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Abstract: Recently, the integration of distributed generation and energy systems has been associated
with new approaches to plant operations. As a result, it is becoming increasingly important to improve
management skills related to distributed generation and demand aggregation through different
types of virtual power plants (VPPs). It is also important to leverage their ability to participate in
electricity markets to maximize operating profits. The present study focuses on VPP concepts, its
different potential services, various control methodologies, distinct optimization approaches, and
some practical implemented real cases. To this end, a comprehensive review of the most recent
scientific literature is conducted. The paper concludes with remained challenges and future trends in
the topic.

Keywords: virtual power plant; optimization approaches; VPP services; microgrid

1. Introduction

Around the world, renewable energy investors have taken advantage of the strong
development of distributed energy resources (DER). Growth in DER integration globally
is around 20% by the end of the 20th century [1]. A microgrid is a small-scale (“micro”)
power grid that enables either isolated or grid-connected operation modes independently
or in conjunction with the region’s main power grid. Different types of microgrids exist,and
obviously, many definitions also exist. The most common definition, given by [2], reads
as follows: “A microgrid is a group of interconnected loads and distributed energy
resources within clearly defined electrical boundaries that acts as a single controllable entity
concerning the grid”. The microgrid concept has become widespread over the last decade,
and many microgrids are functioning in different parts of the world. The grid-connected
mode offers the microgrid the benefits of power trading with the main grid. However, in
case of disturbances or failure in the main grid, its operation shifts to an islanded mode.
In both cases, operators must deal with DERs variability and uncertainties. As a result of
these troubles, research areas have been have been established to find appropriate solutions
for the successful integration of DERs while ensuring power grid reliability and stability.

Within this context, the virtual power plants (VPP) was conceived. Although there is
a widely held simple interpretation of VPP in the narrow sense: “A virtual power plant
assembles a multitude of low- and medium-power generation units, energy storage devices,
and remotely controlled flexible loads to participate in the electricity market or provide
complementary energy services, including balancing, to grid operators”. According to
their points of view, authors in the literature propose two other definitions: one with a
commercial aspect [2,3] and another with a technical aspect [2,4–6]. By way of example,
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in [6], VPP is defined by its role in controlling DER, flexible loads, and storage as an
information and communication system. The study in [6] states that the VPP including
DER, controllable loads, and aggregate storage units is operating as a single power plant
managed by EMS. In [2], in order to realize contracts in the wholesale market, the VPP is
defined as a trading platform of DERs.

The VPP concept is highly recommended to mitigate the negative drawbacks of DERs
integration. VPP ensures the aggregation of all DERs as a single power plant providing
more flexibility to the grid to enhance its reliability and stability, without overlooking the
many other benefits and opportunities for consumers, producers, and network operators.
VPPs contribute to the reduction of carbon emissions through the aggregation of renewable
resources that lessen dependence on fossil fuels. On the other hand, VPPs, equipped with
complementary data on climate and local geography, take part in mitigating the impact
of urban density on the performance of distributed renewable systems. In addition, VPPs
can also reduce the negative environmental impact and improve the security of renewable
energy through the optimal management of these distributed units [2].

In [7], the main differences can be listed as follows:

• The VPP continues to operate normally in the event of a single user failure, while this
problem affects all connected sub-systems of the microgrid.

• The advantage of VPP over microgrids is that the former uses less ESS than the latter.
Thus, VPP is less costly to implement and offers a coherent solution.

• For MG implementation, all the resources must be in a geographic area; however, VPP
and particularly commercial ones facilitate having a single entity on behalf of a set of
resources not related to the same geographic location.

• VPPs use artificial intelligence to develop simple algorithms that ensure optimal
production and consumption, unlike microgrids that use very complex optimization
algorithms.

Despite these differences, the migration from microgrid to VPP is possible and can
be easily achieved through the smart grid concept, which has already been tested in
some countries.

The management of production, data transmission, distribution, and demand control
is based on intelligent algorithms that use communication protocols such as the Internet
Protocol. With the incorporation of IoT, the communication and behavioral technique of
each DER is similar to a neural network. The Web-to-Energy project is one of the biggest
developments in the field of smart grids and can be readily adapted to the VPP concept.
Figure 1 shows the evolution of a microgrid into a VPP and how cells are clustered and
connected to a centralized VPP. These aggregators interact with each other and operate as a
single entity. The localized control center behaves as a self-organizing intelligent solution.

Figure 1. Evolution of MG to VPP.

To make the paper easier to understand and read, Figure 2 illustrates the step-by-step
information flow of each section. This article presents the concept of VPP, its different
services, a variety of control methods, and a comparison of different optimization methods.
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These are classified according to their control method, system modeling, and type of
problems addressed.

Therefore, the significant contributions of the paper can be recounted as follows:

• This article discusses the concept of VPP in its entirety. It consists of presenting the
different notions from its architecture to the different types of electricity market.

