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Abstract: Effective methods for the design of high-performance electrical machines must use op-
timization techniques and precise and fast physical models. Convergence, precision and speed of
execution are important issues, in addition to the ability to explore the entire domain of solutions.
The finite element method (FEM) presents a high accuracy in the results but with high computational
costs. Analytical models, on the other hand, solve the problem quickly but compromise the accuracy
of the results. This work shows a comparison between an optimization made with an analytical
electromagnetic model and a direct optimization with finite element field calculation for the opti-
mal design of a Halbach array permanent magnet synchronous motor (PMSM). In the case of the
analytical model, it is necessary to use an iterative method of correcting the model to obtain a valid
solution. This method is known as Space Mapping (SM) and the analytical model can be improved
with a reduced number of iterations with the FEM. The results show a rapid convergence towards
an optimal solution for the SM, with more than 78% reduction in computational cost compared to a
Direct FEM optimization. Both solutions have only a difference of 3% on the power density, which
indicates that FEM does not improve the results obtained by SM. This represents a great advantage
that allows for the consideration of a large amount of designs to analyze the domain of solutions in
more detail. This study also shows that SM is a powerful method to optimize the power density or
torque density of electrical machines.

Keywords: PM motor; Halbach array; design process; space mapping; finite elements method

1. Introduction

Environmental needs demand a reduction in greenhouse gases and push for a rapid
energy transition [1]. That is why electric propulsion is gaining popularity in all transport
applications. However, this technological breakthrough requires an ambitious roadmap,
particularly in the aeronautics sector [2]. These requirements aim to improve the per-
formance of existing electrical equipment and find solutions to increase power density,
efficiency, facilitate manufacturing or reduce volume and cost [3].

The search for the best configurations remains an important issue to identify the most
efficient solutions. It must be based on optimization methods with multiple objectives and
dimensioning tools to assess the behaviour of the entire propulsion system during a typical
mission [4–6]. In this case, it is necessary to take into account various physical phenomena
and to make compromises on the granularity of certain models to carry out the design
analyses in a reasonable time. Electric motor sizing models are usually of an analytical
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type to quickly calculate the main dimensions of a generic structure and estimate mass and
losses [7].

Ref. [8] have made detailed reviews of the design methods of electrical machines and
future trends about optimization methods. In the past, machine design was limited to the
study of electromagnetic performance. Currently, many phenomena are taken into account
during the design process such as thermal, rotor dynamics, power electronics and the
control method [9]. The assembly of separately optimized components (battery, inverter,
motor, gearbox) does not necessarily guarantee optimal performance of the propulsion
system. The design of a complete propulsion system is a multidisciplinary, multi-objective,
high-dimensional, and non-linear design problem. The challenges are still enormous to
carry out this kind of study with very high resolution and high precision models. The
most common approach is still to optimize the whole system with simpler topologies and
simpler models to establish the specifications of each component. We can then do further
optimization of each component using a precise model.

In the case of the electrical motor, effective design methodologies must combine the
search for the best topology with an iterative process for the optimization of geometry
and dimensions [10]. The optimization process can be computationally intensive and time
consuming, and it is necessary to make certain trade-offs between accuracy and compu-
tation time for the modelling method. One way is to use coarse models with important
simplifying hypotheses, but the optimal solution is often not valid when analyzed with
high resolution models such as Finite Elements (FE).

Reference [11] presents an analytical dimensioning procedure for the preliminary
electromagnetic design of a three-phase surface mounted PMSM with an internal or external
rotor structure. The proposed approach consists of an iterative sizing procedure using
analytical electromagnetic, thermal and mechanical models. The analysis of the solutions
by FEM simulations and thermal analysis shows that the errors can be higher than 20%.
The main advantage of this approach is the speed of execution which quickly generates
many candidate designs in a large search space. The solutions found can be used as starting
points before a depth analysis.

Another analytical sizing procedure for surface mounted PMSM is presented in [12].
Starting from the rated requirements and some design specifications, the proposed ap-
proach is based on self-consistent equations for analytical electromagnetic and electric
models. The validation of the final result with a high-resolution model shows that the
error is less than 5% for the flux densities in the stator but the accuracy of the analytical
inductance model is not discussed.

