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Abstract: The prediction of heat transfers in Reynolds-Averaged Navier–Stokes (RANS) simulations
requires corrections for rough surfaces. The turbulence models are adapted to cope with surface
roughness impacting the near-wall behaviour compared to a smooth surface. These adjustments in
the models correctly predict the skin friction but create a tendency to overpredict the heat transfers
compared to experiments. These overpredictions require the use of an additional thermal correction
model to lower the heat transfers. Finding the correct numerical parameters to best fit the experi-
mental results is non-trivial, since roughness patterns are often irregular. The objective of this paper
is to develop a methodology to calibrate the roughness parameters for a thermal correction model
for a rough curved channel test case. First, the design of the experiments allows the generation of
metamodels for the prediction of the heat transfer coefficients. The polynomial chaos expansion
approach is used to create the metamodels. The metamodels are then successively used with a
Bayesian inversion and a genetic algorithm method to estimate the best set of roughness parameters
to fit the available experimental results. Both calibrations are compared to assess their strengths and
weaknesses. Starting with unknown roughness parameters, this methodology allows calibrating
them and obtaining between 4.7% and 10% of average discrepancy between the calibrated RANS heat
transfer prediction and the experimental results. The methodology is promising, showing the ability
to finely select the roughness parameters to input in the numerical model to fit the experimental heat
transfer, without an a priori knowledge of the actual roughness pattern.

Keywords: Bayesian inversion; genetic algorithm; data-driven analysis; calibration; rough heat
transfers; computational fluid dynamics

1. Introduction

The numerical simulation of airflow above a rough wall differs from a classical smooth
wall situation. The surface roughness creates a different near-wall behaviour, especially for
the skin friction and the heat transfers. This led to the modification of the classical turbu-
lence models to account for the roughness elements, like in [1] for the Spalart–Allmaras
model. The main characteristics of the rough extension of the Spalart–Allmaras model
reside in setting a non-zero turbulence viscosity at the wall. Usually, these adapted models
are specifically designed to predict the correct skin friction coefficients based on experi-
mental benchmark cases. This attention given to the skin friction coefficients alone has a
drawback: the predicted heat fluxes are higher than the experimentally measured ones.
An additional thermal correction model is thus required to adjust heat fluxes. To correct
the heat flux behaviour, [2] suggested increasing the turbulent Prandtl number close to the
wall. Further thermal correction model developments carried out by [3] and recently by [4]
continued to aim at a turbulent Prandtl increase.
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The thermal correction models take as input various parameters describing the rough-
ness pattern of the surface. These parameters can be physically measurable, such as the
roughness height, or numerical, such as the equivalent roughness. For instance, the thermal
correction of [3] takes three input parameters and the two-parameter Prandtl correction
(2PP) of [4], takes two. The latter 2PP thermal correction model is the one used in the present
study. Previous works highlighted that the heat flux is sensitive to those roughness param-
eters and to the thermal correction model itself [4,5]. Usually, the equivalent roughness is
computed from the roughness shape using empirical relations such as [6]. Those relations
were built using manufactured regular roughness patterns, such as regularly spaced cones,
hemispheres or pyramids. In many real-life situations, for example in aircraft icing [7],
roughness patterns are irregular and present several uncertainties. Therefore, classical
empirical relations can fail to correctly describe a roughness pattern in such situations.

To avoid the dependence on empirical relations in rough heat transfer CFD simulations,
a data-driven approach can be used, provided that experimental data are available. This
data-driven approach allows the recovery of the roughness parameters to input in the
numerical model by processing the experimental data, without an a priori knowledge of
the real roughness pattern. Machine learning and data-driven techniques have already
been successfully applied in CFD, for example for the calibration of the turbulence model’s
constants in [8], highlighting its potential.

Usually, the data-driven approach relies on metamodels. One of the most common
metamodel families is the polynomial chaos expansion (PCE) [9]. PCE metamodels are
commonly used in problems where uncertainty propagation is studied, like in [10] and [11].
Most of the time, the PCE approach allows building efficient metamodels from a CFD
database, and these are used in lieu of the time-consuming CFD model [12] for complex
analyses. The PCE metamodeling was successfully applied in heat transfer applications,
for instance in [13] or [14], highlighting its suitability for the present study. Globally, the
coupling between PCE metamodeling and CFD has been extensively developed and applied
during the last two decade [15,16]. Once the metamodels are established, the sensitivity
analysis can be performed, usually using the Sobol indices [17]. This combination of PCE
metamodels with Sobol sensitivity indices was previously used in a related work [5]. The
Sobol indices allows the classification of the uncertain inputs according to their influence
on the particular output of interest of a study using a variance-based approach. These
commonly used indices are regularly employed in CFD sensitivity analysis [18]. Following
the definition of the metamodels, the calibration of uncertain roughness parameters can be
performed. In the present work, two calibration methods will be assessed and compared:
the Bayesian inversion and the genetic algorithm. The Bayesian inversion is a commonly
used tool allowing model calibration and fine-tuning of numerical parameters [19]. The
Bayesian inversion transforms the initial uncalibrated input’s distribution into a refined
posterior distribution, whose peak corresponds to the calibrated value [20]. This approach,
using probability distributions instead of fixed values, allows flexibility in the interpretation
of the calibration results. This calibration methodology was used in the context of the
constant calibration of turbulence models [21]. Fine tuning and optimization tasks suit
the application of Bayesian inversion. The authors of [22] used Bayesian inversion for
the shape optimization of a wall to obtain a prescribed pressure gradient distribution.
This application presents similarities with the present work aiming at optimizing the
surface roughness to obtain a given heat flux distribution. On the other side, classical
calibration methods (i.e., non-Bayesian), such as the genetic algorithm, usually work in a
non-probabilistic way, making their calibrated results strictly defined, without controlled
flexibility. Classical calibration methods imply more intervention from the human modeller
in post-processing, making the final results sensitive to the modeller’s experience, expertise
and biases [23]. A genetic algorithm calibrates the problem using an approach similar to
biological evolution [24]. The final calibrated parameters are estimated by performing a
method using selections, mutations and crossings between “generations” of parameters
samples, like in the natural selection process. This type of calibration with genetic algorithm
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was already used in CFD applications [25], and more specifically for optimization, like
in [26] or [27]. This use of genetic algorithms in the CFD field highlights the suitability of
the method for the current application. The coupling between the PCE metamodeling and
the optimization by Bayesian inversion or genetic algorithm was already used in numerical
heat transfer applications [28], showing the potential of the methodology. Additionally, in
case of a low trustworthiness metamodel, coupling it with a Bayesian analysis allows one
to consider the metamodel’s uncertainty in the whole study [29].