• Classify the different internal control methods and the main optimization algorithms
used for each.

• To explain optimization strategies for VPP based on system configuration, parameters,
and control techniques.

• To summarize differents markets.
• To give examples of the latest practical implementations of VPP.

Figure 2. Paper structure.

2. VPP Concept

The concept of VPP was derived from the virtual utility framework from Awerbuch and
Preston in 1997 [4,8]. The virtual utility is based on a flexible cooperation between utilities
to provide high-performance electric services to customers through the virtual sharing
of their private assets. The above concept improves the efficiency of individual utilities
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and avoids redundant constructions. In order to evolve the original definition of virtual
utility, the concept of VPP is mainly based on the mathematical combination of different
energy resource cost curves to form a virtual aggregation of DERs. As shown in Figure 1,
VPP changes the traditional power system topology through establishing an information
exchange among variable energy resources and coordinating their generation profiles.
Virtual Power Plants (VPPs) are used to optimize the management of a generation fleet
using a control center that can remotely manage the generation, load shedding, and storage
resources within its perimeter. In addition, VPPs can be used to dynamically optimize
energy costs by reacting to market price variations (Commercial VPP) or contributing to
the electrical system’s supply/demand balance by responding to signals from network
operators (Technical VPP) such as a microgrid.

2.1. Classification of VPPs

Constrained by distance, capacity, size, and resource types, the VPP operates within
a collaborative system called the Internet of Energy (IOE) composed of different layers
(i.e., Information and Communication Technology (ICT) and Advanced Measurement
Infrastructure (AMI), . . . ) as shown in Figure 3. The main objective of the VPP is to obtain
the optimal benefit by recognizing the information associated with the demand and supply
of energy. VPPs can be grouped into two broad categories: Commercial VPP (CVPP) and
Technical VPP (TVPP) [2].

Figure 3. Framework of VPP.

2.1.1. Commercial VPP

The main objective of the CVPP is economic optimization. This involves financial risks:
costs, optimized revenues for energy exchange, the combination of economic paradigms
with smart grid services, and representation of supply and demand tables. Risk management
methodology is generally the basis of studies in this area. The developed models deal with
agreements between VPP users, partnership contracts with distribution companies, and
mutual agreements between different VPP groups, as well as energy marketing issues. In a
CVPP, the aggregator is the price negotiator for its electricity production with the electricity
market operators. A CVPP is primarily based on economics so that the aggregator can
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reach the most beneficial agreement among the many aggregators in the market. This
commercial aggregation is not dependent on grid operation. The CVPP provides visibility
and input from multiple DER units into the energy markets. Its objective is to quote supply
and demand in the wholesale energy market while balancing trading portfolios. Unlike
standalone DER units, it reduces capacity imbalance by integrating many smaller units. The
CVPPs also provide demand-side management in the event of an outage [9,10]. Additional
tasks of CVPPs also include demand and production forecasting, DER characteristics
analysis, market bidding, and generation schedules to maximize profits.

2.1.2. Technical VPP

DERs in a TVPP are grouped in the same geographical area. The main role of the TVPP
is to incorporate the influence of the local network in real time, as well as the representation
of the costs and operating characteristics of the portfolio. In a TVPP, all relevant and accurate
data regarding the power generation of each DER unit and future generation statistics come
from the aggregator. Furthermore, the aggregator needs all the information regarding the
generation power profile and forecasting algorithms to manage the TVPP better. Local
system management for a Distribution System Operator (DSO), as well as ancillary services
for a Transmission System Operator (TSO) and system balancing, are part of the services
and functions of a TVPP. A TVPP continuously monitors the status of individual loads and
manages assets based on statistical data. Furthermore, it can locate faults and help repair
them. It also offers statistical analysis and project portfolio optimization functions [9,10]. In
addition to fast metering service, TVPP also offers local monitoring service and monitoring
of batteries and inverters. It handles complex calculations, technical applications, storage,
and optimization [9]. The research studies are mainly concerned with financial issues,
monitoring, and fault detection. This classification involves energy flow optimization,
technical feasibility solutions, communication protocols in smart grids, and some fuzzy
algorithms related to production and consumption. In addition, security is one of the
main issues, as VPPs need to ensure the security of their personal information. One of the
most worrying issues of a smart system is the animosity of cyber-attacks and viruses, as
consumers’ personal information must be protected in case of cyber-attacks. Therefore,
the TVPP takes care of this situation. It becomes an essential part of the communication
system [10].

2.2. VPP Grid Services

The VPP can improve grid performances by providing several services:

• Localized clean energy: a VPP unit helps to achieve global warming and pollution. It
integrates new technologies and methods that ensure the production of clean energy.

