy management systems on the end-user-side in order to enable
not only energy forecasting but also a distributed discriminatory-price auction peer-to-peer energy
transaction market. This work also analyses the impact of four energy forecasting models on energy
transactions: a mathematical model, a support-vector machine model, an eXtreme Gradient Boosting
model, and a TabNet model. To test the proposed solution and models, the system was deployed in
five small offices and three residential households, achieving a maximum of energy costs reduction
of 10.89% within the community, ranging from 0.24% to 57.43% for each individual agent. The results
demonstrated the potential of peer-to-peer energy transactions to promote energy cost reductions
and enable the validation of auction-based energy transactions and the use of energy forecasting
models in today’s buildings and end-users.

Keywords: energy auctions; energy forecast; energy management systems; energy sharing; peer-to-
peer energy transactions

1. Introduction

There has been a notable shift in how energy is generated, distributed, and consumed,
namely with the increase in distributed energy resources (DER) and the active participa-
tion of prosumers who are both power consumers and producers [1]. The proliferation
of prosumers reflects investments in the energy transition to renewable energy sources
(RES) [2]. However, it provides new challenges, requiring decentralization and flexibility in
the energy market and also innovative market methods for price setting and infrastructure
management. Additionally, due to the intermittent nature of renewable energy generation,
prosumers find themselves in a situation where they can store their surplus energy for later
use, export it to the electrical grid, or share and sell energy directly to another consumer.
This, in turn, created the demand to design local energy markets with the intention to
trade directly between producers and consumers (peers), overcoming the need for inter-
mediaries [3]. Based on the concept of energy sharing, peer-to-peer (P2P) energy trading
has experienced tremendous growth, becoming an alternative to the conventional energy
trading market. In P2P markets, prosumers share their excess generation or their flexibility
of energy demand with others in exchange for a reduced fee compared to conventional
utility company fees, resulting in benefits for both producers and consumers of energy [4].
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The application of energy sharing models can also benefit the concept of energy
communities that is currently in expansion, which is addressed in several scientific publica-
tions [5]. At the European level, the Directive (EU) 2019/944 of the European Parliament
and of the Council of 5 June 2019 on common rules for the internal market for electricity
opened the path toward the existence of citizen energy communities [6]. The possibility
of close collaboration among energy consumers promotes the direct transaction of energy
between them. This turns the use of peer-to-peer energy transactions into a viable solution
to increase the stability and sustainability of energy communities.

Although seen as beneficial solutions, the energy sharing models are heavily depen-
dent on forecasting models. Usually, papers only focus on energy forecasting or on energy
sharing models, without properly analysing the impact of this dependency. To address this
issue, this paper presents an impact analysis of the use of forecasting algorithms in energy
sharing. This study will use four forecasting algorithms, namely a mathematical model, a
support-vector machine model, an eXtreme Gradient Boosting model, and a TabNet model,
that were already proposed in the literature and their output will be used for the transaction
of energy in an hour-ahead approach. This paper will use a peer-to-peer energy transaction
model based on auctions. The energy transaction model was selected from the study of [7],
and the model chosen was the discriminatory-price auction (DPA). The forecasting models
together with the energy transaction model were deployed in the Microgrid Intelligent
Management System (µGIM) to enable the creation of a virtual energy community with
eight customers: five small commerce and three households. The customer buildings do
not share physical grids or resources, but they are connected by µGIM to enable the testing
and validation of energy transaction models.

The main motivation of this paper can be expressed in the following research question:
Does the error of forecasting algorithms affect the economic performance of end-users in
local peer-to-peer energy markets?

To provide an answer to this question, the authors made use of their own previously
proposed systems, tools, and models that were not yet put together as a unique solution.
Therefore, this paper not only analyses the results but also provides a description on
how these systems and models were integrated in order to provide a testbed using real
households and offices.

The results show the energy shared in a week, based on the auction of energy among
the community’s members. Considering both energy forecasting models, the results show
an energy cost reduction of around 10% within the community ranging from 0.24% to 57.43%
per end-user. The use of both energy forecasting models demonstrates that, depending on
the choices of the end-user, the suitable energy forecasting model can vary. However, the
results are clear: the smaller the forecast error is, the greater the reduction in energy costs.

After this first Introduction section, this paper is structured as follows. Section 2
presents the materials and methods used to evaluate the impact of forecasts in peer-to-peer
energy transactions. Section 3 presents the case study and the results obtained during a
week period. The discussion of results is presented in Section 4 while the main conclusions
of this paper are described in Section 5.

2. Related Works

Transactive energy is a broad term that encompasses a variety of end-user participation
processes and methodologies, including P2P transactions, local markets, and demand
response [8]. From transmission to distribution, they can be used at any level of the smart
grid to promote the balance between consumption and generation [9]. According to [10],
transactive energy can be characterised by four quadrants: top-down switching, centralised
optimisation, price-reactive systems, and transactive control and coordination.

