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Abstract: The safety case for a radioactive waste repository relies heavily on results obtained by
numerical models that assess the long-term performance of the engineered and natural barrier
systems. Given that important engineering and public policy decisions are based on these models,
it is essential that we critically evaluate their abilities and limitations, and thus justify the level of
confidence we have in the inferences drawn from the modeling. In this article, we discuss some of
the issues surrounding the modeler’s attempts to test, corroborate, confirm, and verify numerical
models—a process sometimes referred to as model validation. This wide-ranging topic is approached
by first examining its deep roots in the philosophy of science and hypothesis testing. However, the
application of these principles to radioactive waste isolation calls for a more pragmatic approach,
which has the narrower goal of corroborating site-specific models and their usefulness for a specific
purpose. We focus on the practical aspects of validating hydrogeological models that are used to
understand the evolution of the repository system. We will make the case that the responsible use of
numerical models requires a sufficient understanding of the quality and robustness of the simulation
results, with direct implications for how these results need to be interpreted, and how they can (or
cannot) be used in support of important policy decisions.

Keywords: pragmatic model validation; safety assessment; radioactive waste isolation; simulation

1. Introduction

Assessing the performance of a geologic repository for the disposal of radioactive
waste is a complex undertaking. The system to be examined consists of various natural
features that interact with engineered components. A multitude of coupled physical,
chemical, biological, and thermal processes must be considered, as they potentially affect
the release of radionuclides from the waste canisters, and their transport through the
engineered barrier system and the geosphere to the accessible environment. Safety-relevant
features and processes extend over a wide range of spatial scales—from molecular to site to
regional scales. Moreover, they include short-term events as well as processes that evolve
over geologic times. Due to this expansive range of spatial and temporal scales and the fact
that the repository is to be built in the deep subsurface with ideally minimal perturbation
of the site, many of the properties cannot be measured with high resolution.

Numerical modeling is an essential tool in our efforts to understand the evolution
of the disposal system and the risk it might pose to humans and the environment. A
site-specific model—based on established physical principles as well as relevant site charac-
terization data—provides insights into the interactions among the many linked components
and coupled processes and their impact on repository behavior. It also allows one to calcu-
late variables that cannot be directly observed, to forecast the evolution of the repository
system, and to examine alternative or unlikely scenarios. It is understood that simulation
results and inferred statements about exposure risks (or any other performance metric) are
inherently uncertain; this uncertainty must be appropriately managed and communicated
to decision makers, stakeholders, and the public.
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Acknowledging the uncertainty in any estimation of repository performance naturally
leads to the question as to whether there is a sufficient basis for our confidence in the model
results, and what evidence needs to be presented to support the assertion that a specific
model can be relied upon for making important design, engineering, or public policy
decisions. To address this question, such a model should undergo a formal process referred
to as “model validation.” Other terms used in this context include “verify”, “validate”,
“corroborate”, “confirm” and expression such as “confidence building”. These terms are
often put in quotes to indicate that they are not meant in their literal sense, as they imply
that the model makes a definite statement about the absolute truth of a physical system.
We omit the quotes as it is the intent of this discussion to clarify the meaning and limits
of these terms when describing the quality of a model used in performance assessment
studies (We concur with authors who state that the term “validation” could be misleading
and should be replaced with a more neutral term, such as “evaluation.” However, while
“model evaluation” may be preferable, existing literature and guidelines for modeling
practitioners have almost exclusively used the term “validation.” We therefore continue
using this established term, also to indicate that the concept of “pragmatic model validation”
developed in this article attempts to address the validation issue as currently discussed in
the context of nuclear waste isolation).

A frequently cited definition of model validation is the one provided by the Inter-
national Atomic Energy Agency (IAEA) [1]: “Model Validation: The process of determining
whether a model is an adequate representation of the real system being modelled, by comparing the
predictions of the model with observations of the real system.” This definition not only declares
what the main purpose of model validation is, but also explicitly states what approach
should be used. Other definitions of validation are quite consistent in the key elements
they contain, including: (a) the relation between the model and the real system; (b) the
need for a comparison between model predictions and measured data; (c) the model’s
limited domain of applicability; and (d) the importance of uncertainty quantification. Some
definitions emphasize one aspect over the other, or are more or less prescriptive about the
evidence that needs to be presented to satisfy validation acceptance criteria.

This article presents our perspective on the practicality of model validation in the
context of quantitative assessments used for decision support in the highly regulated
environment of radioactive waste management. We start with a short review of the philo-
sophical roots of the discussion and some critical commentary (Section 2). We then highlight
the necessity for careful model evaluation (Section 3) and outline the concept of “pragmatic
model validation” (Section 4). We provide a list of elements that could be applied as part of
this pragmatic validation approach (Section 5), before we summarize and conclude (Section 6).