• Real-time demand response: the neural network established between the renewable
energy sources (RES) ensures a real-time response to the demand. VPP technology
brings all resources’ features and keeps the system in balance.

• Frequency and voltage control: The VPP allows to better manage sudden frequency
changes with a fast and efficient response. Moreover, the peak demand is better
controlled thanks to the control of the energy flow. It draws the necessary energy from
the sources of the nearest neighbors.

• Big data from small sources: Transforming utilities into a digital network can result in
high performance by managing the considerable accuracy of the data.

2.3. Internal Control of VPP

According to the literature, internal control methods can be divided into centralized
control, distributed control, and comprehensive control. In the following, the characteristics
of each control method are discussed.
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2.3.1. Centralized Control Method

The centralized control method allows VPP to have full control authority. In [11,12],
the VPP establishes a control coordination center that guarantees the absolute authority to
distribute all integrated DERs. The communication network that brings together internal
and external data for VPP decision making is the main factor determining the control
topology of the centralized control method. In addition, with an efficient communication
channel, the power scheduling of the VPP can be transmitted to the production terminal in
real time. Thus, the DERs are better integrated through the centralized control method, and
the initially uncoordinated low-capacity DERs become large-scale production collaborators.
Furthermore, as discussed in [13,14], under its considerable influence on the market-
clearing procedure, the VPP is considered a price provider in the electricity market by
centrally coordinating large-scale generation capacity. Nevertheless, in [15,16], the VPP
has a small capacity and limited influence, defining it as a price taker. The expanding
influence of VPPs on the functioning of the power system and the electricity market is
increasingly recognized. However, the role of VPPs in the market may vary depending
on their embedded resources. The computing power of the centralized control method
continues to multiply rapidly. Indeed, multiple variables have to be considered during
the optimization procedure, since the VPPs determine all the operating profiles of DERs
in this type of control methodology. This leads to an increase in the difficulty of the
computational task of the VPP control center. As mentioned in [17], the mixed integer
nonlinear programming (MINLP) model is typically used as an internal centralized control
model. It can also be transformed into a mixed integer linear programming (MILP) model
by a dualistic transformation or Karush–Kuhn–Tucker (KKT) optimality condition. Then,
the two-layer optimization problem between VPP and ISO can be converted to a single-level
problem. The authors of [18] used stochastic programming with a predefined uncertainty
probability distribution for risk analysis. In [15–19], the MILP formulation is used for
the VPP centralized control problem, where a robust optimization technique is applied.
The latter considers the worst-case scenario compared to stochastic programming, which
improves the reliability of the optimization results.

In [11,12], a heuristic algorithm such as particle swarm optimization (PSO) or genetic
algorithm (GA) is applied to solve the centralized control problem of VPP. The modeling
of the PPV, in this case, is to consider it as a unique problem for which the application of
the mathematical model is forbidden because of the inter-temporal constraints. As shown
in [20,21], the CPU problem is transformed into a security constraint unit commitment
(SCUC) engagement problem, where modifications are applied to the original heuristic
algorithms to accelerate computational efficiency by introducing network topology constraints.
However, this methodology could facilitate the coordination of DERs to provide more
services because the resources are managed centrally. However, it needs more computation
capacity, storage space, stronger solvers and processors, and a communication platform.
The other drawback of this method is related to its vulnerability to the possible communication
problems or even cyber-attacks.

In conclusion, in the centralized control method, the VPP aims to optimize the scheduling
of internal energy resources, where sufficient bandwidth is the foundation for information
retrieval and good decision making. In [22], bandwidth was estimated at 3.94 kBytes/s
for normal functioning and data flow (e.g., requests and count reports) in both directions
for a data attribute and a single DER. With the addition of data attributes (timestamps,
multiple metering tags, etc.), bandwidth peaks can be as high as 80.5–97.5 kBytes/s) and
with each DER (VEN) added, bandwidth increases. However, the centralized control of
VPPs is limited to a reasonable scale, which is constrained by design efficiency.

2.3.2. Hierarchical Control Method

The structure of the distributed control method consists of two independent levels.
The first level is managed by the VPP, creating the central communication level. In contrast,
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the second level is managed by the Distributed Energy Resources (DERs), forming the
independent subsystem level as shown in Figure 4.

Figure 4. VPP distributed method.