Upon reviewing various publications on P2P energy trading published in recent years,
it was revealed that the methodologies most applied congregated into a few categories,
such as auction, blockchain, and game theory. The auction-based theory has received much
interest and is frequently used to solve several problems associated with P2P trading [11].
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Zhang et al. (2020) studied a P2P renewable energy trading system for microgrids where
energy suppliers are outfitted with storage devices, and an iterative auction algorithm was
applied to obtain the optimal time slot and energy allocation considering each supplier’s
preference [12]. On the other hand, Xu et al. (2021) studied a novel iterative uniform-price
auction (IUPA) mechanism, where they compared the seller’s market and the buyer’s mar-
ket to determine a reliable energy allocation and a uniform auction price [13]. Prosumers
then altered their bids iteratively until they attained Nash equilibrium.

The implementation of blockchain functions in P2P energy trading has grown in
popularity, resulting in several works and publications demonstrating its effectiveness in
virtual simulations [14]. Matsuda et al. (2021) demonstrated the control and coordination
of Plug-in Hybrid Electrical Vehicles (PHEVs) and Home Energy Management Systems
(HEMS) using the blockchain system, resulting in a hybrid bidding system capable of
securely and reliably distributing energy [15]. While Takeda et al. (2021) made it feasible
to trade electricity while considering the traders’ preferences, allowing transactions to be
completed with little effort [16]. The method was applied, completed automatically, to 19
homes and 9 plugin hybrid cars (PHV) in Higashi-Fuji, Japan. As a result, the study found
that prosumers were able to sell their excess electricity and that consumers preferred to
acquire renewable energy when possible. Yahaya et al. (2020) used blockchain technology
in a local energy market supported by P2P transactions and load scheduling optimization,
reducing electricity costs up to 65.17% [17].

Game theory is a mathematical model widely utilised for local energy markets to
solve intricate interactions between players [18]. This technique is used to analyse strategic
scenarios in which participants are free to pick the best economic outcome for themselves.
Amin et al. (2020) provided a framework for P2P electricity trading that encompasses both
non-cooperative and cooperative games while ensuring the stability of an IEEE 14-bus
system with a total of 22 participants (11 prosumers and 11 consumers) [19]. However,
Malik et al. (2022) presented a cooperative game theory framework with 100 participants
(50 prosumers and 50 consumers), a community energy storage system (CES), and 15
electric vehicle charging outlets [20]. According to the economic analysis, prosumers were
able to generate profit, while consumers minimise costs by adopting the algorithm.

A significant number of models can be found in the related works. These models were
tested, usually by simulation, and were able to achieve good quality results. However,
they fundamentally ignore, or do not properly address, the impact of forecasting algorithm
in P2P models. The presented works apply P2P energy transactions in future periods;
therefore, these models are supported by forecasting algorithms. Nonetheless, previous
works do not analyse the impact or the effect that forecasting errors can have in P2P
markets. In [21], a P2P energy market model was deployed in a real environment and the
authors identified the forecasting error as a variable that can impact the performance of
the market as well as can have a significant impact in the economic result of each end-
user. However, no further discussion was provided. To contribute to future P2P market
models deployment, this paper assesses the impact of forecasting models in a P2P market.
To do so, this paper will evaluate the performance of different forecasting models in an
already proposed P2P model to assess if the forecasting errors can significantly impact the
performance of the energy community members.

3. Materials and Methods

The main purpose of this paper is to test and evaluate the impact of forecasting
models in peer-to-peer energy transactions. The testing and evaluation will use real data
from real locations that are acquired using the previously proposed Microgrid Intelligent
Management System (µGIM) [22]. This system, as well as the forecasting models that will
be presented, was proposed by the authors in their individual works. In this paper, the
system and the models will be integrated and tested as a unique collaborative effort. Thus,
it tests and analyses the impact of forecasting errors in a peer-to-peer energy market in a
real case scenario.
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µGIM allows the monitoring and control of buildings using internet of things (IoT)
devices that are able to monitor and act on resources and environment. Although it can
work in standalone mode, as a building energy management system (BEMS), µGIM is based
on the Multi-Agent System (MAS) framework JADE (Java Agent Development Framework),
enabling µGIM agents to interact with each other. These interactions can provide means
for peer-to-peer energy transactions, as seen in [21]. Another advantage provided by the
µGIM is the ability to be deployed in single-board computers, such as Raspberry Pi, and
the ability to locally execute energy models, such as forecasting models.

Figure 1 shows the layered architecture of a µGIM agent. From bottom to top, the
three first layers are responsible for the agent’s connectivity to outside the building. The
µGIM agents use a virtual private network (VPN) where agents and service providers are
located. The Jgroups Java library is used for agents and services discovery (for instance, to
enable the discovery of the JADE MAS provider). The MAS layer is provided by JADE to
enable the registration and interaction of agents in the MAS.
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Figure 1. µGIM architecture viewed in layers.

The operational layer is responsible for the core of µGIM agents, allowing the persis-
tency of data, a shared internal memory system, the integration of IoT devices, a logging
system, a REST-based application programming interface (API), and a graphical interface
using the console of the single-board computer—the operating systems for single-board
computers compatible with the µGIM do not have graphical interfaces, and only console
access is possible. IoT device integration is a set of drivers that can be used to integrate
market available devices and custom-made devices; for this paper, the hypertext transfer
protocol (HTTP) will be used.