2. Criticism of Verifiability and Model Validation

The philosophical discourse about the fundamental (im)possibility of establishing the
truth of any proposition, specifically one made about a physical system, has a long history
which continues today. In the philosophy of science, the question of how the truth of a
scientific statement, hypothesis, or theory can be verified has been expanded to the more
fundamental question of whether such verification is possible even in principle. Some
argue that, at best, a theory (or model) can only retain the status of being “not invalid”. The
concept of falsifiability, proposed by Popper [2], suggests that for a theory to be considered
scientific, one must be able to test it in such a way that it could be demonstrated to be
false. Falsifiability is not only formulated as an explicit opposite to verifiability, but also
as a criterion for demarcation between science and non-science, and as a methodological
guiding rule for research. While it is generally accepted that theories cannot be verified,
falsifiability has also been questioned. In essence, taking the discrepancy between an
observation and a prediction as a sufficient criterion to falsify a theory (or a model) can be
misleading, as any observation is itself laden with auxiliary hypotheses.

Kuhn [3] argued that experiments and observations are determined by the prevailing
paradigm, and—conversely—the discrepancy between observational data and a prediction
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do not necessarily refute the underlying theory, as competing theories could be inherently
incommensurable. Consequently, scientific truth cannot be established by objective criteria,
but is determined by scientific consensus, which may change rather abruptly during a
paradigm shift. Kuhn [4] also proposes to examine the following five characteristics as
criteria for theory choice, noting that the evaluation of these criteria remains subjective: a
theory should be (1) accurate, i.e., empirically coherent with observations; (2) consistent,
both internally and externally with other theories; (3) of broad scope, extending beyond
what it was initially designed to explain; (4) the simplest explanation (“Occam’s razor”);
and (5) fruitful in that it discloses new phenomena or relationships among phenomena.

The debate over the verifiability or falsifiability of theories ranges from thought-
provoking to contentious; it is beyond the scope of this commentary to summarize this
debate or to take a position, other than acknowledging that attempts at validating a
numerical model will most likely face fundamental difficulties similar to those encountered
by scientific theories. The similarities and differences between theories and models are
discussed in the influential article by Oreskes et al. (1994) [5], who examine the issue of
verification, validation, and confirmation in the context of numerical models in the earth
sciences—with frequent references to validation efforts for models developed to assess the
safety of a repository for radioactive wastes.

Oreskes et al. (1994) [5] reach the conclusion that “Verification and validation of numerical
models of natural systems is impossible.” They arrive at this statement by observing that all
natural systems are open, with distributed input parameters that are incompletely known
or conceptually inconsistent with the definition and scale on which they might be directly
measured or inferred using auxiliary hypotheses, models, and assumptions. Even if not
aiming for a statement that establishes truth (as the term verification implies), the legitimacy
of an application-specific model cannot be established, either. Validating a numerical model
by comparison of its predictions with observations only indicates consistency but does not
ensure that the model represents the natural phenomena [6]. While calibrating a numerical
model may signify that it is empirically adequate, reproducing past observational data
does not guarantee model performance when predicting the future, as any extrapolation
requires a change in the model structure, which in turn affects processes, temporal and
spatial scales, the influence of input parameters, and sensitivities of output variables. Even
if data not used for model calibration are reasonably well reproduced, the model cannot
be considered validated. This is referred to as the fallacy of “affirming the consequent,”
in which a necessary condition—matching the data—is mistaken as being a sufficient
condition—confirming the veracity of the model. While attaining empirical consistency
between the model-calculated and measured data may increase the confidence in the model,
it does not confirm that a particular model captures the natural world it seeks to represent.
Such confirmation is always partial, i.e., it only supports the probability of the model’s
utility relative to alternative models proposed to gain insights or make predictions.

Oreskes et al. (1994) [5] consider this terminology—verification, validation, and
confirmation—potentially misleading, specifically when used to indicate that the results of
a numerical model are reliable enough to support important public policy decisions. They
acknowledge that models may be useful to corroborate a hypothesis, to reveal discrepancies
in other models, to perform sensitivity analyses, and to guide further studies. They
conclude that models should be used to challenge existing formulations, rather than to
validate or verify their ability to make predictions about a physical system.

Another criticism comes from a direct comparison—as part of a post audit—of rel-
evant observations with predictions made by “validated” models that were developed
specifically to make these predictions. For example, in a series of articles [7–11], Bredehoeft
and Konikow found that a significant fraction of models made poor predictions due to
conceptual modeling errors. In these cases, new data revealed that the prevailing concep-
tual model was invalid, i.e., the models did not just require minor adjustments of input
parameters, but a fundamental change in key aspects of how they represent the natural
system. They specifically discuss “hydrologic surprises” that rendered an initial conceptual
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model of a proposed waste disposal site invalid [11]. Note that some of these arguments
have been rebutted [12–14].

Using alternative models may reveal the impact of such conceptual model uncertain-
ties. For example, Selroos et al. [15] examined the uncertainties of models that predict
groundwater flow and radionuclide transport from the waste canisters to the biosphere,
where the fractured crystalline host rock is simulated using alternative modeling methods,
such as stochastic continuum, discrete fracture network, and channel network approaches.
The three modeling approaches yielded differences in variability, but overall similar travel
times, release fluxes, and other performance metrics. They noted that the impact of concep-
tual uncertainty may be underestimated, as a common reference case was provided to the
participants of this study, potentially constraining the flow modeling.