The objective of this paper is to set up a methodology to calibrate the roughness
parameters to input into the 2PP thermal correction model to match the experimental
results of a given test case. More specifically, a rough curved channel geometry, inspired
by [2], is used to set up the design of experiment (DOE) for heat transfers. Next, the DOE
allows the generation of PCE metamodels predicting key features of the heat transfers on
the wall. The next step is the sensitivity study, using the Sobol indices to identify the most
sensitive parameters. Finally, the PCE metamodels are used in a calibration procedure
to establish the roughness input parameters with the aim of retrieving the experimental
heat transfer distribution in the curved channel. The calibration is done successively with
a Bayesian approach and a genetic algorithm to compare both methods on the results
discrepancies and practical application.

First, the test case geometry and setup will be described. Second, the 2PP thermal
correction model is detailed, highlighting the role of the roughness parameters in the
simulation. Next, the DOE construction is depicted prior to the description of the PCE
metamodeling, the sensitivity study and the calibration procedures. Finally, the results
are shown and compared, highlighting between 4.7% and 5.4% of average discrepancy
after the Bayesian calibration compared to the experimental results. On the other side, the
genetic algorithm approach gives between 5.7% and 10% of discrepancies.

2. Test Case Geometry and Setup

A specific curved channel test case is used for the application of the depicted method-
ology. This section will give details about the geometry used in the present study, along
with the RANS setup to perform the flow simulation. The geometry and computational
domain is detailed, prior to the domain mesh and numerical RANS configuration.

2.1. Physical Geometry and Boundary Conditions

The geometry used to apply the calibration work discussed in this paper is a curved
channel experimentally studied by [30]. This test case was numerically studied by [2] few
years later. The channel has a straight section followed by a curved one and another straight
section. The channel height is 0.07 m while the overall curvilinear length is about 1.25 m.
More specifically, the zone of interest is the rough bottom floor of the channel where the
heat transfer coefficient will be monitored. Figure 1 illustrates the computational domain.
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Figure 1. Geometry of the curved channel. Figure 1. Geometry of the curved channel.

The curved part of the channel’s floor, whose curvilinear length is 0.398 m, is an arc
of radius 1.200 m and an angle of 19◦. The freestream values are a velocity magnitude
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of 40 m/s, an inlet total pressure of 102,304 Pa and a total temperature of 288.95 K. The
boundary conditions are also displayed on Figure 1. The floor is divided into three main
zones: an initial smooth and unheated wall, the rough and heated study zone (including
the curved portion), and a downstream smooth unheated zone. The top wall is entirely
smooth and adiabatic. The heated zones are isothermal at 303.15 K and their roughness
parameters are the objective of the calibration. The roughness parameters’ distribution will
be detailed in Section 4.

2.2. Mesh and Numerical Setup

The geometry is discretized using quadrilateral elements in a structured mesh. The
rough zone of interest is composed of 499 nodes in the stream-wise direction, while the
channel height has 399 elements. Coarser meshes were tested, giving similar results
on the benchmark test cases. The finest mesh was retained to cope with the various
untested roughness patterns planned to be run during the sampling of the DOE. The entire
computational grid has 274,512 quadrilaterals. The first cell height is about 3 µm, which
allows a y+ below 1 for all the roughness ranges tested. The growth rate normal to the wall
is 1.1. A close-up on the mesh near the floor is shown on Figure 2. The main outcomes of
the mesh convergence study are detailed in the Appendix A.

Energies 2022, 15, 3793 4 of 21 
 

 

The curved part of the channel’s floor, whose curvilinear length is 0.398 m, is an arc 

of radius 1.200 m and an angle of 19°. The freestream values are a velocity magnitude of 

40 m/s, an inlet total pressure of 102,304 Pa and a total temperature of 288.95 K. The 

boundary conditions are also displayed on Figure 1. The floor is divided into three main 

zones: an initial smooth and unheated wall, the rough and heated study zone (including 

the curved portion), and a downstream smooth unheated zone. The top wall is entirely 

smooth and adiabatic. The heated zones are isothermal at 303.15 K and their roughness 

parameters are the objective of the calibration. The roughness parameters’ distribution 

will be detailed in Section 4.  