The energy strategies layer is the key aspect of µGIM agents, as it provides the
integration of energy models on top of the operation layer, meaning that energy strategies
have direct access to IoT devices, real-time and historic data, and internal memory. Internal
memory is a tag-based execution memory system (i.e., without data persistence) that can be
accessed and is editable by all µGIM modules. By using internal memory, energy strategies
can share information among them. The energy strategies can be one of two types: time-
based and context based. The time-based are strategies that are triggered at specific hours,
using a crontab-based approach, to define triggering periods. Time-based strategies can be
used to integrate scripts, such as forecasting models, self-assessment algorithms, security
checking mechanisms, and energy profiling models. Context-based strategies can be linked
to defined events and are executed every time an event is detected. Context-based strategies
can be used to integrate scripts, such as energy balancing models, demand response events
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participation, real-time energy resource optimization, and real-time resources prioritization
algorithms.

The top layer is the participation layer that implements the necessary mechanisms
to enable µGIM agents to actively participate in microgrids, energy communities, and
smart grids. By default, µGIM registers all the IoT devices in Open ADR (Open Automated
Demand Response) standard internal virtual end node (VEN). Additionally, µGIM also has
mechanisms to enable participation in demand response programs and transactive energy
models developed by researchers. This enables the test and validation of newly proposed
models. In this paper, a peer-to-peer model will be implemented in the transactive energy
block, which will be supported by energy strategies for energy forecast, and by the MAS
infrastructure that will allow the interaction between entities.

3.1. Energy Strategies

The use of energy strategies is a significant feature in µGIM, as it provides the ability
to include scripts coded in Java, R, or Python. To perform this, the integration of such
scripts need to implement a Java interface class named IEnergyStrategy. This interface class
can be seen in Figure 2a, where the methods can be described as follows:

(1) public void executeAlgorithm(uGIMcore core)—this is the main function that will be
executed at the triggering of the energy strategy, which can be time-based or context-
based. If the script is in R or Python, the developer should use the connection drivers
available in Java to connect to R or Python code (µGIM provides examples to ease this
integration);

(2) public Map < String, String > getFields()—this function is needed for data persistence
and to obtain results of the energy strategy. To perform this, getFields() should provide
a description of the variables that the developer wants to store in the database. The
description of the variables should be provided by a map with the variable’s name
and its data type (e.g., int, float, varchar(20));

(3) public Map < String, String > getFieldsValues()—the getFieldsValues() returns the
current values of the variables described in getFields().
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To implement the interface class IEnergyStrategy, the developer needs to implement
the three identified methods. However, the getFields and getFieldsValues methods can
be left empty (i.e., only with ‘return null’). This is because these methods are only used
in energy strategies that are tagged in the configuration file as storable, meaning that the
identified values will be persisted in the database every time the energy strategy is executed.
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In Figure 2b, it is shown how energy strategies are configured in the configuration file
that will be read by µGIM to create an object of UGIMcore class. This object is unique to
the agent, and it provides access to the entire configuration as well as common methods,
such as the real-time energy data and a list of IoT devices integrated in the agent. The
configuration of the energy strategy mechanism is composed of the monitoring period and
the list of energy strategy available. The monitoring period, in milliseconds, indicates the
time interval where the µGIM agent evaluates all energy strategies and checks if these need
to be executed. For each energy strategy, a definition of a description is needed, which is a
unique tag without spaces that is used internally to acquire the result of the strategy. The
list of restrictions and conditions determine the activation rules for the energy strategy. To
execute the energy strategy, all restrictions need to be met and at least one condition needs
to be valid. As it is a time-based energy strategy, the configuration is set as a cron-based
nomenclature, stating that the energy strategy will be executed every hour on the 15 min
mark. The action tag defines the name of the class that implements the interface class
IEnergyStrategy of the energy strategy. Additionally, the store tag defines if the result of
the energy strategy needs to be persisted in the database.

The input ‘core’ variable of executeAlgorithm aggregates pointers to every thread
that is monitoring and controlling IoT devices, as well as to another pointer in the internal
memory of the µGIM. This enables energy strategies to access real-time values from IoT
devices and also act on IoT devices. In this paper, the major use will be on historical data,
which are also accessible through the “core” variable.

The energy strategies that will be employed are forecasting algorithms that use the
“core” variable to access historical data from each IoT device that stores energy data. The
forecasting algorithms will be executed using historical data. Furthermore, the results of the
strategy will be made available in the internal memory tag “forecast.[time].[period].[model]”,
where [time] represents the time of the day, in minutes, for which the forecast is applied,
[period] represents the size, in minutes, of the forecast period, and [model] identifies the
forecasting model used. Examples of internal memory tags are forecast.0.60.SVM1 and
forecast.120.15.ANN1.

3.2. IoT Devices for Households Monitoring

The integration of IoT devices in the µGIM agent is performed in the IoT driver
block, where several drivers can be used to manage different communication and inte-
gration protocols. The currently available protocols include HTTP (for representational
state transfer-based (REST-based) APIs), message queuing telemetry transport (MQTT),
Modbus/TCP (transmission control protocol), and Modbus/RTU (remote terminal unit).
However, similar to energy strategies, the developers can create their own drivers if these
follow the guidelines provided by µGIM.