Similarly, based on a consistent set of characterization data, multiple alternative
conceptual models of fracture flow and bentonite hydration were developed as part of
Task 8 of the SKB Task Force. Not only did the predicted times for complete bentonite
hydration vary over a relatively wide range, the modeling teams also developed different
views regarding the key factors affecting the overall system behavior and, consequently,
made different recommendations about research and site characterization needs [16].

Differences or inconsistencies between reality and its representation in a numerical
model are inherent in the modeling process and thus unavoidable. Any model is an
abstraction of the real system, which implies that it is based on conceptual decisions, the
choice of simplifying assumptions and the selection of input parameters with different
levels of uncertainty. Whether the errors introduced by such simplifications and deficiencies
can be considered acceptable depends fundamentally on the intended purpose of the model.
This is the reason why conceptualization is the key step in model development and also
the main target of a critical model validation effort.

As illustrated in this short summary, the mere possibility of model validation is being
questioned based on philosophical, historical, and practical considerations. While the
details of these arguments depend on the definition of the term “validation” and the
claims ascribed to a “validated model”, the various critics arrive at similar conclusions
and recommendations:

• It is fundamentally impossible to confirm that a site-specific model properly represents
the natural system [5–7,17–19];

• Models should not be used for predictive purposes, unless the prediction domain is
commensurable with the calibration domain; however, models are useful to challenge
the conceptual understanding, examine assumptions, explore what-if scenarios, and
perform sensitivity analyses [5,7,20–22];

• The term “validation” and similar terms should not be used, as they give a misleading
impression of predictive model capabilities [5,7,9,19,20,23].

Despite the fundamental challenges and criticisms summarized above, there is an
obvious mandate to carefully define approaches for the development and evaluation of
numerical models, and to build confidence in performance predictions that are used for
decision support. Heeding the cautionary remarks by its critics, we attempt to develop a
pragmatic approach to model validation.

3. The Need for Model Evaluation
3.1. The Nature of Models

A model is a purposeful, simplified representation of the real disposal system. During
the development of the conceptual model, each aspect of the system is suitably abstracted
in an iterative process, accounting for each factor’s impact on repository performance, and
the degree to which it can be supported by theory or site-specific data.

For site-specific simulations, it is essential to achieve an appropriate level of model
complexity, which is a trade-off between the complexity of the real system as far as it can
be observed or inferred, and the need to be commensurate with the requirements for the
model. A model can be oversimplified or overly complex (i.e., overparameterized). An
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oversimplified model fails to capture the salient features of the system to be modeled,
which likely leads to systematically wrong or overconfident predictions. Conversely,
while an overparameterized model is fundamentally able to better fit the data (at the
risk of overfitting), it results in highly correlated, highly uncertain parameter estimates
that lead to model predictions that are also highly uncertain and unreliable [24]. While
sensitivity analyses can help assess the appropriate level of complexity, they obviously
cannot identify potentially relevant features or processes that are not implemented in an
oversimplified model, and they cannot readily examine parameter correlations and their
impact on estimation and prediction uncertainties as they emerge in an overparameterized
model. While modelers typically start with a simple model, then add complexity as new
insights or data become available, one might argue that the appropriate model complexity
is best approached by starting with a relatively rich, complex model—at least on the
conceptual level—and then using a screening process or notional inversions with sub-space
methods to screen out irrelevant or unsupported model components to arrive at a simpler
model [25–27].

Hydrogeological process models are typically based on well-established empirical
laws. Moreover, the physical and conceptual boundaries, within which the given laws
can be considered acceptable for practical purposes, are relatively well understood. These
laws and their interactions with each other are described by a mathematical model and
implemented using an appropriate numerical scheme into a computer code. Testing the
correct implementation of the mathematical model into a software package is often referred
to as “verification.” In addition, convergence studies are typically performed to confirm
that the chosen space and time discretizations have sufficient resolution, and that all
computational parameters are properly set to arrive at a solution that is accurate. For the
remainder of this discussion, we assume that the code has been properly verified, and that
the simulation results do not suffer from unacceptable numerical artifacts.

3.2. Calibration

A mathematical model typically consists of a set of coupled partial differential equa-
tions. These governing equations contain coefficients that emerge as the empirical laws are
derived or upscaled from more fundamental descriptions of physical or chemical processes.
New parameters may appear as the support scale is increased. These new parameters
reflect a property that does not exist on the smaller scale, and smaller-scale properties
may disappear as they are lumped into new parameters. By further increasing the scale,
the value of the parameter may change, resulting in scale-dependent parameters. This
is specifically true in highly heterogeneous systems, which cannot be described deter-
ministically, but only statistically. Unless ergodicity prevails and heterogeneity can be
appropriately characterized, spatial variability may significantly contribute to estimation
and prediction uncertainties.

The coefficients of the mathematical model are often unknown, uncertain, problem-
and site-specific input parameters to the simulator. They reflect material properties, but
also geometrical aspects or initial and boundary conditions.