2.2. Mesh and Numerical Setup 

The geometry is discretized using quadrilateral elements in a structured mesh. The 

rough zone of interest is composed of 499 nodes in the stream-wise direction, while the 

channel height has 399 elements. Coarser meshes were tested, giving similar results on 

the benchmark test cases. The finest mesh was retained to cope with the various untested 

roughness patterns planned to be run during the sampling of the DOE. The entire com-

putational grid has 274,512 quadrilaterals. The first cell height is about 3 µm, which allows 

a y+ below 1 for all the roughness ranges tested. The growth rate normal to the wall is 1.1. 

A close-up on the mesh near the floor is shown on Figure 2. The main outcomes of the 

mesh convergence study are detailed in the Appendix A. 

 

Figure 2. Close view on the mesh in the near-wall region: (a) Inlet area; (b) transition straight/curved 

zone (scale in m). 

The flow simulation is performed using the compressible RANS solver SU2 6.2 [31]. 

The Reynolds number based on the total floor length is 3.2 × 106 and the Mach number 

is 0.118. To accelerate the convergence, the CFL number is set to 10. Finally, the convective 

fluxes are discretized using a Roe scheme with MUSCL reconstruction [32]. The solver 

used includes in-house implementations of the rough modification of the Spalart–Allma-

ras turbulence model [1] and the addition of the 2PP [4] thermal correction model. The 

next section will detail the mathematical model making up the thermal correction model. 

3. 2PP Thermal Correction Model 

This section will give an overview of the equations of the 2PP thermal correction 

model. The 2PP thermal correction model was implemented into SU2, and aims at increas-

ing the Prandtl number in the near-wall region to reduce the heat flux when the rough 

version of the Spalart–Allmaras turbulence model is used. 

Figure 2. Close view on the mesh in the near-wall region: (a) Inlet area; (b) transition straight/curved
zone (scale in m).

The flow simulation is performed using the compressible RANS solver SU2 6.2 [31].
The Reynolds number based on the total floor length is 3.2× 106 and the Mach number is
0.118. To accelerate the convergence, the CFL number is set to 10. Finally, the convective
fluxes are discretized using a Roe scheme with MUSCL reconstruction [32]. The solver
used includes in-house implementations of the rough modification of the Spalart–Allmaras
turbulence model [1] and the addition of the 2PP [4] thermal correction model. The next
section will detail the mathematical model making up the thermal correction model.

3. 2PP Thermal Correction Model

This section will give an overview of the equations of the 2PP thermal correction model.
The 2PP thermal correction model was implemented into SU2, and aims at increasing the
Prandtl number in the near-wall region to reduce the heat flux when the rough version of
the Spalart–Allmaras turbulence model is used.

The 2PP thermal correction model achieves the goal of increasing the turbulent Prandtl
number by computing an increment ∆Prt. The model takes two roughness input parameters:
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the roughness height k (m) and the equivalent roughness ks (m). Equation (1) allows the
computation of ∆Prt. In Equation (1), Pr is the laminar Prandtl number and d is the distance
to the wall.

∆Prt = g× 0.07083× Res
0.45 × Pr0.8 × exp

(
−d

k

)
(1)

The roughness Reynolds number and the parameter g in Equation (1) are detailed in
Equations (2) and (3).

ReS =
uτks

ν
(2)

g = 1 if Res ≥ 70

g = ln(Res)−ln(5)
ln(70)−ln(5) if 5 < Res < 70

g = 0 if Res ≤ 5

 (3)

In Equation (2), uτ is the friction velocity, and ν is the air kinematic viscosity. Finally,
Equations (1)–(3) highlighted that the roughness parameters have a direct impact on the
Prandtl number correction, and thus on the predicted heat flux.

4. PCE Metamodeling

This section will depict the metamodeling process retained, using polynomial chaos
expansion (PCE) metamodels. This step allows the creation of metamodels to predict the
heat flux behaviour above any roughness pattern without the need for a complete CFD
run. The first step of the metamodeling task is the creation of a numerical DOE. The PCE
metamodels are then generated, and finally their accuracy is checked to ensure they are
reliable enough for the study.

4.1. Design of Experiment (DOE)

To prepare the metamodeling and calibration steps, a numerical DOE of heat transfers
for various roughness patterns is needed. First, the distribution of the input parameters
k and ks/k are defined to set the ranges for the sampling. Note that the ratio ks/k is used
instead of ks alone, since it will allow one to directly evaluate the relation between the
roughness height and the equivalent roughness. The present work is included in the
broader scope of in-flight aircraft icing. Therefore, the typical ranges of variation of k and
ks/k are obtained from the icing literature [33,34]. These ranges are wide enough to ensure
that they are suitable for the current study, which is not specifically a simulation in icing
conditions. The compilation of the distribution of all the input parameters is given in
Table 1. The distributions are chosen as uniform since there is no a priori knowledge of the
experimental roughness pattern.

Table 1. Distribution of the input parameters.

Parameter Minimum Maximum Distribution

k (mm) 0.41 4.32 Uniform
Ratio ks/k 0.2 6.5 Uniform

Following the distributions of Table 1, a sampling is done using the Latin hypercube
sampling [35]. The sample size is defined according to the literature [36] for a response
surface and gives, with an oversampling factor, 120 samples. Following the sampling, 120
CFD simulations of the curved channel are run. This allows the construction of a numerical
heat transfer database, needed for the next metamodeling step.

4.2. Metamodels Generation

Once the heat transfer DOE is set up and ran, the metamodeling tool uses its output
database to estimate a mathematical relation between the roughness parameter inputs and
the heat flux output. For this study, polynomial chaos expansion (PCE) metamodels were
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chosen [9] and generated using the UQLab tool [9]. The choice of this type of metamodel
is motivated by its wide use in uncertainty quantification for CFD and aerodynamic
applications [37]. The general form of a PCE metamodel is given by Equation (4).