In the context of this work, HTTP drivers will only be used to connect to already
established supervisory control and data acquisition (SCADA) systems or Wibeee devices
(https://wibeee.com, accessed on 11 May 2022). Wibeee devices provide an IoT solution
for energy monitoring with easy installation in households. Although these devices are
connected to the cloud, µGIM will use the API available in the local network to enable
energy monitoring. For this paper, µGIM was updated to enable the discovery of Wibeee
devices in the local network, meaning that the integration will occur automatically when
powering up systems. Figure 3 shows the installation and necessary components and
connections that were used in real households.

https://wibeee.com
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The µGIM agent monitors energy data every 5 s and stores it in a local database every
30 s, using the average or sum of values, depending on the data type (e.g., energy will
be summed, and voltage will be averaged). These data will then be available for energy
strategies and, consequently, for models of energy forecasts and peer-to-peer trading.

3.3. Energy Forecasting Models

Several methods have been proposed in the literature for energy forecasting. The
performance and adequacy of the methods depend significantly on the resource to predict
(e.g., photovoltaic generation, wind generation, or power demand), the time horizon,
and the granularity of the predictions. Afterward, for some methods, the definition of
convenient features and hyper-parameterization can have a significant impact on the final
results.

In this paper, four forecasting models will be used to evaluate the peer-to-peer energy
transactions. Two of these models were already proposed in [23] and were designed having
in mind their execution in single-board computers. Two new models based on recent
forecast methods will also be used to perform the load and photovoltaic generation forecast.
The four models will be utilised in parallel to evaluate the peer-to-peer market performance
of each end-user.

3.3.1. Mathematical and Support-Vector Machine Models

In [23], two different models were proposed: one based on a mathematical approach
and another based on a support-vector machine (SVM) approach. The mathematical model
uses the average of the last ten days and then applies an adjustment to the current day. The
SVM model also uses the last ten days to forecast the hour-ahead value. These two models
are used in this work as a basis to compare the results of the two novel forecasting models
(XGBoost and TabNet) that will be described in the next sections. XGBoost was selected
based on some recent studies that show its good performance when compared with other
methods (studies presented in Section 3.3.2). TabNet was selected due to its aptitude in the
parameterization of the model [24]. This can be important in the present context due to the
diversity of consumption/generation profiles of the consumers/prosumers. The models
used were proposed in [23]; however, these have not yet been used in peer-to-peer energy
transactions, allowing this work to evaluate the performance of such forecasting models in
peer-to-peer energy transactions.

3.3.2. eXtreme Gradient Boosting (XGBoost)

eXtreme Gradient Boosting (XGBoost) is an established approach for tackling tabular
data [25]. It is a modified decision tree algorithm that features improvements in how it
handles and scales with input data relative to the other existing gradient-boosted decision
tree (GBDT) algorithms. Being an ensemble algorithm, it relies on building multiple weak
models to build a robust one.

The XGBoost algorithm was designed to take into account the sparsity of data, i.e.,
missing records, and features various improvements on how the data are handled to
extract as much computational value as possible. This turns XGBoost into a robust model
that strike a good compromise between model performance and training times. Authors
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mention the importance of value approximation, especially in cases where data do not fit
into memory and introduce an approximation algorithm to perform the data split more
efficiently for building the tree’s branches.

While many models are considered black-box approaches, the XGBoost algorithm has a
term on its objective function that penalises model complexity, promoting the development
of more interpretable models from which behaviour is more easily explained.

The XGBoost algorithm is an extension of the regular Gradient Tree Boosting algo-
rithms. This family of algorithms is reliant on the ensemble concept, where multiple weaker
models are used together to form a stronger model. The training of the algorithm can be
separated into splitting, tree building, tree addition, and model evaluation, as illustrated in
Figure 4.
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Decision trees rely on feature split to perform efficient learning, which can prove
to be difficult depending on the problem’s magnitude. XGBoost uses an approximation
algorithm to reliably find solutions and learn trees, although the authors of the work
mention that it works with the traditional greedy approach available for smaller dimension
problems.

Furthermore, the authors introduce a method for finding the best candidates for
feature splitting that is also capable of handling unbalanced data. The XGBoost algorithm is
also aware of data sparsity and makes use of this information to help the learning process.

For the resulting model, the trees are trained in an additive manner due to computa-
tional efficiency. The model is evaluated regarding its performance and complexity, more
specifically by the sum of errors and a complexity penalty term, with the objective of
minimizing this quantity. The authors mention that the introduction of a penalty term
smoothens learning and can help prevent overfitting.

Finally, this method has seen multiple uses in various areas, such as energy [26],
structural integrity [27], and health [28]. More specifically, in the forecast domain, XGBoost
has been applied for short-term wind production forecast [29], outperforming traditional
artificial neural network (ANN), long short-term memory (LSTM) recurrent neural network,
and temporal convolutional networks (TCN) models and also presenting extremely good
results for time-series forecast in terms of results, computational resources, and memory
use for load forecasting [30]. In [31], XGBoost is used for photovoltaic generation. The
results of XGBoost are compared with random forest and decision trees, presenting better
results in terms of root mean square errors.