Despite the use of physics-based laws, hydrogeological models include a large collec-
tion of “auxiliary hypotheses,” many of which are untested or even impossible to confirm.
This problem is acknowledged (and partly mitigated) by the fact that the parameters of
site-specific hydrogeological models are adjusted and determined by calibrating the model
against observational data. Many concepts, methods, and algorithms have been developed
to calibrate a parsimonious or high-dimensional model to observed data (for a review of
inverse approaches in hydrogeology, see [28–34]). The parameters estimated by inverse
modeling are inherently uncertain, but—more importantly—may be ambiguous or biased
for the following reasons:

• The mathematical model and/or auxiliary hypotheses are incomplete or are poor
representations of the system to be modeled;
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• There is a discrepancy in the definition, state, location, or scale of the calculated model
output variable and the corresponding observation used for model calibration;

• Measured data have an error component that is systematic;
• The model output has an error component that is systematic; systematic errors include

errors in the conceptual model, (over)simplifications in the model structure (processes
and features), model truncation errors, reduction in model dimensionality, symmetry
assumptions, errors in initial and boundary conditions, etc.;

• Data sets are incomplete, and the inverse problem is either underdetermined or
regularized using an artificial or erroneous regularization term;

• The data are not sufficiently informative about the parameters of interest, or the
available data are not discriminative enough to sufficiently reduce correlations among
the parameters;

• Alternative conceptual models exist that are equally capable of reproducing the cali-
bration data.

It is important to realize that such ambiguities and biases may remain undiscovered,
specifically if the model is able to accurately reproduce historical data after model cali-
bration. As long as the model is only used for predictions under conditions that are very
similar to those prevalent during the collection of calibration data, it is likely that prediction
results are acceptable (referred to as “interpolative prediction”). However, this drastically
limits the applicability of the model, whose main purpose is not to reproduce the system
state that is already revealed by the measured data, but to examine its behavior under
different conditions, to explore unobservable variables, or to understand the underlying
processes (referred to as “extrapolative prediction” or “explanatory simulations”). Any of
these application modes contains an extrapolation—regarding conditions, processes, states,
spatial and temporal scales—and potentially also leaves the realm of established theory
and fundamental understanding.

3.3. Extrapolation

One might argue that the need for model validation arises whenever such an extrap-
olation from one model space to another is attempted. This pertains specifically to the
step when we proceed from model calibration to model prediction: at this point, we leave
the space where model development makes use of measured data of the system we want
to simulate (e.g., deterministic or statistical conditioning data, prior information about
parameters, site-characterization data, testing and monitoring data, and calibration data).
As discussed above, calibration produces effective parameters, i.e., parameters that are
process-specific, model-related and scale-dependent. Whenever the model structure, key
processes or scales are changed to adapt the calibrated model to a particular prediction
problem, the interpretation, reference frame, and numerical value of the effective parame-
ters are likely to change as well—thus the need for validating the appropriateness of the
prediction model for its intended use.

This notion is reflected in all validation approaches that recommend data-splitting or
a prediction-outcome comparison, which in essence attempts to emulate the situation in
which a model is used for predictive purposes outside its calibration space. It should be
noted that data-splitting is often used with time-series data, which means the calibration
and validation data sets are usually of the same type, are observed at the same location, and
refer to the same reference scale. This similarity between calibration and prediction data
limits the application range for which the model is tested, as only a minor extrapolation
is examined.

While confidence in a model is likely to be increased by critically examining the
process of model development—i.e., without relying on a comparison of model results with
measurable quantities of interest—a test of the model’s ability to make reliable predictions
is an essential part of most validation methodologies [1,35], whether they are proposed as
part of a philosophical argument or for pragmatic validation of numerical models used for
the licensing of a radioactive waste repository.
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3.4. Model Space

As indicated above, the need for model validation arises whenever a transition be-
tween model spaces occurs. The model space is the envelope of all possible models [36].
It describes the bounds on the system of interest, from which relevant parameterizations,
idealizations and modeling principles are chosen. It is thus the ensemble of conceptual-
izations, assumptions, physical rules, mathematical equations, and parameters that give
a theoretical, observational and/or empirical description of the processes and conditions
that allow simulations of the system state and its evolution. The model space evolves
as new information is gathered or different requirements are placed on the model [37].
Generally, the model space is reduced during the conditioning and calibration activities but
may then expand when applied to different prediction spaces. Conditioning constrains the
model space by making assumptions and tailoring it to prior information about a particular
site. Calibration is the process of reducing the model space by comparing model outputs
to measured data, which can be viewed as assessing the probability of a chosen model
parameter set to be consistent with observations. A mismatch indicates that the specific
conceptual model chosen for the analysis is an unlikely representation of the real system. In
general, adding site-specific information allows us to separate more likely from less likely
conceptualizations of the system, thus narrowing the model space.

However, this narrowing also limits the application range of the model. To make a
useful prediction, an extrapolation must be made from the calibration spaces to the targeted
prediction space. The prediction space may either refer to the conditions under which
validation test data are collected, or it may refer to the ultimate model purpose, where the
actual outcome is unknown. In either case, the conditions to be represented for a prediction
are—by definition—different from those prevailing during model calibration. The need
to extrapolate to different spatial and temporal scales, different boundary conditions, and
potentially different key processes widens the model space; it is the reason why model
validation is necessary.