Ref. [13] proposes a very fast sizing method that only uses magnetic flux maps and
thermal maps that have been previously calculated with FEA and analytical models. The
execution time is less than 1 min and the accuracy of results between calculated performance
and experimental measurements is about 5%. However, identifying the flux map with FEA
is a very time-consuming step. The calculation of 10,000 points may require five days of
calculation but this identification process must only be carried out once.

Ref. [14] shows a comparison of two optimization methods to improve the geometry
of a given PM motor topology. This is an interior permanent magnet synchronous machine
(IPMSM) with eight poles. The first method uses a fine model and the sequential simplex
optimization algorithm. The second is based on the Space Mapping (SM) method using the
manifold-mapping algorithm and two-level models (coarse and fine). The main difference
between the coarse and the fine electromagnetic model is the size of the mesh used for
the Finite Elements Analysis (FEA). This optimization is made with the coarse model and
results are periodically corrected by evaluating the fine model. These two optimization
approaches have reached two different results, but both results are in good agreement with
the objectives. The SM optimization approach allows a reduction of the calculation time
by a factor of 2.5 because the number of evaluations with the fine model is substantially
reduced. However, the authors point out that the use of a more simplified coarse model
would have to call into question the convergence of the SM algorithm.
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Ref. [15] shows an optimization process for Halbach array PM motors which is based
mainly on no-linear, magneto dynamic, time stepping 2D FEA with external electric circuit
coupling and rotor movement. This direct FEA optimization method was used to analyze
the trade-offs between power density and efficiency and determine the number of poles
and electrical frequency most suitable for a 150 kW motor at different rated speeds. More
than 90 machines were optimized for four different power densities (30 kW/kg, 20 kW/kg,
10 kW/kg, 5 kW/kg) to later be compared to identify some optimal design rules. This
represents approximately 800 h of computing time with a single personal computer. Al-
though the computation time is long, the authors demonstrated that an eight-variable
optimization problem to size a PM motor with an accurate magnetic model can be solved
in less than 9 h with a typical personal computer and it is easy to repeat the optimizations
to compare several machine topologies. Despite its performance related to the accuracy of
the FEM models and the nature of the physical quantities that can be estimated (magnetic
losses, magnetic saturation, torque ripples, eddy currents), this type of procedure makes it
possible to explore a very limited space of solutions. The computation time also makes this
approach difficult to apply for the optimization of a more complex system using a motor.

In this work, we compare two optimization methods for the design of Halbach array
PMSM for the parallel-hybrid powertrain of a regional aircraft [6]. First, an analytical sizing
Halbach array PMSM model is presented and used in a Space Mapping (SM) optimization
process. A generic 3-phase machine geometry using a fixed number of slots per pole and
per phase is selected in order to compare performance of the SM optimization with a direct
FEM optimization approach. The use of SM with its respective correction factors for the
coarse analytical model ensures that the final solution of the optimization process will
be valid, but the solution is not necessarily the optimum of the design problem. Finally,
a discussion is made of the main advantages of SM compared to the FEA optimization
process, mainly in terms of convergence, complexity and computation time.

2. CAD of PMSM

The electrical machine design process begins with the formulation of the design
problem according to the expected performance and the model’s selection to calculate the
relevant dimensions of the machine and the equivalent electrical circuit parameters.

Figure 1 shows a typical flowchart for PMSM design in a CAD environment. Specifica-
tions such as nominal values of output torque, mechanical speed, voltage and frequency,
thermal limits, power density and characteristics of the power supply source are taken as
input data for the design of the machine [16,17]. It is also necessary to select the motor
geometry, the winding configuration and the different materials. This adds several constant
parameters set by the physical properties of the materials and the chosen geometry. This
data is used to determine the main dimensions of the motor with an analytical sizing model.

As shown in Figure 2, there are many couplings between physical phenomena that
must be modelled to take them into account during the design process. The non-linearity
of the magnetic materials and the thermal limitations are the most important constraints.