3.3.3. TabNet

Motivated by the recent successes of the transformer architecture and mechanisms
such as attention and the lack of dominance of deep learning in tasks involving tabular data,
TabNet was created [32,33]. The TabNet architecture thus attempts to leverage the power
of deep learning in conjunction with said mechanisms, seeing success in applications, such
as load forecasting and other fields such as fraud detection [34,35].

Capable of dynamically learning feature importance, TabNet effectively performs
feature selection and produces outputs with a single architecture. This is performed by
using an attention mechanism that is inspired by decision tree feature splitting. This
determines the most prominent features to use at a certain moment, while at the same time
being able to provide insights on model behaviour and helping to prevent overfitting.
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Being a deep learning architecture, it inherits many advantages such as gradient-based
learning and scalability with data and is able to represent nonlinearities through higher
dimensionality. Finally, the authors elaborate on the possibility and advantages of using
TabNet with unsupervised pre-training. TabNet uses raw numerical features of tabular
data (not normalised) as the learning mechanism. In TabNet, normalisation and feature
extraction are available in the architecture due to the Batch Normalization layer [36] that
filters raw data. Additionally, several transformer blocks are used to learn relevant features
to be used in the forecast model [34]. The instance-wise feature selection is performed by a
deep learning block that consists of a sequential attention mechanism and learnable masks.
Following this approach, the accumulated learned weights can be used to understand the
obtained outputs. Grid search, proposed in [33], is used to set hyperparameters values,
namely the number of hidden neurons in each block and the number of hidden blocks.

TabNet has been applied in different domains, such as health [37], fraud detection [38],
and energy [39]. Concerning the application of TabNet in the forecast domain, it is possible
to mention the use for load forecasting [34] presenting similar results to other methods but
without the need of performing complex feature engineering.

3.4. Peer-to-Peer Transactions

This paper will present an impact analysis of the forecasting algorithms in energy
sharing. To enable energy sharing among players in a virtualised energy community, an
auction-based peer-to-peer energy transaction model will be used. The peer-to-peer model
will be based on the discriminatory-price auction (DPA) model proposed in [7]. This type
of auction proved to be one of the most efficient regarding the relationship between energy
transacted and energy available. Additionally, it proved to be the one that brings the most
benefits to sellers. DPA is a pay-as-bid multi-unit auction where customers can present
curving bids. This type of auction does not have a market-clearing price, as the customer
pays the price they bided.

Peer-to-peer energy transactions are performed hourly on an hour-ahead basis, fol-
lowing the proposed model in [21]. At each hour, the auction synchronizer will query and
collect the information regarding players that have energy to be sold in the peer-to-peer
market. Based on hour-ahead forecasting, the agents of the µGIM will specify if they need
to buy or sell energy—only a single intention per hour is allowed, meaning that agents
cannot sell and buy energy within the same period. Hour-ahead forecasting will be applied
to energy consumption and energy generation from photovoltaic systems. The difference
between the forecasted consumption and generation will define the position of the agent
(i.e., as a seller or as a buyer) and will indicate the amount of energy that needs to be traded.

The auctions will be performed by each seller according to the order given by the
auction synchronizer. In each auction, the auctioneer will broadcast, among buyers, the
amount of energy available and the minimum price. The interested buyers will submit a
single bidding curve according to the following equation:

P =

(
−Ebp

aac

Eb
aac

+ 1

)
×
(

Lmax
aac − Lmin

aac

)
+ Lmin

aac (1)

where P represents a linear decreasing marginal price to be bid by agent a in auction ac for
an energy amount of Ebp

aac . Variable Eb
aac represents the total amount of energy that agent a

will try to purchase in auction ac. The variables Lmax
aac and Lmin

aac represent, respectively, the
highest and lowest price offer of agent a in auction ac. To create the curving bid, the value
of Ebp

aac will be iterated to decrease 100 Wh each cycle.
For the implementation executed in this paper, the values of Lmax

aac and Lmin
aac will be

calculated using a 20 % margin over the hourly energy prices to buy and sell energy from/to
the main grids. After receiving the bidding curves, the auctioneer (i.e., the seller) will order
the bids and distribute the energy available among the highest bids until there is no more
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energy to bid on. When the auction is closed, the auction synchronizer will choose another
seller to start their auction until there are no more sellers available.