Yi = Mi(X) = ∑
α

yα × ψα(X) (4)

In Equation (4), Yi is the output of interest, X = (X1, X2) is the input parameter vector,
Mi is the corresponding PCE metamodel defined by its coefficients yα and the multivariate
polynomials ψα of the decomposition. α = (α1, α2) is the multi-index with two components
(since there are two input parameters; see Table 1). The multivariate polynomials ψα are
obtained as the tensor product of the two (in the present application) univariate basis
polynomials ϕ (Equation (5)).

ψα(X) =
2

∏
i=1

ϕαi (Xi) (5)

The input parameters having a uniform distribution, the univariate basis polynomials
are Legendre polynomials of indices αi [9].

Three metamodels are generated, as listed in Table 2 where hc is the heat transfer
coefficient in W/m2K.

Table 2. The metamodels created.

Metamodel Output(s) of Interest

M1 hc at the starting point of the rough zone, W/m2K
M2 Mean relative error with experimental hc (%)

M3
hc values at N equally spaced locations along the rough

zone (multi-output), W/m2K

The second metamodel, M2, predicts the mean relative error compared to the experi-
mental results of [2]. The mean relative error ε is the average of the relative errors taken on
every mesh point (Equation (6)).

ε =
1

Npoints

Npoints

∑
i=1

∣∣∣∣hc,CFDi − hc, EXPi

hc, EXPi

∣∣∣∣ (6)

In Equation (6), Npoints is the number of mesh points in the study zone, and hc,CFDi and
hc,EXPi are the CFD predicted hc at point i and the experimental hc at point i, respectively.

M3 is a multi-output metamodel evaluating in one estimation N values of hc along the
wall. Setting N to a high value allows one to predict the complete hc distribution on the
entire rough wall. The metamodel M1 is separated from the metamodel M3: this separation
allows one to compare the cases where the starting hc is calibrated alone (M1) and where
several locations are simultaneously calibrated (M3).

Once a metamodel is created, its evaluation on the inputs of the DOE allows the
comparison of its prediction with the actual CFD prediction obtained when setting up the
DOE. Doing a linear regression between the PCE prediction and the CFD output allows the
computation of the R2 coefficient (Equation (7)).

R2 = 1− ∑(YCFD −YPCE)
2

∑(YCFD −YCFD)
2 (7)

In Equation (7), YCFD and YPCE are the CFD and PCE predictions, respectively. YCFD
is the mean value of the output of interest (CFD). An R2 coefficient close to 1 ensures a
PCE metamodel with a good accuracy, since it predicts outputs close to what the full CFD
simulation gives. Once the metamodels are established, the next step is to use them for the
sensitivity study and the calibration purpose.
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5. Sensitivity Study

The sensitivity study allows the identification of the most sensitive parameter(s) in the
model. Using the previously described PCE metamodels, the sensitivity analysis computes
the Sobol indices, described in [17]. These indices allow the classification of the input
parameters from the most to the least sensitive. The Sobol index is a ratio of variances,
taking values between 0 and 1. For input parameters i and j, the first and second order
Sobol indices are defined by Equations (8) and (9), respectively.

Si =
V(Y)− E(V(Y|Xi))

V(Y)
(8)

Si,j =
V(Y)− E

(
V
(
Y
∣∣Xi, Xj

))
V(Y)

(9)

In Equations (8) and (9), Y is the output of interest, V is the variance operator, E
the mean value, and the notation Y|Xi denotes the output of interest when the ith input
parameter is fixed. The total Sobol index, which is monitored in the present study, for the
ith input parameter for a generic three parameters study is given by Equation (10).

STi = 1−
(

Sj + Sk + Sj,k

)
(10)

The total Sobol index gives the contribution of the variability of the ith input and its
interactions with the other inputs (here the jth and kth) on the response sensitivity. A total
Sobol index close to zero means that the ith parameter does not contribute much to the
variability of the studied output. According to the classification criteria suggested by [38],
an input parameter with a total Sobol index:

• above 80% is very important;
• between 50% and 80% is important;
• between 30% and 50% is unimportant;
• below 30% is negligible.

6. Model Calibration

Observing experimental results without an a priori knowledge of the roughness
pattern is not helpful to precisely extract the roughness parameters. This task is even more
non-trivial since the roughness parameters to input in the model vary depending on the
thermal correction model chosen. The calibration is intended to estimate those roughness
parameters by working on the PCE metamodels previously created. The Bayesian inversion
calibration is first described prior to the genetic algorithm approach.

6.1. Bayesian Inversion Calibration

Based on the Bayes theorem (Equation (11)), the principle of the Bayesian inversion
is to get the posterior distributions π(θ|Xi) of input Xi, based on the assumed prior
distributions (see Table 1) π(θ) and on the information provided by the experimental data.
Here, θ denotes the distribution parameters and the | symbol denotes the conditional
dependence. The posterior distributions are the distributions of the input parameters
knowing the information brought by the experimental data.