The simplest approach consists in multiplying the types of coarse analytical models
(magnetic, electrical, mechanical and thermal). To check whether the dimensions found are
acceptable, it is necessary to check whether there are deviations between the performance
values obtained and those specified. If necessary, modifications should be made to the
dimensions found to reduce the error to an acceptable value. The analysis of the solution
by finer models such as modelling by finite elements method often shows that the solution
does not respect the specifications. Consequently, the lack of precision of the analytical
models reduces the performance of an optimization procedure if it only uses this kind
of model. The result can be calibrated with the response of a fine model such as FEA by
means of a limited number of simulations to improve the precision of the analytical model,
using correction factors [18]. The design can be considered complete when the result is
less than a specified tolerance in error. This combination allows the use of approximate
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analytical models which decrease computational efforts and execution time, which is the
main problem of the FEA [19].
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3. Analytical Sizing Models

Due to its accuracy, FEA is the preferred method for simulating the performance of
electrical machines. However, this method requires an initial set of geometric dimensions
and it can be time consuming to perform the analysis. This means that designers must
often use analytical sizing models to identify a solution that can meet the specification with
minimal computation time. These models have a low numerical cost and are generally easy
to implement but less accurate than other modelling techniques [15].

The use of an iterative optimization process is now the basis of efficient CAD tools
using an analytical modelling approach. The main equations that make up the PMSM
analytical sizing model are shown below.

3.1. Electromagnetic Torque

The electromagnetic torque (Tem) of a PMSM fed by a sinusoidal source can be calcu-
lated as (1) [20].

Tem =
KwLDB f JScu

2
√

2
(1)

where Kw is the winding factor, L is the motor axial length, D is the stator inner diameter,
B f is the crest value of fundamental magnetic induction in airgap, J is the stator rms current
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density and Scu is the total copper area in stator slots. Once the main, mechanical, and
additional losses are determined, it is possible to calculate the shaft torque that represents
the specification to be met.

3.2. Full Analytical Sizing Motor Model

An analytical method for the calculation of the induction in the air gap of a Halbach
permanent magnet rotor is detailed in [21] and the same approach was used in this study
to develop a complete analytical model of the motor. Reference [21] shows an analytical
model to predict the field distribution of a segmented Halbach cylinder, obtained from
the magnetic scalar potential function. This model is valid for machines with an internal
and external rotor. The authors validated the airgap flux density waveforms using FEA.
Table 1 shows parameters and equations of analytical models for machine sizing and a
nomenclature of the parameters is given at the end of this article.

Table 1. Equations that complete the analytical model.

Variable Name Units Formula

Magnetic structural calculations

Peak fundamental no load
airgap induction B f T Determined according to [21]

Peak no load airgap induction B T Determined according to [21]
Average airgap induction

value Bmoy T 2B
π

Teeth flux density Bd T Bmoy
1−ke

Yoke flux density Bc T Bmoykyoke
2

Linear specific load A A/m Scu J
π(D+2ecbec)

Electrical frequency felec Hz Nrpm×p
60

Slot number Nenc - Spp ×mph × 2p

Motor dimensional values

Magnet outer diameter Da m D− 2
(

evar + e f ret

)
Magnet inner diameter Dla m Da − 2la

Stator bottom slot diameter Des m
√
(D + 2ebec)

2 +
4A(D+2ebec)

αJke

Stator outer diameter Dext m Des + 2eculs

Rotor inner diameter Dint m Dla − 2eculr

Slot depth Hes m (Des−D)
2

Stator yoke thickness eculs m πD
4p×kyoke

Stator slot opening factor ke - 1− 1
kteeth

Minimal stator length with
end coil winding Ls m L +

πke(Des+D+2ebec)
4p

One turn length per coil Lspire m 2(L + 2× 0.005) + π2D
2p

Number of coils per phase Ncoil - Nenc×Ncouch
2mph

Coil section Scubob m2 Scur
Ncouch∗Nenc

Motor form factor Form f - L
D

Teeth form factor Form f t - Hes

(2π/Nenc)(1−ke)

(
Des/2

)
Total copper section Scur m2

(
π((Des)

2−(D+2ecbec)
2)

4

)
keα



Energies 2022, 15, 3969 6 of 24

Table 1. Cont.