If the model at a given stage of a project (a) does not satisfactorily explain or re-
produce observations, showing systematic deviations or large mismatches between data
and observations; or (b) its calibrated parameters are inconsistent with prior information
and substantiated assumptions, then the first step of the modeling process, i.e., model
conceptualization, needs to be repeated in view of the new information and experience
gained from the previous analyses. Predictions made with multiple alternative models,
which cover different model spaces, are more likely to adequately span outcomes in the
real system, with the caveat that all of them may be nonbehavioral, i.e., are not acceptable
in reproducing the observed behavior [38].

Validation can be viewed as a critical review of the model-development process with
the aim to demonstrate that the targeted prediction space is adequately delineated by
an ensemble of model outputs. The acceptable shape and extent of the prediction space
is determined by the purpose of the model—the more specific the modeling objectives
are, the narrower the targeted prediction space is, and the more stringent the validation
acceptance criteria are. The targeted prediction space may be represented by observations
of the real system under conditions that are similar to those affecting the unknown behavior
of interest.

The validation process is intended to reduce the number of conceptual models and
their associated model spaces to a set of “behavioral models” [39], thus increasing the
confidence in our assessment of the models’ strengths and limits [40].

The concept of a model space and its evolution reveals that the object of validation is
not a single numerical model, but the outcome produced by an ensemble of models. As
each alternative model has its distinct model space, the prediction space is considerably
wider if multiple models and their uncertainties are considered. If predictions made
with alternative conceptualizations and methods do not diverge, but instead occupy a
sufficiently small prediction space, then higher confidence can be gained that the ensemble
of these predictions can be used as the basis for decision making [41].
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In this view, the object of validation is the model prediction space—rather than the
models that define it. The shortened term “model validation” as used here shall refer to
this model-development process and the interpretation outlined in this section.

4. Pragmatic Model Validation
4.1. Pragmatism in Validation

We introduce the term “pragmatic model validation” to emphasize the context and
environment, in which we want to evaluate models. Pragmatic model validation has
the goal to build confidence in the model’s ability to make reliable statements about a
specific aspect of the repository system. It also recognizes that any model always contains
residual uncertainty; the ambition is not to make assertions about the ultimate truth. This
definition is an acknowledgment that finding the truth remains elusive, but that a critical
fit-for-purpose assessment of a model is both crucial and valuable.

Pragmatic validation is demanding: the effort cannot just be abandoned as achieving
truth or full confidence in predictions is a futile undertaking; instead, the inherent limi-
tations of a model and the uncertainties in its predictions must be understood, and the
domain of applicability must be determined and related to the intended use of the model.
Finally, this information must be effectively communicated to the end-user of the model.
Conversely, pragmatic validation limits the domain of model applicability, which in turn
reduces the space of influential parameters, making its exploration more tangible.

The word “pragmatic” may also refer to the fact that validation of models representing
subsurface systems is constrained by the scarcity of data. The validation process can help
identify which data should be collected to increase model confidence by reducing prediction
uncertainty. This relation between measured data, model parameters, and confidence
in predictions can be formally examined in a data-worth analysis, which evaluates the
relative contribution of an actual or potential data point to a reduction in uncertainties
(a) in parameters inferred from the data through inverse modeling; and/or (b) in a target
prediction of interest, which reflects the modeling purpose. A data-worth analysis takes
place in the data space as well as multiple model spaces. It propagates data uncertainty to
parameter uncertainty to prediction uncertainty, a process that examines sensitivities and
information content of individual data points and the influence of parameters on model
predictions. The relative importance of competing target predictions is also accounted
for. The workflow for a pragmatic model validation and a data-worth analysis are thus
similar. In fact, a data-worth analysis should be an integral part of model validation,
demonstrating that data used for a prediction-outcome approach to model validation are
indeed informative and related to the ultimate modeling purpose. Note that a data-worth
analysis would be performed prior to the collection of validation data. The analysis forces
the user to think about validation acceptance criteria, and to apply them once the data
become available. Some background on the data-worth analysis workflow can be found
in [42–44].

In this interpretation, the term “pragmatic” is an acknowledgment of both the valida-
tion challenge, which must be accounted for when qualifying the credibility and applicabil-
ity of a validated model, and the usefulness of the validation process itself, which helps
identify data-collection and research needs for an improvement of system understanding
and the reliability of model predictions.

Box [45] coined the aphorism “All models are wrong, but some models are useful.“ Box
et al. [46] offered the following explanation: “All models are approximations. Assumptions,
whether implied or clearly stated, are never exactly true. All models are wrong, but some models are
useful. So the question you need to ask is not ‘Is the model true?’ (it never is) but ‘Is the model good
enough for this particular application?’” These comments are relevant also for geoscientific
modeling, where the abstraction process during conceptual model development introduces
numerous, often strong approximations, and many assumptions are made due to generally
poor coverage of characterization data and the impracticality of explicitly implementing
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multi-scale features and processes. Box’s aphorism can be viewed as a concise statement
about the potential backdrop of a pragmatic approach to model validation.