As presented in [23,24], the independent subsystem plans the local energy resources to
maximize individual profit. The VPP has the exclusive authority to manage resources
through an information and communication service between multi-subsystems. The
monopoly problem in the market of large-scale centralized VPPs is thus avoided by
applying a distributed control method. In addition, the massive computational burden is
alleviated by distributing the decision variables among the subsystems. On the other hand,
recent research has highlighted the potential drawbacks of distributed control. Indeed, the
lack of centralized optimization can lead to a contradiction between the operating profiles of
each subsystem, which decreases the overall competitiveness and worsens the competition
in the market. As discussed in [23], the combination of autonomous operating strategies is
computationally highly demanding. However, game theory can be applied to accelerate the
convergence of uncoordinated strategies. In addition, distributed computing algorithms
are also employed to address the distributed control problem. In [25], the subsystem is
conceived as an agent, whose main objective is to achieve individual benefit maximization.
In [26], the authors proposed a new control strategy known as the symmetric component
control algorithm to operate distributed energy systems. In [27], some constraints such as
delays, channel noise, and channel faults have been added to the non-ideal communication
network. Applying the distributed primary and dual subgradient algorithm improves both
the communication and computational efficiency in the distributed scenario.

2.3.3. Comprehensive Control Method

In [28,29], the authors proposed a comprehensive control method that combines the
benefits of centralized and distributed control. This control method can be divided into
two secondary control levels so that the secondary levels are closely related to the VPP
control center.

• Centralized VPP Control: The agents’ bidding strategies are coordinated centrally by the
VPP to form a final market participation strategy. This alleviates the computationally
intensive nature of the centralized control method. In fact, it is distributed among the
agents in level II.

• Distributed Agent Control: A local optimization is handled by the distributed agents
who submit their operation profile to the VPP for global optimization. As the VPP
issues the final coordinated operation profile, all agents proceed with the regional
reorganization and execution.
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3. Service-Oriented Optimization Algorithms in VPP

Ensuring the reliability and security of the electricity generation and transmission
system is the primary objective of the auxiliary services market. Ancillary services ensure
the balance of generation and demand in the system. On the one hand, from an economic
point of view, the participation of VPPs is expected to increase significantly due to the
increase of liquidity and competition in the ancillary service markets. On the other hand,
from a technical point of view, the progressive proliferation of renewable generation
facilities in current power systems may fragilize them, as a grid collapse may result from
mismanagement, which cannot ensure the reliability of power generation. Therefore,
several studies have included participation in ancillary service markets in the modeling of
VPPs to allow for frequency-power control that ensures quality and security of electricity
supply [18,30–40]. These VPP models are equipped with storage systems. These are
essential to mitigate grid stability issues that may arise due to variations in renewable
energy generation. In the VPP optimization framework, one critical step to maintaining
and balancing demand and production is accurately predicting energy production and
consumption. As prices vary with the evolution of demand over the installed capacity,
the goal is to lower costs and achieve a more sustainable and balanced energy flow. To
achieve this, the AI-based algorithm is becoming popular. On the other hand, weather
conditions are crucial for renewable energy resources such as photovoltaics and wind
power. Therefore, elaborated mathematical methods, physics and specialized software
algorithms are required to accurately predict them. The developer updates the optimization
and forecasting algorithms whenever the state of the power system changes (which may
include a new power supply). In some cases, the developer must go through a completely
different algorithm.

3.1. Programming Models

The most commonly used models in the technical literature are listed in Table 1.

Table 1. Programming models on VPP.

Proposed Model Optimization’s Goal Contributions References

Stochastic programming and
robust optimization Maximize the VPP profit Combination of bilateral contracts

and the DA market [31,41–43]

Static robust optimisation Deal with uncertain wind power
production and market prices

Proposed stochastic adaptive robust
mixed integer linear programming [17,30,44,45]

Robust stochastic models Improve the prediction accuracy

Energy management method that
controls the model prediction by
modifying the time scale so as to
significantly improve the prediction
accuracy

[46–48]

Stochastic hybrid ıntelligent
algorithm

Prediction of energy storage
unit’s·level

Balanced energy and cheaper priced
electricity have been obtained [49–51]

Uncertainties through prediction intervals are represented by robust models. A robust
model is presented in [41,52]. It provides energy management decisions that minimize the
most adverse cost due to uncertainty sources. In addition, if the uncertain data take values
from the prediction intervals considered, then the robust model ensures that all constraints
are met. In contrast, stochastic programming methods use a limited number of scenarios to
model uncertainties. In addition, the expected cost on the achievements of the considered
scenarios is minimized by the solutions provided by a stochastic programming model [44].
Thus, it is generally necessary to take into account a sufficiently large number of scenarios.
A robust stochastic model combines the two previous models. It uses both prediction
intervals and a set of scenarios to represent uncertainties. The combined optimization
approach can compute significantly quicker than stochastic optimization, deal with risk
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better compared to deterministic optimization, and have much better performance in
probability than robust and interval optimization. In addition, the combined optimization
can handle the uncertainties of the PPV in a limited computation time.

• The robust model offers a better performance from a computational point of view.
This asset allows it to be used optimally in the RT decision processes.

• In most cases, the profitability of the robust model is higher than that of the other two
models.

• The robust stochastic model is more computationally efficient than the stochastic
model, although the latter has a better economic performance.