Variable Name Units Formula

Material volumes

Magnet volume Vmag m3 πL((Da)
2−(Dla)

2)
4

Rotor iron volume Vf err m3 πL((Dla)
2−(Dint)

2)
4

Stator teeth iron volume Vf ersd m3 πL(D(1− ke)Hes)

Stator yoke iron volume Vf ersc m3 πL((Dext)
2−(Des)

2)
4

Stator iron volume Vf ers m3 Vf ersd + Vf erc

Total copper volume Vcu m3 LspireScur
2

Losses and Shaft torque

Joule losses in stator winding Pj W roT J2Vcu

Magnetic losses in the yoke Pf ery W k f oisVf ersc

(
xhys felecB2

c +
(

π2σd2

6

)
f 2
elecB2

c + 8.67xexce( felecBc)
3
2

)
Magnetic losses in the teeth Pf ert W k f oisVf ersd

(
xhys felecB2

d +
(

π2σd2

6

)
f 2
elecB2

d + 8.67xexce( felecBd)
3
2

)
Magnetic stator losses Pf er W Pf ery + Pf ert

Airgap aerodynamic losses Pa W πC f ρair
ω 3((2( Da

2 )+e f ret))
4
L

16

Lateral rotor surface
aerodynamic losses Pad W

(
1

64

)
C f dρair

ω3
((

2
(

Da
2 + e f ret

))5
− (2Rsh)

5
)

Total aerodynamic losses Psupp W Pa + 2Pad

Total losses Ptot W Pj + Pf er + Psupp

Bearing friction losses Pbear W (2)(0.06)(3)
(
Wironr + Wmag

)( Nrpm
60

)
Shaft torque Tarbmot Nm Tem −

(Pf er+Psupp+Pbear)
Nrpm( π

30 )

Material density and weight

Copper weight Wcu kg (Vcu)(rocu)

Magnets weight Wmag kg
(
Vmag

)
(roaim)

Iron rotor weight Wironr kg
(

Vf err

)(
ro f er

)
Iron stator weight Wiron kg

(
Vf ers

)
(rotol)

Total active parts weight Wmot kg Wcu + Wmag + Wironr + Wiron

Power density Pd kW/kg Tarbmot Nrpm( π
30 )

1000Wmot

Torque density Td Nm/kg Tarbmot
Wmot

Electrical model

Nominal RMS phase current Is A JScu
2mph Ncoil Nsp

No-load RMS phase flux Phivs Wb Ncoil NspkwπDLB f
2πp

Electrical phase resistance Rph Ohm (Nsp)
2
roT Lspire Ncoil

2Scu Nenc

Self-inductance Lo H (Ncoil)
24π×10−7πDL(1−ke)

8p(evar+la+e f ret)

Cyclic phase inductance Lcs H 3(Nsp)
2
Lo

2
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Table 1. Cont.

Variable Name Units Formula

Thermal parameters

Winding rated temperature Twr
◦C 120

Electrical resistivity at
nominal temperature (Twr) ρTwr Ohm.m 17.24× 10−9(1 + 0.004Twr)

Cooling effort1 [7] AJ A2/m3 A× J

Cooling effort2 [22] AJeq W/(m3.Ohm) Ptot
πDL(ρTwr)

4. Optimization of the PMSM

The search for a better solution in terms of efficiency, mass and cost is a major chal-
lenge for the success of electrical machine design. The best way to achieve this goal is to
compare different machine topologies that have been optimized to meet the application
requirements [9]. In this case, the formulation of an optimization problem consists of using
the specifications as constraints to be satisfied and taking the main geometric dimensions
and the supply current as optimization variables. The objective functions to be minimized
are the mass, the losses and the cost.

During the iterative process, the optimization algorithm uses the performance’s evalu-
ation of the electric motor which corresponds to the values of the variables it has generated.
These results are used to propose a new set of dimensions that minimizes the deviations
with the constraints to be reached, while improving performance [8]. Two large families of
optimization methods can be found: gradient-based algorithms and intelligent algorithms.
The first family includes the conjugate gradient algorithm and the sequential quadratic
programming algorithm, while the second family includes evolutionary algorithms such as
genetic algorithms and multi-objective optimization algorithms [15].