Finally, due to the recognized fundamental limitations and practical constraints, prag-
matic validation also refers to the validation approach itself. It indicates that the chosen
approach is clearly targeted for a specific model use or to calculate specific quantities
of interest. It submits that the model is used to address a practical problem by making
predictions, from which recommendations are derived, i.e., it is used as a practical tool
rather than just describing or mimicking nature.

Furthermore, pragmatic model validation invites the question about the effort that
should be expended to appraise a model. For example: Is it sufficient to validate a model
by benchmarking it against other models, or by testing just the individual components, or
by comparing its outcome to literature data? Or is it necessary to perform a designated
laboratory experiment or field test? Must it be demonstrated that the model is capable of
performing over the entire spatial and temporal scales relevant for nuclear waste disposal?
Merely addressing such questions indicates that a pragmatic approach is being taken, and
the answer about what effort is considered reasonable is driven by the ultimate purpose of
the model and its significance for decision making, specifically in areas where supporting
information is uncertain or disputed, conclusive scientific evidence is not available, and the
model outcome has important implications affecting a plurality of stakeholders.

4.2. Sensitivity Auditing

Saltelli et al. [40] outline a protocol to be used for a critical appraisal of a model’s
quality. The process they propose can be described as pragmatic in the sense that it provides
practical guidelines with the aim to improve the quality of models used for the express
purpose of supporting important policy decisions that involve considerable risks as well
as unquantifiable, irreducible uncertainties. The approach is referred to as “sensitivity
auditing” and goes beyond a mere evaluation of model uncertainties and parametric
sensitivities. Note that sensitivity analyses do not reduce model uncertainties, but they
make them transparent so that both modeling practitioners and recipients of modeling
analyses are fully aware of the conditionality of the predictions. Sensitivity auditing is
intended to skeptically review any inference made by the simulations. It attempts to
establish whether a model is plausible regarding its assumptions, outcome, and usage. It
not only examines the model, but also the auditing process itself. Rules are formulated
and checklists generated for the entire modeling process to achieve transparency about the
reliability of a specific model prediction. Following these rules is considered a minimum
due-diligence requirement for the use of model-based inferences.

The formal process includes a global sensitivity analysis [47] to identify the key
factors affecting prediction uncertainty. Next, value-laden assumptions as well as other
model- and problem-related statements are systematically qualified [48]. Uncertainty
analysis methods are used to obtain quantitative metrics about the model outputs of
interests. Qualitative judgments about the information, such as its reliability, are added,
along with an evaluative account of how the information was produced. Problem-specific
pedigree criteria (such as theoretical understanding, empirical basis, methodological rigor,
degree of validation, use of standards, quality control and safety culture, plausibility,
influence on results, comparison of alternative conceptual models, agreement among
peers, review process, value ladenness of estimates, assumptions and problem framing,
and influence by situational limitations) are evaluated by assigning a numerical value to
linguistic descriptions of the level to which each criterion is met. For example, for the
pedigree criterion [48] ‘degree of validation’, the description may range from ‘compared
with independent measurements of the same variable’ to ‘compared with derived quantities
from measurements of a proxy variable’ to ‘weak, indirect, or no validation’.

This system provides insight into two independent uncertainty aspects of a model-
calculated number, one expressing its exactness, and the other expressing the method-
ological and epistemological limitations of the underlying knowledge base. These two
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aspects must be viewed together to arrive at a meaningful statement about a model’s
quality. For example, inexactness or even ignorance about an input parameter may not
invalidate a model if the parameter is non-influential, i.e., has a negligible effect on the
prediction of interest. Conversely, model predictions can be reliable even if they are highly
sensitive to certain input parameters, provided that these parameters can be determined
with high confidence.

In general, the notion that model validation is an auditing process guided by critical
questions redirects the attention from a stringent pass-fail comparison of model-calculated
and measured data to a broader evaluation of a model’s adequacy through the judicious
use of expert judgment as well as formal sensitivity and uncertainty analyses. Moreover,
the model development and evaluation processes need to be thoroughly documented and
externally reviewed.

In this view, confidence is obtained by the fact that the validation process helps identify
and correct obvious flaws in the model [19], that hypotheses and assumptions are properly
tested [49], and that scientifically appropriate methods are used [50]. A rigorous validation
process will ultimately improve the model and therefore the quality of inferences and
decisions made based on the model output.

4.3. Validation Activities and Acceptance Criteria

The discussion of pragmatic validation reveals the wide range of interpretations and
expectations the term “validation” evokes, with respect to both the ultimate purpose of
the validation process and the most suitable method to achieve that goal. The essence
of pragmatic validation is that it exposes a proposed modeling solution to the test of
its usefulness. Expectations about what a validated model is supposed to accomplish
are wide-ranging:

• A validated model provides an improved, general understanding of the system, as
the model results are examined from disparate lines of evidence. However, the model
results are not to be interpreted as predictions about the real system behavior;

• A validated model provides a consistent representation and explanation of the avail-
able, complementary data from different scientific disciplines (geology, hydrogeology,
geochemistry, etc.);

• A validated model is suitable to examine alternative cases and “what-if” scenarios. The
model results are not accurate predictions but reveal relative changes in the expected
system behavior as a function of the chosen scenarios;

• A validated model can make specific predictions that are adequate for the purpose of
the model. The model does not necessarily represent the real system, but its outcomes
are acceptable as they support the ultimate project purpose. For example, the model
may be used for conservative or bounding calculations, which—despite being unlikely,
unreasonable, or even unphysical—may be adequate within a regulatory framework
and may support a performance assessment study;

• A validated model is an approximate representation of the real system. The degree of
model fidelity is dictated by the accuracy with which the predictions need to be made,
so they can support decision making.