π(θ|Xi) =
π(Xi|θ)·π(θ)

π(Xi)
(11)

In Equation (11), π(Xi|θ) is called the likelihood function and π(Xi) is seen as a
normalization constant called the marginal likelihood. The new posterior distributions
are generally not uniform anymore and allow identifying the input parameter values that
will produce an output that best fits the experimental data. Additionally, a discrepancy
between the PCE output and the CFD prediction is given to the solver, along with the
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experimental observations themselves. For instance, a discrepancy between 0 W/m2K
and 15 W/m2K means that up to 15 W/m2K of difference between the PCE and CFD
predictions is expected. Numerically speaking, the Bayesian inversion is performed with
the UQLab tool [19]. The computation of the posterior distribution is made using a Markov
chain Monte Carlo (MCMC) algorithm. The samplers used in the study are the affine
invariant ensemble algorithm (AIES) or the Metropolis–Hastings (MH) algorithm. For
the purposes of the work, the MCMC solver is tuned to perform 70,000 iterations and
generates 15 chains. The Bayesian solver setup for each metamodel is summarized in
Table 3. For the metamodel M2 (predicting the mean relative error with experimental data),
the experimental observation is 0% of mean relative error. This means that the objective of
the calibration is to obtain a mean relative error close to 0%.

Table 3. Bayesian solver settings.

Metamodel
Calibrated

Objective of the
Calibration Sampler Discrepancy

Experimental
Observation

Supplied

M1
Recovering the same
starting value of hc

AIES Uniform [0; 15]
W/m2K 255.1 W/m2K

M2

Having a mean
relative error with

experimental hc of 0%
AIES Uniform [0; 5]% 0%

M3

Recovering the same
hc values at the N

equally spaced
locations along the

rough zone

MH Uniform [0; 15]
W/m2K

Experimental
hc at the N
locations
(W/m2K)

After having obtained the posterior distributions, the mean value or the maximum a
posteriori (MAP) of these distributions can be estimated. These two statistics can be used
to estimate which single values of input parameters lead to a model response close to the
experimental data. After evaluating the PCE metamodels and the complete CFD simulation
with the calibrated parameters, it is possible to assess the success—or not—of the calibration
procedure. One can estimate if the model response is close to the experimental data.
Additionally, the distributions of the model predictions using the posterior distributions
should present less uncertainty (reduced variance) when using the prior distributions.

6.2. Calibration Using a Genetic Algorithm

The Matlab framework has a built-in genetic algorithm that is used in the study [39,40].
Its purpose is to find the set of input parameters that minimize an objective function. The
default settings provided in the Matlab framework provide a straightforward application
for the present case. The objective functions supplied to the genetic algorithm are summed
up in Table 4.

Table 4. Objective functions for calibration with the genetic algorithm.

Metamodel
Calibrated Objective of the Calibration Objective Function Used

M1 Recovering the same starting value of hc |M1 − 255.1|

M2
Having a mean relative error with

experimental hc of 0% |M2|

M3
Recovering the same hc values at the N equally

spaced locations along the rough zone
|M3[i] − hc[i]|

i = 1 . . . N

Note that since the metamodel M3 outputs multiple (N) values, the genetic algorithm
is executed N times. Each one of the executions gives a set of calibrated parameters and the
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final retained parameters are obtained by doing an average or a weighted average over the
N solutions. Most of the time, the simple averaging produces unsatisfactory results. The
weighted average, with appropriate weight(s) on the most relevant output(s), allows one to
improve the results, as shown in the next section.

7. Results

This section will display the results obtained all through the process described in the
previous sections. First, the CFD results obtained initially before calibration are shown
to illustrate the baseline results. Following this, the characteristics and precision of the
metamodels are shown prior to the sensitivity indices. Finally, the calibration results for
both Bayesian inversion and genetic algorithm are displayed, prior to the comparison of
both methods.

7.1. CFD Results before Calibration

Prior to the metamodeling and calibration process, the curved channel test case, as
described in Sections 2.1 and 2.2, is run alone to verify the CFD settings and mesh. This
initial simulation, called here the baseline simulation, is the same as the one run for the
mesh study with the fine mesh. The roughness height is k = 0.5 mm and the equivalent
roughness is ks = 1.55 mm. This baseline simulation also provides useful information about
the convergence of the CFD configuration used. The iterative convergence residual curves
are displayed on Figure 3.
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Figure 3 shows that after the prescribed number of iterations (125,000), the residuals
are stable and decreased by at least three orders of magnitude. The configuration used has
a satisfactory convergence behaviour which confirms the choice of the numerical setup.
The heat transfer results obtained with these settings are plotted on Figure 4.
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Figure 4. Baseline results before calibration.

From Figure 4, it is possible to notice a relatively poor agreement with the experimental
data. Finding the best roughness parameters is non-trivial, and it legitimates the use of the
data-driven calibration approach used to match the literature.

7.2. Visualization of the DOE outputs

After a sampling of the roughness parameters with the Latin hypercube method,
120 CFD simulations were run. The heat transfer databases obtained from the DOE are
plotted in Figure 5, where each one of the black curves is the heat transfer coefficient of
one simulation of the DOE. On Figure 5, the experimental data, in red, from the literature
are shown.
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By observing the experimental results, it is possible to notice oscillations resulting
from the experimental uncertainty. Additionally, all the numerical simulations exhibit a
sudden bump at x = 0.46 m, where the curved part of the channel starts. This local increase
in the heat transfer coefficient is due to the flow acceleration in the curve portion. Studies
in [30] quantified this increase in the heat transfer coefficient value at the start of the curve
zone to be about 3%. Figure 5 shows that the target experimental results are included in the
envelope defined by the sampling CFD simulations. This observation shows that the initial
range of roughness parameters chosen contains the a priori unknown experimental values.