Figure 3 shows in a general way the scheme for solving an optimization problem.
Known parameters serve as input to the problem that will be formulated through input
variables to be optimized, respecting the constraints and minimizing (or maximizing) an
objective function, using an optimization algorithm. The optimization is carried out on a
model that will allow verification of compliance with the imposed restrictions. Finally, the
output will be the optimal value of the input variables of the objective function.
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We also distinguish the different CAD procedures of electrical machines with opti-
mization according to the models used or the ability to explore a domain of solutions with
fast models. This is particularly the case of a method that only uses finite element models
that we call FEA direct optimization [15]. This is also the case of the space mapping method
which allows significant reduction in computational effort and execution time [23–25]. This
method is well adapted when there is a considerable amount of design candidates. These
two approaches will be discussed below.
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4.1. Direct FEA Optimization

With this approach, the structure is optimized directly using finite element models
to assess the goals and constraints of the optimization problem. An iterative algorithm
improves the geometry. These multiphysic models can be in 2D or 3D and can be dynamic or
static. They have excellent accuracy in the results, but they are computationally expensive,
so some compromises have to be made to minimize computation times [15].

A solution to reduce the size of the problem to be solved is to minimize the number of
meshes. This compromises the precision, but running each iteration is faster. The sensitivity
during the optimization process will be higher than in analytical models because there are
few simplifying assumptions. The result of this optimization with a coarse mesh can serve
as a first solution to the optimization process of the structure, and can be repeated with a
denser mesh [18].

4.2. Space Mapping Optimization

The SM technique is based on optimization using surrogate models by calibrating
coarse models to align them with computationally intensive fine models. Fine models
are often FEA, and coarse models are analytical [23]. The coarse model is enhanced by
using sample points from a fine model, strategically assigned. Consequently, it represents
an approximation to the fine model with a faster response time. It should describe the
typical variations of the main physical output quantities as a function of the input design
variables [17]. Using SM, it is possible to modify the coarse model with correction factors
to minimize discrepancies between the coarse and fine model responses. In this sense, SM
combines a computationally cheaper model with a correction based on a more expensive
model that helps in the optimization process [15]. The SM optimization process begins with
the coarse model, using any optimization method such as generalized reduced gradient
(GRG2), to name a few. After performing this optimization, the geometric parameters
of the optimal solution are used as inputs to the fine model to perform another more
accurate simulation. The results of the fine model simulation are compared to the results
of the coarse model. If some differences are observed, then an adjustment of the coarse
model must be achieved using correction factors that will allow the coarse model results
to align with the fine model results. These correction factors refer to the ratio of the fine
model outputs to the coarse model outputs, using the same input parameters. Another
optimization must then be performed using the corrected coarse model to find a new
optimal point. This process is repeated and the correction factors are updated with each
iteration until their value no longer changes and the two models give the same results.
Figure 4 shows a flowchart to illustrate this concept developed in [24,25].
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Each optimization solution obtained with the coarse model is analyzed with the fine
model under the same conditions. If there are differences between the two models, the
correction factors are adjusted to repeat an optimization with the coarse model. This process
is repeated until the fine model validates the performance of the optimization solution.
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Mathematically the computationally cheaper and coarse model can be denoted by
c(z) ∈ <m with z ∈ Z ⊂ <n and the computationally expensive and fine model is
denoted by f (x) ∈ <m. The nonlinear constraints of the coarse and fine models are
rc(x) and r f (x), respectively. In this way, the optimization problem can be expressed as
shown in (2):

x∗ = argmin‖
x∈X

f (x)− y‖ subject to r f (x) ≤ 0 (2)

where y ∈ <m denotes the vector of design specifications. The optimization problem
consists of finding a vector x of n input variables that minimizes the distance between the
responses of the fine model f (x) and the desired specifications defined in the vector y, then,
x∗ denotes the optimal input values. This problem is hard to solve because it takes a long
time to find the optimal solution. To solve this drawback, the optimization is performed
with the approximate model c(x), replacing the fine model f (x) with the coarse model, and
then the problem is replaced by a solution in SM denoted by (3).

x∗ = argmin‖
x∈X

Ki(c(x))− y‖ subject to Ri(rc(x)) ≤ 0 (3)

where Ki and Ri are the correction factors for the objective and constraint functions, respec-
tively. To compute the correction factors, a reasonableness coefficient (αr) with 0 < αr < 1
is defined. The correction factors are initialized to 1 for the first optimization of the an-
alytical model, using SM. As indicated in Figure 4, an optimization is carried out with
the fine model and the value of the correction factor for the parameter v is updated using
Equation (4) [26].