3.2. Types of Optimization Problems

Optimization problems can be classified into the following categories according to the
type of variable (continuous, integer) and the linearity or not of the constraints:

• Linear Programming (LP);
• Mixed-integer linear programming (MILP);
• Nonlinear programming (NLP);
• Mixed-integer nonlinear programming (MINLP).

Some of optimization problemsare listed and detailed in Table 2.

Table 2. Optimization problems on VPP.

Optimization Problem Optimization’s Goal Contributions References

An adaptive robust approach MILP

The optimal DA (or RT) energy,
reserve dispatch and the worst-case
realization of uncertain DA (or RT)
market energy prices

Achievable for all possible cases of
the considered uncertainties within
a confidence limit and also optimal
for the worst case realization of these
uncertainties

[18,29,44]

Mixed linear integer method Forecasting wind speed and solar
radiation

By using a prediction algorithms,
occured faults can be detected by
comparing obtained results with
power generation

[12,13,16]

CPLEX (IBM Log Optimisation
Studio) program based on mixed-
integer linear programming

Results of real-time integration of
DER into VPP

Optimal real-time integration of VPP
improves economic feasibility and
produces reliable and functional
power. Research studies are being
conducted on how grid extension
and the grid can affect feasibility and
performance.

[31]

The mixed linear mathematical model is formulated using integer decision variables
associated with the hourly import/export of electricity during the scheduling period or
the state of charge/discharge of the storage systems, among other factors, in addition to
continuous variables that correspond to the values of the energy exchanged in the VPP
model. Simplicity and speed in finding the optimal solution are the main advantages of
this model. The optimal solution of this model can be easily obtained with a software
with an efficient solver. On the other hand, in the literature, the problems are formulated
with nonlinear constraints. This makes it difficult to solve the model. Indeed, there
are several local solutions because of the non-convexity of the model. Therefore, the
optimal global solution is not guaranteed. As shown in Table 3, authors have used various
problem-hniques classified mainly into mathematical and heuristic methods to obtain an
optimal solution.
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Table 3. Solving techniques.

Solving Method Optimization’s Goal Contributions References

The fuzzy logic algorithm has
been used for improved prediction
accuracy

Used especially in wind energy
processes

The proposed stochastic model
used for renewables ressource
(wind energy) and their market
price

[46,53,54]

Monte Carlo simulation method

PV radiation prediction (if the
problem cannot be solved by
mathematic or physical method, it
is digitized with repeated random
sampling)

Simulation results demonstrate
that prediction accuracy increased [47,48,55]

Empirical mode and artificial neural
network (ANN) decomposition

Combination of traditional wind
turbine fault diagnosis algorithms

Forecasting results have been
refined over conventional methods [55]

ANN algorithm This algorithm is mainly used for an
interconnected system

It improves computing efficiency
and predictions are more precise [33,49,56]

A geographic routine algorithm
based on ant colony optimization

Study of density/efficiency and
performance trade-offs

The denser the network, the
better the performance up to the
saturation limit

[57–59]

Genetic and adaptive heuristic search
algorithm (based on the evolutionary
idea of natural selection)

Multiple DERs reliability problem
solving

Optimal sizing using a genetic
algorithm [60–62]

Firefly algorithms (FFA) are inspired
by firefly that creates a mathematical
equation of these behaviors)

Optimization of energy flow,
transmission and distribution lines.
Create a flexible change of lines
according to their efficiencies

An electrical system based on the
FFA of choosing the most efficient
line

[50,51,63,64]

Artificial bee colony DER placement and sizing process Placement and sizing of DERs in
an electrical system [65–67]

Quantum PSO (MSC quantum
particle swarm optimization (QPSO),
based on quantum behavior)

To change updating strategy and
obtain high searching accuracy

Authors proposed an improved
model of traditional PSO [34,68,69]

Particle swarm algorithm Considering the uncertainty in the
optimal energy management

A probabilistic framework for
management of microgrid [70–72]

3.2.1. Mathematical Methods

Many authors employed mathematical methods to ensure optimal management of the
energy resources that make up the VPP.

• Fuzzy algorithm: Specially used in wind energy processes. In [53], the fuzzy logic
algorithm has been demonstrated to increase prediction accuracy. The authors used
a stochastic model to consider the uncertainty of renewable generations and market
prices. An iterative procedure has been used in [72] based on the zone-based observation
and focusing algorithm, which is divided into two parts. The first part assigns optimal
solution area determination, while the second part associates with a local search to
obtain the optimal solution. A local search is performed in a second step to obtain the
optimal solution. The possibility of obtaining a local optimum with this approach is
minimal. Other studies such as [46,54] have also used the same algorithm.