Energies 2022, 15, 3793 11 of 20

7.3. Characteristics of the Metamodels and Accuracy

The previous DOE is used as a basis for the PCE metamodel generation. Three
metamodels are generated: one to predict the initial value of hc along the rough zone, one
to predict the mean relative error with experimental results and a third one to predict N
values of hc along the wall (see Table 2). For each metamodel, the resulting PCE is described
with the polynomial degree pPCE and the number of terms in the expression (Equation (4)).
Additionally, the R2 coefficient is calculated to assess the metamodel accuracy (Equation (5)).
The values obtained are gathered in Table 5. For the present study and for the rest of the
paper, the metamodel M3 is used with N = 6, meaning it computes six values of hc regularly
spaced along the wall. Note that the number of terms in Equation (4), for a two input
parameters study, is equal to (pPCE+2)!

pPCE!2! .

Table 5. R2 coefficient for each metamodel.

Metamodel Output of Interest PCE Degree
pPCE

Number of
Terms in

Equation (4)

R2

Coefficient

M1

hc at the starting point
of the rough zone,

W/m2K
10 66 0.99994

M2
Mean relative error with

experimental hc (%) 10 66 0.99962

M3

hc values at 6 equally
spaced locations along

the rough zone
(multi-output), W/m2K

Y1:10 66 0.99994
Y2:9 55 0.99993

Y3:12 91 0.99999
Y4:10 66 0.99992
Y5:12 91 0.99999
Y6:12 91 0.99997

Table 5 shows that the PCEs obtained have a degree between 9 and 12, with the
corresponding polynomial expressions having between 55 and 91 terms. All regression
coefficients are above 99.9%, meaning an excellent agreement between the CFD results
and the PCE-predicted results on the same sample. For comparison, [41] performed the
same type of uncertainty quantification analysis with R2 coefficients as low as 94.6%. For
graphical visualization, the regression for M2 (with R2 of 99.96%) is plotted on Figure 6
where YPCE and YCFD are the mean errors in percentage with the literature, as predicted
by PCE and CFD, respectively. For synthesis and concision, only the regression for M2 is
displayed, since it is the worst among the three (see Table 5).
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Figure 6 shows that the results are close to the identity line, visually confirming the
good value of the R2 regression coefficient. This R2 assessment shows that the metamodels
generated are accurate and reliable enough to be used in the present application.

7.4. Sensitivity Study

Using the PCE metamodels, the sensitivity study allows the Sobol indices to be com-
puted (see Equation (8)). Table 6 gathers the total Sobol index values for each metamodel.

Table 6. Total Sobol indices.

Metamodel Total Sobol Indices

M1
k: 0.1445

ks/k: 0.8868

M2
k: 0.3061

ks/k: 0.9772

M3
k: 0.1167

ks/k: 0.9061

Table 6 shows that the roughness height k is the least sensitive parameter in each case,
with a total index between 11% and 30%. The ratio ks/k is the most dominant parameter of
influence, with 88% to 97% sensitivity. According to the classification made by [38], k is
a negligible parameter in the model sensitivity while ks/k is a very important parameter.
Therefore, the relation between ks and k is more critical for the model output than their
absolute values in millimetres.

7.5. Bayesian Inversion Calibration

The metamodels built are used as forward models for the MCMC algorithms, evalu-
ated at each iteration of the chain. The target of the calibrations is to retrieve the features
of the experimental results by estimating the best roughness parameters. These targets
were listed earlier in Table 3. The target values (last column of Table 3) are inputted into
the Bayesian module and the computation is carried out on the corresponding metamodel.
For metamodels M1 and M2, the calibrated roughness parameters retained are the mean
values of the posterior distribution. For metamodel M3, the maximum a posteriori (MAP)
is retained. The calibrated roughness parameters retained are listed in Table 7, along with
the value (mean or MAP) chosen.

Table 7. Calibrated roughness parameters (Bayesian inversion).

Calibrated Metamodel Values Retained Final Calibrated Roughness Parameters

M1 Mean k = 2.2 mm
ks = 6.4 mm

M2 Mean k = 1.6 mm
ks = 4.2 mm

M3 MAP k = 1.8 mm
ks = 5.0 mm

The values in Table 7 are different from the ones tested in the baseline simulation, what
explains the poor agreement with the literature prior to the calibration. Before assessing
the quality of the calibrations, it is interesting to look at the main power of the Bayesian
analysis: transforming the prior probability distributions of the inputs (uniform, see Table 1)
into the calibrated posterior distributions, which are closer to Gaussian distributions.
Figures 7 and 8 illustrate as an example the prior and posterior distributions for the M3
calibration for both k and ks/k roughness parameters, respectively.
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Figure 8. Prior (a) and posterior (b) distributions for the ratio ks/k (M3 calibration).

In Figures 7 and 8, it is possible to see the difference from the uncalibrated distributions
(prior) to the posterior calibrated distributions. The calibrated values are clearly visible
since the distributions are less spread and present peaks. Figures 7 and 8 also allow
visualizing graphically the meaning of the mean and MAP values: the mean is the mid
value between the distribution’s lower and upper limits, while the MAP value corresponds
to the highest peak. From the posterior distributions, it is possible to recover the calibrated
values of Table 7 for metamodel M3: k = 1.8 mm and ks/k = 2.8 (i.e., ks = 5.0 mm). The
observations highlight that the ratio ks/k (Figure 8b) is finely calibrated with a smaller
uncertainty compared to the roughness height k (Figure 7b). The posterior distribution for
the ratio ks/k exhibits a narrower peak, typical of a small variance.

For the metamodel M1 and M2, the calibrated roughness parameters from Table 7
are inputted into the CFD solver and the simulation is run to verify the new heat transfer
obtained after calibration. Figure 9 shows the heat transfer using the calibrated roughness
parameters for M1 and M2.
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Figure 9. Heat transfer coefficient after Bayesian calibration.