Kv = (1− αr)Kvi−1 + αrKvi (4)

Equation (5) shows how the correction factors are updated.

Kvi =
vFE
vAM

(5)

where vFE and vAM represent value of the parameter v by finite elements and analytical
models, respectively. Equations (4) and (5) exemplify obtaining a single correction factor,
but it is possible to repeat the correction process for the other parameters. The factor(s)
given in (4) modify the results of the coarse model to be used in the optimization process
as shown in (3) and are updated according to (5) after comparing the output results of the
two models. This process is repeated until the coarse model is sufficiently aligned with the
fine model such that the difference (error) between the outputs of the two is less than an
established tolerance.

To solve the problem using SM, it is possible to use different techniques reported in the
literature, including among them Output Space Mapping (OSM), Manifold Mapping (MM)
and Kriging-OSM [27]. The first one is the easiest to implement compared to the others
because it avoids the process of extracting parameters. MM is an improvement of OSM
and allows for the finding of a solution to those where the OSM does not find a correct
optimal solution. Finally, Kriging-OSM makes it possible to provide a sufficiently accurate
modified coarse model through adaptive corrective mapping [27].

5. Design Example

This section shows an example of a PMSM design problem for an aircraft applica-
tion [6]. The main challenge is to maximize motor power density and efficiency. We have
chosen to set a target for the losses in the motor, which amounts to fixing the efficiency
and minimizing the mass. Direct FEA and SM are the two optimization methods that
are compared in this example. This involves checking the convergence of each method,
analyzing the differences between the solutions and quantifying the computation times.
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Design specifications are shown in Tables 2 and 3, which also show the input constant
parameters of the selected radial airgap motor structure with an inner rotor.

Table 2. Design specifications of the machine to be analyzed.

Specification Name Units Value

Nominal Mechanical power Pmeca W 160,000
Nominal Rotation speed Nrpm RPM 15,000

Shaft torque Tarbmot Nm 101.9

Table 3. Input constant parameters.

Specification Name Units Value

Input parameters

Stator Phase number mph - 3

Number of turns per coil Nsp - 1
Winding factor kw - 0.933

Number of slots per pole and per phase Spp - 2
Number of winding layers Ncouch - 2

Rotor sleeve thickness e f ret m 0.0005
Mechanical air gap thickness evar m 0.001

Stator teeth maximal induction Bsatd T 1.7
Stator yoke maximal induction Bsatc T 1.7

Remanent magnetization of magnet at 100 ◦C Br T 1.136
Stator slot fill factor α - 0.4

Teeth tips thickness or slot wedge thickness ecbec m 0.003

Material mass density

Copper rocu kg/m3 8933
Iron (sheet) ro f er kg/m3 7872

Carbon Sleeve ros kg/m3 1500
Magnet roaim kg/m3 8300

Magnetic material parameters

Electrical conductivity of electrical steel (120 ◦C) σ S/m 2,083,333
Stator electrical sheet thickness d m 0.000163

Sheet steel mass density rotol kg/m3 7650
Fill coefficient k f ois - 1

Hysteresis coefficient xhys - 223
Excess loss coefficient xexce - 0.524

6. Optimization Problem Definition
6.1. Space Mapping Optimization

The optimization problem is defined with seven input variables and the objective
function to minimize is the mass of motor active parts. Table 4 shows the optimization
variables with their restriction range. Table 5 completes the constraints that are imposed on
the problem.

Five correction factors are considered to improve accuracy of the analytical models
during the SM optimization problem, as shown in Table 6.

The method used to find optimal solutions from the analytical models is a nonlinear
resolution method based on the generalized reduced gradient (GRG2). A multistart method
for global optimization allows exploring the solution domain and is well suited for Space
Mapping. Several random starting points are automatically tested with the GRG method
to identify the best of the local optimal solutions. The analytical models used during the
optimization process are enhanced using OSM. For each optimization solution, the result is
analyzed with a fine model simulation (FEA) to adjust the correction factors and restart
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another optimization with the coarse models. The error must gradually decrease until a
final fully validated optimal solution is found.

Table 4. Optimization variables for SM.