• The authors of the articles [37,73] use a branch-and-bound system that guarantees
an intelligent hunt for the optimal outcome. It consists of evaluating the different
options based on the value of integer variables, then excluding the combinations that
do not respect certain constraints, and finally determining the optimal conditions
according to their limits. It facilitates the convergence to the global optimum of the
problem, since it has different strategies to explore the field of results. Therefore, its
advantage is to limit significantly the search for the optimum. Nevertheless, the major
disadvantage of this system is that it is memory intensive, since each possible result
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must be independent, so it must contain all the information for the branching process.
This also makes it impossible to solve a global structure to obtain the result.

• The authors in [74] decomposed the PPV auction problem into different power demands
by using dynamic scheduling. This approach demonstrated good practicability for
rebalancing responses to intraday demands with short continuation times. The system
has advantages: the first is its ability to handle separate variables, constraints, and queries
at the level of each subproblem rather than considering all aspects simultaneously in a
full decision model. The second is its ability to increase the efficiency of the resolution by
avoiding repeating the exact calculation several times.

3.2.2. Heuristic Methods

Heuristic methods can bring reasonable solutions to problems, but they may not offer
the best solution. However, it is faster than the pyrolysis method. In addition, another
key feature of these methods is that they allow for difficult modeling conditions, which
provides greater flexibility. When the problem has many variables, heuristic methods
are useful.

3.2.3. Summary Methods

As previously mentioned, the model most often described by authors is a mixed integer
linear model, which is mainly solved by mathematical methods. The application of branch-
and-bound techniques are particularly popular due to their fast convergence to a unique
optimal solution. Nevertheless, the successful application of heuristic methods (approximate
algorithms) relies on the simple study of models of high mathematical complexity and on
obtaining sufficiently robust solutions with a reasonable computation time.

3.3. Multiobjective Optimization Algorithm

Refs. [74–76] and other studies have proposed minimizing (or maximizing) different
impact standards at the same time when developing VPP to achieve the best balance
between them. The authors in [74] seeks to optimize the benefits of VPPs and minimize
the cost of self-consumption of PPVs. Other studies, such as [75], seek to maximize the
benefits of VPPs while limiting carbon emissions. Meanwhile, the authors in [76] propose
to simultaneously maximize the economic benefits of VPPs and decrease the economic risk
of VPP participation in the electricity market.

3.4. Distributed Optimization Algorithm

There are essentially three types of decentralized methods:

• Iterative method based on information exchange [77]: This method involves a centralized
information coordinator and a small number of regional controllers. These controllers
make their decisions individually after receiving the incentive or control signals from
the information coordinator. After iterations between the two, the final decisions of
the regional controllers converge based on specific criteria.

• Game theory method [78]: The Nash equilibrium is achieved in a fully distributed
manner in this method. Participants adopt tactical or selfish strategies, and they are
free to cooperate or not to cooperate.

• Auction-based method [79]: In this method, participants can exchange energy in both
directions according to the established rules. To solve the trust problem between the
participants, blockchain technology is implemented, and a sensible smart contract
is required.

Unlike reality, complete information is required for the existing decentralized control
strategies, and it is assumed that the participants are completely rational during the decision-
making process [80]. Furthermore, the coupling relationship between the coordinator and
the controlled objects is always strong, even in the decentralized structure, which will lead
to many difficulties in the design and implementation of VPP.
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In [80], the authors created a blockchain-based VPP energy management platform by
developing a distributed energy exchange algorithm and blockchain implementation.

They modeled energy exchange and grid services for home customers with a variety
of loads, energy storage, and local renewables in particular. Users might potentially engage
with one another to swap energy and utilize the VPP to deliver aggregated network services.
They created a distributed optimization method to manage the customers’ energy schedules
and network services because they are all autonomous. They have created a blockchain
prototype for VPP energy management. Finally, they used the blockchain technology to
implement their algorithm.

The authors of [35] suggested a decentralized, privacy-preserving flexibility planning
framework that allows households’ net load plans to be coordinated to improve a community
microgrid’s operational efficiency. The paradigm enables bottom–up flexibility coordination
by weighing prosumers’ individual techno-socio-economic aims for flexible resource usage
(including reserve service for frequency containment) against the community’s common goal
of lowering peak demand. The authors discovered that design elements had a considerable
impact on flexible scheduling’s socio-technical performance metrics.

In [81], the authors presented a new bottom–up approach to face the challenge of
real-time flexibility utilization by taking into account a large number of complex and
heterogeneous DERs with time-varying states.

4. Electricity Markets

The liberalization and opening of electricity markets to competition have already been
implemented in most countries. The main objectives of this liberalization strategy are to
increase the economic effectiveness of the operations of electric companies, to finance new
investments in electric infrastructure, and to lower the ultimate prices of electricity supply.
This change in the electricity sector has resulted in the independent operation of generation,
transmission, distribution, and retail activities instead of a vertical structure where all
activities were integrated. Liberalization began toward the close of the twentieth century,
and the bulk of power markets were formed around a temporary wholesale market. Other
markets, such as Texas, have campaigned for bilateral transactions instead of a centralized
pool for all energy trade. In developed power markets, day-ahead, forward, and futures
markets are indeed available, providing for price portfolio diversification when buying and
selling electricity. In addition, today’s electricity system is characterized by a very large
development of renewables that increase the need for additional balancing mechanisms
due to deviations in the generation schedule of renewable sources. The participation of
VPPs in various electrical markets is discussed in this section.