Figure 9 shows that the calibrated results have a better agreement with the experimen-
tal results compared to the baseline simulation of Figure 4. The calibration for M1 allows
one to obtain an average relative error with the experimental data of 4.7%. The relative
error is computed as the average for the entire rough zone among all the grid points. The
experimental data being available at about only 25 locations, the experimental values are
interpolated at the grid points to allow the relative error calculation. The calibration for
M2 presents similar errors with the experimental data with 4.8% of relative mean error.
Globally, both calibrations present satisfactory results, showing less than 5% of error on
average compared to the experimental results. The results for the metamodel M1 are higher
than the one for the metamodel M2, which is due to the higher roughness parameters in
the case of M1. This observation is in accordance with the usual experimental observation,
where higher roughness elements lead to an enhanced heat transfer [2].

Figure 10 illustrates the calibrated results using the results for the metamodel M3.
Since M3 outputs hc values at different locations, it is possible to use the calibrated inputs
to plot both PCE metamodel and CFD predictions.
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Figure 10. PCE and CFD predictions using M3 calibrated values (Bayesian inversion).

Figure 10 is informative on several aspects: first, the PCE prediction using the cal-
ibrated roughness parameters presents a satisfactory agreement with the experimental
data. Second, and most importantly, the CFD prediction is close to the PCE prediction.
It allows assessing whether the PCE metamodel is reliable enough to predict a solution,
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and makes it a less costly and time-consuming tool which can replace the CFD on that
particular application. Finally, the calibrated CFD results present a good agreement with
the experimental data. The mean relative error with the experimental curve is 5.4%.

7.6. Genetic Algorithm Calibration

The same three metamodels are now calibrated with the genetic algorithm. The
objectives of the calibrations remain the same, and the objective functions were listed
earlier in Table 4. The calibrated results obtained are displayed below in Table 8. For the
metamodel M3, the genetic algorithm outputs N calibrated parameters corresponding to
each of the N locations. The final retained parameters are computed by average or weighted
average (where the initial point at the start of the rough zone has a weight of three).

Table 8. Calibrated roughness parameters (genetic algorithm).

Calibrated Metamodel Values Retained Final Calibrated Roughness
Parameters

M1
k = 1.9 mm
ks = 3.1 mm

M2
k = 4.3 mm
ks = 8.2 mm

M3 Average among the N values k = 3.0 mm
ks = 8.3 mm

M3
Weighted average among the

N values
k = 2.9 mm
ks = 7.1 mm

Figure 11 shows the CFD results using the calibrated parameters for the metamodels
M1 and M2.
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Figure 11. Heat transfer coefficient after genetic algorithm calibration.

Figure 11 highlights that the agreement with the experimental data is better at the
beginning of the rough zone and tends to present higher discrepancy at the end of the rough
zone. The mean relative error for the metamodel M1 is 8.2% and is 5.7% for metamodel M2.

Figure 12 displays the PCE and CFD predictions using the calibrated values of meta-
model M3. The calibration shows better agreement in the middle and at the end of the
wall. This feature has a drawback: the agreement at the beginning is not as good as for
the metamodels M1 and M2. Taking the average roughness parameters gives a large over-
estimation of hc at the start of the rough zone. Performing a weighted average, giving a
weight of three to the first point, tends to lower the starting hc value and globally lowers
the values everywhere.
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7.7. Comparison of Both Calibration Methods

After calibrating the metamodels using both Bayesian inversion and genetic algorithm
approaches, the first comparison is the capacity for predicting the experimental data. This
comparison is made by computing the mean relative error compared with experimental
data. Table 9 gathered together the mean relative errors for both approaches.

Table 9. Errors with experimental data for each calibration.

Calibrated Metamodel hc Mean Relative Error with Experimental Data
Bayesian Inversion Genetic Algorithm *

M1 4.7% 8.2%
M2 4.8% 5.7%

M3 5.4% Avg: 10%
W-Avg: 7.0%

* For M3, Avg: Average among the N outputs; W-Avg: Weighted average.

The Bayesian calibration allows an agreement between the numerical results and
the experimental data with an error about 5%. For the genetic algorithm, the errors are
higher: they are between 5.7% and 10%. These values show an agreement not as good as
the one obtained with the Bayesian inversion, despite displaying interesting behaviour
at the beginning of the rough zone for the metamodels M1 and M2 (see Figure 11). By
purely looking at the values in Table 9, the Bayesian inversion provides more satisfying
and consistent results compared to the genetic algorithm. Note that the uncertainty in
the experimental results was not considered. Given the oscillations observed on the
experimental curve, one can estimate that the uncertainty in the experimental data is
between 6% and 10%.

Nevertheless, by comparing Figures 9–12, both methods have their own strengths and
weaknesses. The calibrations for the metamodels M1 and M2 present a better agreement at
the beginning of the rough zone for the genetic algorithm calibration (Figure 11) compared
to the Bayesian inversion (Figure 9). When calibrating the starting value of hc with the
metamodel M1, the genetic algorithm performs better since the starting value of hc after
calibration agrees better with the experimental data compared to the Bayesian inversion. On
the other hand, the Bayesian inversion presents a better agreement between the calibrated
results and the experimental data in the middle and at the end of the rough zone. For the
metamodel M3, the trend is the opposite: the Bayesian inversion (Figure 10) performs better
at the beginning of the rough zone while the genetic algorithm (Figure 12) exhibits a better
agreement at the end of the rough zone.
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On usage, the Bayesian inversion is more automated and gives a more flexible output.
The posterior distribution gives an idea of the uncertainty of the calibrated parameters.
In the meantime, the output of the genetic algorithm is more rigid, since apart from the
calibrated value, no distribution is given. In the case of a multi-output metamodel (M3), the
Bayesian inversion calibrates the model by working simultaneously on all outputs, thus
estimating correlated calibrated parameters. The genetic algorithm works on each output
independently, and requires a human intervention to establish the correlation between the
outputs, like in the case of the weighted-average metamodel M3. Modeller intervention
can have a large impact on the results. Table 9 shows that changing the weight of the
first output of the metamodel M3 from one to three in the averaging decreases the error
from 10% to 7%. An optimization of the weights in the future could improve the results
even further.