The process of how to validate a model depends on which of the model-validation
goals outlined in the preceding list need to be met. The validation process will be less
elaborate and may be limited to component testing and peer review if the purpose of the
model is to improve the general system understanding or to examine “what-if” scenarios;
it will likely require comparison with experimental or monitoring data if decision-makers
intend to rely on quantitative predictions; it will be an extensive, cross-disciplinary, contin-
ual research endeavor if fundamental statements about the nature of the world are to be
made. The following activities may be part of a model validation exercise:

• A validated model should comply with industry-standard QA/QC procedures and
have passed a formal software qualification lifecycle test (“verification”);
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• A validated model should have undergone a detailed review of the procedures used
for the construction of the conceptual and numerical models, including the evaluation
(a) of available data, (b) of theoretical and empirical laws and principles, (c) of the
abstraction process and conceptual model development, (d) the construction of the
calculational model, and (e) the iterative refinement based on predictive simulations,
sensitivity analyses, and uncertainty quantification [40,51];

• A validated model should be calibrated against relevant data, with (a) residuals
being devoid of a significant systematic component, (b) acceptably low estimation
uncertainties, and (c) fairly weak parameter correlations. The criteria for acceptability
are determined by the accuracy with which model outputs supporting the project
objectives need to be calculated [43];

• A validated model should be peer-reviewed with a general consensus among experts
and stakeholders that the model qualifies for its intended use, and that limitations, the
range of application, and uncertainties are sufficiently understood and documented;

• A validated model should be compared to alternative models [52,53] or approaches and
perform equally well or better regarding relevant validation performance criteria [54];

• A validated model should reproduce—with acceptable accuracy—relevant data not
used for model calibration. The type of data, the processes involved, the spatial and
temporal scales, and the conditions prevailing during data collection should reflect
those of the target predictions as closely as possible. The criteria for acceptability
are determined by the accuracy with which model outputs supporting the project
objectives need to be calculated;

• A validated model should demonstrate that it can predict emerging phenomena [4].

As indicated in the above list, model-validation activities and related acceptance
criteria vary as they are related to the demands imposed on the model. Figure 1 shows
the approximate correspondence between the goals the validated model must meet and
the required validation activities. Figure 1 also indicates the region within the matrix that
IAEA’s validation definition appears to target.

Figure 1. Approximate relation between validation activities needed to reach a particular validation
goal. The yellow and red dotted lines indicate, respectively, the modeling goals and validation
activities targeted by pragmatic model validation and the relation to the main goal and activity
highlighted in the IAEA definition of model validation.
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It is obvious that a good general system understanding is a pre-requisite for a model
that is expected to provide reliable, quantitative predictions of a previously unobserved sys-
tem behavior. This statement applies specifically to models that rely on an understanding of
the underlying physical processes, as opposed to statistical models (including, for example,
neural networks and machine-learning algorithms), which are data-driven approaches that
infer input–output correlations with no or only a cursory use of physical concepts. The
models of concern here are those that incorporate substantial mechanistic understanding
rather than empirical correlations.

Similarly, following standards and best practices, and having the development of each
model component checked individually and submitted to independent review, are certainly
ways to increase the credibility of a model, regardless of its ultimate use.

5. The Pragmatic Model Validation Framework

As discussed above, pragmatic model validation involves a critical review of the
model-development process with the goal of demonstrating that the acceptable region
of uncertainty is adequately delineated by the model or an ensemble of model outputs.
The acceptable level of prediction uncertainty is determined by the purpose of the study.
While confidence in a model may be increased by critically examining the process of
model development [22,40]—i.e., without relying on a comparison of model results to
observations—a test of the model’s ability to make reliable predictions is an essential
component of most validation methodologies, whether they are proposed as part of a
philosophical argument or for pragmatic evaluation of numerical models used for the
licensing of a nuclear waste repository [1].

Evaluation activities and acceptance criteria will vary, as they are related to the de-
mands imposed on the models by features of the engineering or scientific problem at hand.
That said, it is self-evident that a good general system understanding is a pre-requisite for
building models that are expected to provide reliable, quantitative predictions of previously
unobserved system behavior. Similarly, following standards and best practices [55,56],
checking the development of individual model components and undergoing independent
review will increase the credibility of a model, regardless of its ultimate use. Nevertheless,
assessing adequacy-for-purpose of a model includes additional considerations.