4.1. Futures and Forward Market

This market allows the procurement of a quantity of energy through contracts to buy
and sell firm energy at a fixed price for a set term. These markets are usually tradable on a
standardized exchange, while the forward markets are self-regulated. The main advantage
of participating in this market is that the VPP avoids the risks derived from price volatility
in the day-ahead electricity market. The capability of VPP power trading in the forward
market has been investigated in [36,73,82]. In addition, the VPPs can exploit the arbitrage
opportunity between the day-ahead and markets to maximize their profits in [36,82].

4.2. Bilateral Contracts

Bilateral contracts are direct agreements between a producer and a consumer based
on a number of factors (price, volume of energy delivered, contract period, and minimum
power to be supplied/consumed, among others). The benefit of this sort of contract is
that it eliminates pricing uncertainty and thus ensures long-term price stability, making
both power generation and consumer industry processes more lucrative. In the reviewed
literature, articles [19,37,83–88] presented a VPP model in which a bilateral contract must
deliver half or all of the demand in a one-week time frame. Due to the volatility of the
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market price and the probable restrictions of the transmission system operator, this contract
gives a good possibility to guarantee the VPP’s revenue.

4.3. Day-Ahead Market

The day-ahead market allows electricity transactions for each hour of the next day
through an offering mechanism by market participants. VPPs allow small-scale prosumers
access to electricity markets for the sale of their power generation. As a result, production
facilities tend to generate as much energy as possible in order to optimize the VPP’s
operational profit. Therefore, the research articles take into account the VPP’s participation
in the day-ahead electricity market to maximize operational profit [15,83,89,90]. In the
electrical markets, the VPP is primarily a buyer, but in some of the work evaluated, the
VPP is a decision-maker [15,17,38,79,91–97]. This feature is beneficial, since auction results
can affect day-ahead power market pricing in the VPP’s favor.

4.4. Reserve Market

To ensure demand coverage and security of supply, the reserve market uses a system of
increased generation reserves. Generator bids are generally remunerated at a marginal rate.
The expansion of non-dispatchable renewables (primarily wind and photovoltaics) has
significantly reduced power reserve margins in the power system, making this technique
increasingly critical. Various works in the literature [13,29,32,39,84,98–107] offered various
approaches for the VPP to make optimum judgments in the day-ahead and reserve power
markets in order to maximize economic profit and provide acceptable levels of network
security. The results obtained showed that the reserve market is more significant in periods
of maximum demand, as an unforeseen event can impact the situation more. In addition,
when creating additional renewable energy, the VPP has an incentive to selling energy
into the day-ahead market or refilling storage systems rather than engaging in the reserve
market. The profit linked with this market for VPP does not rise in a consistent manner.
Energy and reserve markets are cleared independent of certain electrical markets, such as
the Iberian power market in Spain. It should be noted that the markets indicated are cleared
at the same time in other places, such as the California Independent System Operator in
the United States.

4.5. Intraday Market

The main objective of the intraday market is to match the energy exchanged in
the day-ahead market with higher accuracy, because there is more information in this
session. The increase in renewable energies and their unpredictability make it essential
to correct offers and adjust imbalances before real time. As a result, intraday markets are
becoming increasingly important. Moreover, this market can also benefit the agents who
participate in it. If a set of generators goes down, for example, the agents can consider
purchasing the energy they sold in the prior day-ahead market during an intraday session.
Studies [40,79,90,91,108–114] include the marketing of VPP energy in intraday markets to
increase profits. Participation of VPP in the intraday electricity market has been investigated
in [40,79,90,91,108–114].

4.6. Real-Time Market

An imbalance in trading power can still occur as the dispatch hour approaches despite
the intraday markets allowing VPPs to make planned energy adjustments after the day-
ahead market. As a result, the real-time market is the last chance to strike a balance
between production and demand. The articles’ objective is to minimize the imbalance error
and associated cost. VPPs’ access to these markets is crucial for keeping the balance of
generation and consumption due to the fluctuation of renewable energy sources.
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5. Practical Implementation of a Virtual Power Plant