The novelty of this work resides in the joint application of PCE metamodeling with
a calibration method in the field of rough heat transfer prediction. Usually, unknown
roughness patterns lead to large uncertainty in the aerothermal behaviour observed. With
the methodology presented here, it is possible to reduce the lack of knowledge about a
given experimental roughness pattern. As an extension, the present methodology can be
applied to aircraft icing, where aerothermal and ice accretion behaviour depend strongly
on the initial and uncertain (and unknown) roughness pattern [5,42]. Finely calibrating the
roughness parameters in an icing simulation will reduce one source of uncertainty that
affects the final prediction of the ice shape.

8. Conclusions

The paper presents a methodology to perform a calibration of roughness parameters
aiming at approaching experimental heat transfers. Two methods of calibration were
compared: the Bayesian inversion and the genetic algorithm. Furthermore, this method-
ology was applied to a rough curved channel test case to illustrate its capacity. Starting
with an unknown experimental roughness pattern, the procedure allowed the recovery
of roughness parameters, providing between 4.7% and 5.4% of discrepancies with the
experimental heat transfer when using Bayesian inversion calibration. In the case of the
genetic algorithm, the agreement was above 5.7%, reaching 10%. The Bayesian inversion
handled better than the genetic algorithm in the present application since its calibrated
results fit the experimental data better. Furthermore, the Bayesian inversion behaves better
in the case of multi-output metamodels, since it does not require manual tuning to account
for each output contribution. This building of this methodology was achieved by com-
bining polynomial chaos expansion (PCE) metamodeling and calibration techniques. The
methodology showed high accuracy with respect to the PCE metamodels, confirming their
suitability in the current application. The sensitivity analysis using the Sobol sensitivity
indices highlighted that for this test case, the relation between the roughness height and the
equivalent roughness plays a bigger role than the roughness height alone. The data-driven
approach showed its suitability in CFD applications. In the case of unknown roughness
patterns, it allows one to select the numerical parameters to input into a CFD simulation to
retrieve the experimental data. Future extensions of the work will allow one to calibrate
the roughness parameters not only to fit the heat transfer value but related quantities such
as ice shape geometry in in-flight icing simulations.
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Nomenclature

Symbols
d Distance to the wall (m)
E Mean value of a dataset
eij

a Relative error between mesh i and j for a scalar quantity
g Adimensional factor in the thermal correction model
hc Heat transfer coefficient (W/m2K)
k Roughness height (m)
ks Equivalent roughness (m)
l Mesh characteristic length (m)
Mi Metamodel
Npoints Number of mesh points in the rough wall
N Number of outputs for a multi-output metamodel
Pr Laminar Prandtl number
p Convergence order for mesh study
pPCE Degree of polynomial chaos expansion
R2 Regression coefficient
ReS Roughness Reynolds number
Si and Si,j First and second order Sobol indices
STi Total Sobol index
uτ Friction velocity (m/s)
V Variance of a dataset
x Local abscissa along the channel (m)
X = (X1,X2) Vector of input variables for a metamodel
Yi Output of interest of a metamodel
yα Coefficient of the PCE term of index α
Greek letters
α = (α1,α2) Multi-index of the PCE decomposition
∆Prt Turbulent Prandtl number correction
ν Kinematic viscosity of air (m2/s)
ε Mean relative error
ψα Multivariate polynomial of index α
ϕαi Univariate polynomial of index αi
π(θ|Xi) Posterior distribution of input Xi
π(θ) Prior distribution with parameters θ
π(Xi) Marginal likelihood
Subscripts
CFD CFD-predicted value
EXP Experimental value

Appendix A

This appendix sums up the main results obtained during the mesh convergence study.
Three meshes are used for a channel simulation (a coarse (1), a medium (2) and a fine
(3) mesh). The roughness parameters used are k = 0.5 mm and ks = 1.55 mm. The mesh
convergence methodology suggested by [43] is used to compute the convergence order
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p and the grid convergence index (GCI). The flow quantities monitored are hc at three
locations: x = 0.16 m, x = 0.46 m and x = 0.80 m. The results are gathered in Table A1.

Table A1. Convergence orders and GCI values.

hc (x = 0.16 m) hc (x = 0.46 m) hc (x = 0.8 m)

p 0.7 1.7 2.1
GCI21 0.9% 0.2% 0.1%
GCI32 1.4% 0.7% 0.5%

Table A1 shows low GCIs—mainly below 1% except for one which is at 1.4%. For
instance, for the monitored hc at 0.8 m on the fine mesh, the interpretation of the GCI value
is that the uncertainty on the monitored hc due to the mesh refinement is 0.1%. Applying
the same interpretation for each value denotes a satisfactory mesh convergence study. To
be conservative and confident about the quality of the CFD results, even with the various
roughness patterns planned to be run, the fine mesh is retained for the rest of the process.
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