4. Case Study and Results

The case study presented in this paper was deployed using the µGIM solution. The
case study integrated the five small offices described in [18] and added the existence of
three residential households. The small offices are equipped with photovoltaic generation
and will be able to sell energy in the peer-to-peer energy market, while the households only
have consumption. All the buildings in this case study are real and are located in Porto,
Portugal. Figure 5 shows the energy community created for this paper. Although the small
office buildings are physically connected with electrical lines, the households do not have a
physical connection among them nor with the small offices. The community is virtually
created by the µGIM solution, which uses the VPN to enable communication and energy
transactions among the seven buildings.
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To test the peer-to-peer model of Section 3.4, the configurations of the forecasting
algorithms of Section 3.3 were deployed in µGIM, where each agent was installed in a
single-board computer Raspberry Pi 3 Model B. Peer-to-peer energy transactions were
performed on an hour-ahead basis. To compare the impact of the forecasting algorithms,
all algorithms will be executed for each hour, and the auctions will be executed by taking
into account the result of each forecast. This means that multiple P2P markets will be
executed for the same hour in order to have a comparison using the same base. This is
shown in Figure 6 where forecasting and P2P-related actions are represented. The auction
synchronizer is the role of Agent 1. This is a necessary role to enable the synchronization
of auctions in order to prevent the parallel execution of auctions. This role is performed
automatically by the µGIM and does not impose any limitation on the agent; in other
words, the agent can still be a buyer or a seller in auctions (more on this issue can be read
in [21]). As shown in Figure 6, the P2P model is executed four times in total and once for
each forecasting algorithm: mathematical model, SVM model, TabNet model, and XGBoost.
This repetition of auction in each hour will allow us to test several forecasting models in
the same scenario using the same P2P model.
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4.1. Mathematical and SVM Models

The mathematical and the SVM models were used in this case study to compare the
results of the proposed forecasting algorithms and assess their impact in peer-to-peer energy
trading. By comparing the scenario where no peer-to-peer transactions are performed with
the scenario where they are, Table 1 demonstrates that all agents achieved an energy cost
reduction. Agent 8 presents, in both forecasting models, the lowest cost reduction of 0.13%.
This is also the agent with the least amount of energy that attempted to transact in the peer-
to-peer market. According to Figure 5, Agent 8 does not have local generation, meaning
that the agent sought out to buy 20.486 kWh during the week. The agents with a significant
amount of surplus generation, Agents 4 and 5, presented the highest reduction in their
energy costs over the week.

Table 1. Energy community results considering the mathematical and the SVM models.

Agent ID
Mathematical Model SVM Model

P2P Target
(kWh)

Energy Cost
Reduction of P2P (%)

P2P Target
(kWh)

Energy Cost
Reduction of P2P (%)

Agent 1 179.443 1.37 169.092 1.40
Agent 2 346.869 1.47 333.390 1.35
Agent 3 394.922 2.43 399.452 2.10
Agent 4 33.752 19.92 32.083 20.60
Agent 5 102.403 53.48 99.539 55.06
Agent 6 78.199 2.01 79.705 1.88
Agent 7 25.217 1.11 25.726 1.14
Agent 8 20.486 0.13 20.912 0.13
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Regarding energy reductions, both forecasting algorithms are similar to each other.
The mathematical model resulted in a community reduction average of 10.24%, and the
SVM model culminated in a community reduction average of 10.46%.

4.2. TabNet Model

The TabNet model was executed every hour during the case study and its forecasts
were used in the P2P energy market. Table 2 shows the results for the energy community
considering the use of TabNet model. The P2P target column indicates the total amount of
energy that an agent tried to transact during a seven-day period—this also includes the
night periods when all agents intended to buy without having an available seller. This
explains the significant gap between this value and the actual amount transacted. The grid
transactions identify the amount of energy that was exchanged with the grid operator. As
observed, by applying the P2P market, Agents 1, 2, 3, 6, 7, and 8 decrease their demand
from the grid. However, the agents with surplus generation (i.e., Agents 4 and 5) increase
their grid demand. This can be explained by the forecasting errors that led the agents to
sell more than what they had and, consequently demanding them to purchase energy from
the grid while selling their renewable energy to other agents. Agents 4 and 5 also present a
significant reduction in the amount of energy injected into the grid due to selling it directly
to other agents.

Table 2. Energy community results considering the TabNet model.

Agent ID P2P Target
(kWh)

P2P
Transacted

(kWh)

Grid Transactions
(w/out P2P) (kWh)

Grid Transactions
(w/P2P) (kWh)

Energy Cost
Reduction of

P2P (%)From To From To

Agent 1 172.369 7.634 173.490 0.000 165.855 0.000 1.60%
Agent 2 228.205 8.292 344.738 0.000 336.446 0.000 0.87%
Agent 3 384.121 22.862 383.656 0.000 360.794 0.000 2.15%
Agent 4 31.097 5.265 26.210 6.003 26.650 1.179 20.74%
Agent 5 98.651 38.199 59.533 43.052 59.671 4.990 56.79%
Agent 6 77.334 3.807 77.689 0.000 73.882 0.000 1.76%
Agent 7 25.115 0.723 25.276 0.000 24.553 0.000 1.02%
Agent 8 20.740 0.145 20.884 0.000 20.739 0.000 0.26%

As a result, all agents were able to decrease their energy costs by applying a P2P
market. The reduction in energy costs varies from 0.26% to 56.79%, benefitting agents
with local renewable generation. This is a consequence of the DPA model, which has been
shown to be beneficial for sellers. The community energy cost reduction was 10.65%.

4.3. XGBoost Model

Similarly to TabNet, the XGBoost model was also applied in a P2P market using
the same auction model. Table 3 shows the community results for the P2P market when
applying XGBoost. The P2P target of Table 3 differs from Table 2 due to being a direct
consequence of the forecasting results. Only the grid transactions without P2P are the same
as Table 2. By using XGBoost, Agents 4 and 5 were able to decrease the amount of energy
sold to the grid, ending the week with, respectively, 0.199 kWh and 1.848 kWh injected into
the grid. Nonetheless, energy cost reductions are similar to TabNet, ranging from 0.24% to
57.43%. The community energy cost reduction was 10.89%.
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Table 3. Energy community results considering the XGBoost model.