Various VPP initiatives have been established across the world to improve energy
management by taking into account various types of RESs and levels of consideration
(i.e., household, HAN, and grid levels) in order to accomplish technical, economic, or
combined techno-economic goals. The first genuine use of virtual power plants (VPPs) was
created in Europe between 2001 and 2005, with an emphasis on fuel cells. VFCPP’s major
purpose was to install fuel cells as a renewable energy source in homes, allowing utilities
to regulate CHP generators during peak hours to optimize profit for both the user and the
utility. Because VFCPP was created using MILP optimization and only considered fuel
cells, adding additional types of resources makes the process extremely complicated and
sluggish, which is not efficient. Smartpool project from the company Next Kraftwerke (2015)
is one of important projects implemented in Germany. The implemented VPP manages
more than 2900 DERs through the concept of the cloud. The EDISON project uses electric
vehicles as mobile electricity storage units to solve Denmark’s wind power imbalance. The
data-gathering system, controller, and communication module all play important roles in
this project’s scheduling. This study used a heuristic optimization technique to detect the
flow of energy direction and quantity at 15-min intervals. However, due to the nature of
other forms of Res and the requirement for short interval time, the proposed algorithm is
unable to meet combined techno-economic goals at a higher level of consideration.

The FENIX project integrates solar, wind, and CHP units in two separate situations,
covering northern and southern scenarios, using both technical and commercial VPPs.
CHP and PV are combined in a low-voltage small-scale network in the northern scenario.
Although the heuristic optimization approach used in this project enables real-time energy
management, it is incapable of dealing with a large-scale network with several voltage
levels. In addition, the southern scenario concentrated on generators in a medium-scale
grid with the goal of optimizing day-ahead demand. Another initiative created in the
Netherlands from 2005 and 2007 is the Power Matcher, which provides a market mechanism.
The maximum number of CHP units in this project is 25 in a microgrid with 25 homes. The
Web2Energy project, which was carried out in Germany and Poland, involved aggregating
a limited number of energy units in 200 houses with the goal of providing smart metering,
RES aggregation, and remote control and automation. The POSITYF project (2021), which is
being implemented in Spain, France, Switzerland, and Germany, dynamically coordinates
the energy and capacity of DERs to provide auxiliary services to the system. The notion of
a dynamic virtual power plant is also developed in this research (DVPP). The POSITYF
project, on the other hand, leverages the cloud to regulate DERs across several PCCs with
the grid. The VPP solely controls renewable sources (dispatchable and non-dispatchable)
and does not consider storage in some simulation situations.

The value of the VPP global market is predicted to exceed one billion dollars in
2023 [13]. The high penetration of RESs and the rising number of DG units make this
upward trend faster than before.

The practical projects analyzed have demonstrated the viability and great potential
of this technology. However, virtual power plants are especially vulnerable to cyber
attacks due to three key factors inherent to the technology: Internet of Things (IoT), cloud
computing, and the accessibility of the physical location of the hardware. The following are
the goals of assuring cybersecurity in VPPs: information availability and reliability, integrity
protection and safety against improper alteration, and confidentiality and proprietary data
security [115].

6. Conclusions and Future Directions

The objective of this review was to analyze the state of the art of VPP. This article
begins by defining the difference between a microgrid and a VPP. Then, we conducted a
detailed study of the VPP concept and its architecture. This review classifies and analyzes
about 100 research studies in this area according to the definition of the main objective,
the problem formulation, the solution method, the selection of the solution method, the
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involvement with different electricity markets, and the application of the proposed VPP
model to real case studies. This review evaluates the contribution of each aspect analyzed
to provide helpful knowledge for further research.

We were able to identify these conclusions:

• In order to achieve optimal control and coordination between components and thus
maximize operating profit, researchers have focused on developing VPP models.
There is a wide variety of these models.

• The models developed are becoming complete and complex and include more operating
constraints. Moreover, more advanced optimization techniques are required to reach
an optimal solution.

• The decentralized generation in the VPP has contributed to more active participation
in different types of markets; we have noticed the inclusion of bilateral contracts,
forward contracts, balancing markets, and the day-ahead spot market.

• The proposed models have rarely been applied to real cases, as in industrial processes
that require the management of electricity consumption and its production facilities.

This comprehensive review will be a knowledge base for all researchers in this field.
Our study and research perspective is to develop a Multi Agent System (MAS) for advanced
distributed energy management of a CVPP. The concept concerns CVPP and distribution
units’ optimal operation and hence utilizes local intelligence and communication technology
via the MAS technique. MAS does not rely on the central decisions and can take proper
steps according to the environmental changes.
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The following abbreviations are used in this manuscript:

VPP Virtual Power Plant
TVPP Technichal Virtual Power Plant
CVPP Commercial Virtual Power Plant
DERs Distributed Energy Resources
RES Renewable Energy Resources
DSO Distribution System Operator
TSO Transmission System Operator
ISO Independent System Operator
WT Large-Scale Wind Turbine
PV Centralized Photovoltaic Station
DAM Day-Ahead Market
RBM Real-Time Balancing Market
ASM Ancillary Service Market
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