Pragmatic model evaluation helps to identify and correct flaws in the model by
identifying and properly testing hypotheses, assumptions, and methods. It will also
expose each proposed modeling approach to a test of its usefulness. It is apparent that
the evaluation approach has to be adapted to fit the model, the question the model is
expected to answer, and the overall goal of its use. The proposed account of pragmatic
model evaluation can be conceptually divided into the following six phases [22]:

1. Definition of the model purpose: The aim of pragmatic model-evaluation is to de-
termine whether a model is adequate-for-purpose: does the model make a valuable
contribution to the solution of the problem at hand? The model purpose must be
clearly specified as it determines the benchmark, standards, and acceptance criteria
for critical evaluation.

2. Determination of critical aspects: For reasons of pragmatism, effectiveness, and
efficiency, it is essential to identify which aspects of the models will require particular
attention and thus warrant targeted review and testing effort. These aspects are likely
to be specific to the intended use and are those that have the greatest impact on critical
model outcomes. Moreover, model evaluation should be focused on the subset of
aspects that are uncertain or where the modelers lack confidence in their correct or
accurate representation in the model.

3. Definition of performance measures and criteria: To be able to assess whether a
model is adequate-for-purpose requires the definition of suitable performance mea-
sures and acceptance criteria. They must either be directly calculatable by the model
or indirectly inferable from the modeling results. Most critically, they must be rel-
evant to the end use. Information, observations, or testing data used for model
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assessment should be as close to the performance measures as possible, in terms of
influential factors, processes, and scale. The accuracy of both the model output and
data must be sufficiently high that they are discriminative in the evaluation of the
acceptance criteria.

4. Sensitivity and uncertainty analysis of influential factors: Selecting influential fac-
tors is an important step during model development, but even more so for model
evaluation. Influential factors are model-specific, although they may be common to
several models. The difference between the influential factors identified during model
development (specifically model calibration) and the factors identified as influential
for the ultimate model use is an indication of the degree of extrapolation undertaken
when using a model for a purpose that may not have been envisioned during model
development, and for which no closely related calibration data were available.

5. Prediction-outcome exercises: An important aspect of pragmatic evaluation is the
testing of model predictions [1]. Whilst direct testing of the model predictions against
the reality of interest is often not possible, the critical aspects and significant influential
factors should be the basis for design and evaluation of prediction-outcome tests.
Uncertainties in the influential factors need to be propagated through the model to
the performance measures so that meaningful statements about system behaviors can
be made that account for relevant uncertainty.

6. Model evaluation, documentation, and model audit: As all model predictions are
extrapolations (spatially, temporally, parametric, and regarding the features and
processes that need to be considered), and the testing data never fully correspond
to the ultimate performance metrics, confidence in the model cannot solely rely on
the comparison between model output and measurements. Instead, each model
development step must be clearly documented. In particular, the conceptual models
and their assumptions need to be reviewed as they often have the greatest potential
to bias modelling results [11]. It is also important to document and review the criteria
used to reject a model or the criteria employed when calling for an update of the model.
Any consensus—and in particular any disagreement—among model reviewers should
be acknowledged.

6. Conclusions

This article presents our perspective on the need for critically evaluating numerical
models used to support important policy decisions, specifically those related to the licensing
of a radioactive waste repository. This need is deeply rooted in the fundamental nature of
any conceptual and numerical model. While we acknowledge that models are inherently
uncertain, if not erroneous, we reject the notion that any validation effort is futile. By
contrast, we take this realization as a call for due diligence, which involves a careful
evaluation of the model (or models), the simulation results, and their interpretation. Rather
than resigning because it is impossible to know or verify the truth, we propose to assume a
pragmatic view, which addresses the challenges of the actual situation in which models
are employed.

Pragmatic validation aims at demonstrating that a model is fit for purpose. This may
lower the expectations of what the model needs to accomplish: it is not anticipated that the
model can make accurate statements or predictions of any type and under any conditions;
the model needs to perform only within a limited domain of applicability. On the other
hand, the model is expected to provide useful information to solve a specific problem, not
just insights about a general system behavior.

Multiple models should be developed based on alternative conceptualizations. If these
models yield consistent conclusions about the behavior of interest, confidence is gained
that the performance metrics can be calculated in a robust manner [41]. This indicates
that the outcome does not greatly depend on uncertain factors, which may have been
implemented differently in each of the models, but that the general system understanding,
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as well as the information provided by the site characterization data, are sufficient to
constrain the predictions.

Conversely, model comparison may also point to conceptual aspects that need to be
revised. When combining or comparing alternative conceptual models, the performance
of each model during the calibration and validation phases is accounted for [57]. Such
a combined analysis does not state which (if any) of the alternative models is the best
representation of the real system [39]; instead, it evaluates the contribution each model
makes in support of the overall goal, and pragmatically combines the insights gained from
each approach.

While many computational toolsets exist that support certain steps of the validation
process [58], it is apparent that no single validation approach exists that is best regardless
of the application area. Even within a specific domain, such as nuclear waste isolation, the
approach must be adapted to fit the model, the question the model is expected to answer,
and the overall goal of its use. While validation has fundamental and practical limitations,
the exercise of trying to test a model in an attempt to find its weaknesses is a valuable, if
not necessary, effort.
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