Agent ID P2P Target
(kWh)

P2P
Transacted

(kWh)

Grid Transactions
(w/out P2P) (kWh)

Grid Transactions
(w/P2P) (kWh)

Energy Cost
Reduction of

P2P (%)From To From To

Agent 1 173.786 8.479 173.490 0.000 165.010 0.000 1.76%
Agent 2 189.504 6.582 344.738 0.000 338.156 0.000 0.68%
Agent 3 387.289 26.842 383.656 0.000 356.814 0.000 2.49%
Agent 4 32.267 6.152 26.210 6.003 26.550 0.199 21.20%
Agent 5 101.262 41.306 59.533 43.052 59.636 1.848 57.43%
Agent 6 77.618 4.521 77.689 0.000 73.168 0.000 2.05%
Agent 7 25.244 0.891 25.276 0.000 24.385 0.000 1.23%
Agent 8 20.856 0.136 20.884 0.000 20.749 0.000 0.24%

4.4. Overall Results and Discussion

The forecasting models are used by µGIM agents to evaluate the performance of
the P2P energy sharing market inside the energy community. To assess the impact of
the different forecasting models, Figure 7 shows the overall results regarding the relative
absolute error (RAE) of forecasting models, as well as the average reduction in energy
costs in the energy community. The use of XGBoost benefited Agents 1, 3, 4, 5, 6, and
7, while Agent 2 achieved higher reductions using the mathematical model, and Agent
8 accomplished a higher reduction using TabNet. With the exception of Agent 2, it can
be seen that the forecast algorithm that has the highest energy reduction is the one that
presents the lowest error. However, in Agent 2, the lowest forecast error was the SVM
model (with a RAE of 201.27%), but it was the mathematical model (with a RAE of 301.91%)
that achieved a higher energy reduction cost. The forecasting models of XGBoost and
TabNet were not able to correctly learn and forecast the Agent 2′s consumption due to their
unpredictability. Agent 2 integrates common office spaces where the number of workers is
not known and that changes every day.

Figure 7 also demonstrates that the forecast error and the energy cost reduction are
related but not proportional. The mathematical error of the community is 2.8-times higher
than the TabNet error (i.e., the mathematical forecast was 126.14% worse). However, the
reduction costs of the mathematical model were 10.24%, while TabNet was 10.65% (i.e., the
TabNet result was only 4% better).

The four forecasting models had close results in the community’s energy cost reduc-
tion from 10.24% to 10.89%, even though the forecast errors were significantly different.
By analysing the energy that was transacted in the P2P market, it can be seen that the
values are also similar (mathematical model: 104.23 kWh; SVM: 94.10 kWh; TabNet: 86.93
kWh; XGBoost: 94.91 kWh), rendering the community’s energy cost reduction equally
similar. However, this is not the case of the agents’ individual performance between the
mathematical model and the XGBoost model, where energy costs have a variation between
−53.50% in Agent 2 and 93.42% in Agent 8. However, all agents have a positive energy cost
reduction in all energy forecasting algorithms, as seen in Tables 1–3. The negative energy
cost variation value of Agent 2 is due to the performance of XGBoost model, which is the
worst model to be applied to this agent. If the opposite analysis was performed, then it
will indicate that, by applying the XGBoost model to the application of the SVM model
(that is the model with the best forecast error), Agent 2’s energy cost reduction increased by
97.71%. These results are in line with the motivation and findings of our research that state
that P2P energy markets will significantly depend on energy forecast errors. This reinforces
the need of better studying P2P energy market models that can handle energy forecasting
errors and uncertainty. Moreover, each end-user should adjust their energy forecast model
to their specific needs and context.



Energies 2022, 15, 3543 14 of 18Energies 2022, 15, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 7. Relation between forecast errors (RAE) and energy cost reduction: (a) Agent 1, (b) Agent 
2, (c) Agent 3, (d) Agent 4, (e) Agent 5, (f) Agent 5, (g) Agent 6, and (h) Agent 8. 

To evaluate forecast errors, this study used RAE and the mean absolute error (MAE), 
as shown in Table 4. These two accuracy measurements reinforce the idea that a smaller 
error in the forecast, regardless of how small, can reflect a greater efficiency and return on 
the P2P market. Agent 2, due to its imperfectability, is the agent that presented a signifi-
cantly higher error; this must be considered when analysing the community’s averages. 
When examining the error agent by agent, the common rule found was that the forecast 
with highest error was the mathematical model, and the forecast with the lowest error 
was the XGBoost model. Hence, the XGBoost model was able to have the highest commu-
nity energy cost reduction even though the average community forecast error was slightly 
higher than the TabNet model. 

  

Figure 7. Relation between forecast errors (RAE) and energy cost reduction: (a) Agent 1, (b) Agent 2,
(c) Agent 3, (d) Agent 4, (e) Agent 5, (f) Agent 5, (g) Agent 6, and (h) Agent 8.

To evaluate forecast errors, this study used RAE and the mean absolute error (MAE), as
shown in Table 4. These two accuracy measurements reinforce the idea that a smaller error
in the forecast, regardless of how small, can reflect a greater efficiency and return on the
P2P market. Agent 2, due to its imperfectability, is the agent that presented a significantly
higher error; this must be considered when analysing the community’s averages. When
examining the error agent by agent, the common rule found was that the forecast with
highest error was the mathematical model, and the forecast with the lowest error was the
XGBoost model. Hence, the XGBoost model was able to have the highest community energy
cost reduction even though the average community forecast error was slightly higher than
the TabNet model.
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Table 4. Energy forecast errors.

Agent ID
Mathematical Model SVM Model TabNet Model XGBoost Model

RAE MAE RAE MAE RAE MAE RAE MAE

Agent 1 66.65% 339.56 45.93% 233.98 9.23% 47.04 2.81% 14.30
Agent 2 301.91% 677.85 201.27% 451.90 308.95% 693.65 411.55% 924.01
Agent 3 199.72% 743.39 140.60% 523.35 9.12% 33.96 7.42% 27.60
Agent 4 46.80% 63.08 30.90% 41.64 18.14% 24.45 9.52% 12.84
Agent 5 33.75% 192.37 23.71% 135.12 7.12% 40.60 3.65% 20.81
Agent 6 42.38% 146.38 30.55% 105.52 1.60% 5.51 1.34% 4.61
Agent 7 43.21% 48.20 30.57% 34.10 2.24% 2.50 1.88% 2.09
Agent 8 82.28% 38.81 62.42% 29.44 4.74% 2.24 3.97% 1.87

Average 102.09% 281.21 70.74% 194.38 45.14% 106.24 55.27% 126.02

There is another explanation that needs to be accounted in the result analysis, which
involves the incorrect transactions that were made by each forecast algorithm. A common
issue in P2P energy markets is obtaining a forecast that contradicts the market’s position,
which could happen when considering real values. For instance, during an hour with
higher consumption, if the forecasts predict that an energy surplus scenario will occur, then
the energy surplus forecasted will be sold. However, in real-time, the agent will need to
purchase energy from the grid to satisfy its demand in addition to the energy it sold in the
P2P market. The same can occur in the opposite scenario, where the forecasts predict an
energy deficit but, in fact, the period will have an energy surplus. Another issue is buying
too much or too little in the P2P market, meaning that the agent will need to sell or buy the
difference to/from the grid in real-time. These types of errors result in a high impact on the
energy cost and must be avoided. This can be performed by using lower error forecasting
algorithms or by implementing a safety flexibility margin in the P2P market—however,
this may decrease the efficiency of transactions.

In the present case study, 124 incorrect sales were completed by Agents 4 and 5 in
periods where they sold energy in the P2P market and were required to purchase it back.
The mathematical model produced 18 incorrect sales by Agent 4 and 26 incorrect sales
by Agent 5. The SVM model reduced incorrect sales to 14 and 20, respectively, relative
to Agents 4 and 5. The XGBoost reduced the number to 18 and 7, respectively, relative to
Agents 4 and 5. Moreover, TabNet was the forecasting model with the lowest number of
incorrect sales, producing 15 incorrect sales by Agent 4 and 6 incorrect sales by Agent 5.
However, the incorrect sales, by their own, do not dictate the performance of the agents. For
example, Agent 5 achieved a higher cost reduction with the XGBoost model than with the
TabNet model, where it had one less incorrect sale. The reason for this is that the economic
losses from incorrect sales can be diluted during the week. Tables 2 and 3 show that this
happens with P2P transactions. Agent 5 significantly decreased its energy injected into
the grid, and with the TabNet model, 88.41% of the surplus energy was sold in the P2P
market. However, with the XGBoost model, Agent 5 was able to transact 95.71% of its
surplus energy in the P2P market, increasing its overall cost reduction.

5. Conclusions

This paper applies a discriminatory-price auction model for peer-to-peer energy
transactions in a small community of five small offices and three residential households.
This deployment was made possible by using multi-agent-based solution µGIM, which
enabled the deployment of energy management systems in end-users. With five prosumers
and three consumers, the community was able to transact energy among peers.

To test and evaluate the peer-to-peer energy transaction model, four independent
energy forecasting models were used to assess the amount of energy each agent must
transact in the peer-to-peer market. These algorithms are as follows: a mathematical-based
model, a support-vector machine model, an eXtreme Gradient Boosting model, and a
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TabNet model. The impact of these forecasting models in the energy transaction model
was analysed by taking into consideration the community view and the end-user view of
economic impact and forecasting errors.

The results demonstrated that the application of peer-to-peer energy markets leads to
a reduction in energy costs by simply allowing end-users to pursue profits and/or cheaper
energy sources/sellers. The results show an energy cost reduction, within the community,
ranging from 10.24% to 10.89%, depending on the energy forecast model used. Moreover,
the results were coherent, demonstrating that the energy forecast model with less errors
usually results in a higher energy cost reduction for the end-user.
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