Parameter Description Name Units Constraint

Magnet thickness la m 0.001 ≤ la ≤ 0.01
Magnetic circuit axial length L m 0.02 ≤ L ≤ 0.5

Stator inner diameter D m 0.03 ≤ D ≤ 0.5
Stator rms current density J A/m2 1 × 106 ≤ J ≤ 4 × 107

Teeth concentration factor kteeth - 1.1 ≤ kteeth ≤ 10
Yoke concentration factor kyoke - 0.3 ≤ kyoke ≤ 10

Total copper area in stator slots Scu m2 0.00001 ≤ Scu ≤ 0.02

Table 5. Optimization constraints for SM.

Parameter Description Units Constraint

Motor Form factor - Form f ≤ 5
Cooling effort W/(m3Ohm) AJeq ≤ 2 × 1012

Peripheral speed m/s vperi ≤ 150
Yoke flux density T Bc ≤ Bsatc
Teeth flux density T Bd ≤ Bsatd
Teeth Form factor - Form f t ≤ 5

Total losses W Ptot ≤ 3000
Shaft torque Nm Tarbmot ≥ 101.86

Table 6. Correction factors (CF).

Parameter Description Name Units Equation Modified by CF

CF inductance kLcs - Lcs = kLcs

(
3(Nsp)

2
Lo

2

)
CF teeth flux density kBd - Bd = kBd

(
Bmoy
1−ke

)
CF magnetic stator losses k f er - Pf er = k f er

(
Pf ery + Pf ert

)
CF electromagnetic torque kcoupl - Tem = kcoupl

(
Kw LDB f JScu

2
√

2

)
CF yoke flux density kBc - Bc = kBc

(
Bmoykyoke

2

)

Figure 5 shows the execution diagram of the space mapping technique including the
model correction method with FE.

The time used (ttot−SM) to carry out the optimization process is counted as shown in (6)

ttot−SM =
n

∑
i=0

(tai + tbi) (6)

For the i-th iteration, tai is the simulation time of the optimization process with the
coarse model, tbi is the simulation time by FE for the validation of optimal solutions and
n represents the number of iterations executed until reaching a final valid result. For the
FE validation, three magneto dynamic simulations are carried out: the first is a no-load
test, the second calculates the cyclic inductance and the third is the nominal load condition.
1.5 electrical periods will be considered in order to compute the iron losses using the
Bertotti model.
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6.2. Direct FEA Optimization

For the Direct FEA Method, the same motor geometry is optimized with the Matlab
function “fmincon” with the “sqp” algorithm. The function handles given in parameters
of “fmincon” starts the finite element software using python scripts which construct and
simulate the motor performance. Optimization variables and output of the constraint
functions are scaled from 0 to 1. Figure 6 shows the detail of the geometry of the machine
to be optimized. The optimization problem is defined with eight input variables and
Table 7 details their constraints range. Table 8 completes the restrictions imposed in this
optimization problem.
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Table 7. Optimization variables for Direct FEA.

Parameter Description Name Units Constraint

Slot depth Hes m 0.01 ≤ Hes ≤ 0.014
Rotor inner diameter Dint m 0.07 ≤ Dint ≤ 0.105

Magnet thickness la m 0.005 ≤ la ≤ 0.01
Slot opening angle θe Rad 0.065 ≤ θe ≤ 0.090

Stator yoke thickness eculs m 0.005 ≤ eculs ≤ 0.008
Magnetic circuit axial length L m 0.14 ≤ L ≤ 0.185
Nominal RMS phase current Is A 170 ≤ Is ≤ 250

Current control angle Psi Deg −15 ≤ Psi ≤ −5

Table 8. Optimization constraints for Direct FEA.

Parameter Description Units Constraint

Electromagnetic torque Nm Tem ≥ 103.5
Total losses W Ptot ≤ 3000

Cooling effort W/(m3Ohm) AJeq ≤ 2 × 1012

Yoke flux density T Bc ≤ Bsatc
Teeth flux density T Bd ≤ Bsatd

By comparing Tables 4 and 7, we can notice that several variables are different with
respect to the problem solved with the analytical model in the SM process. This is due to
the form of the analytical model which uses different input variables. In the case of the
finite element model, these are the geometric dimensions and the power supply used with
the current amplitude and the control angle.

7. Results
7.1. Space Mapping

The objective function proposed in the problem is the minimization of the total weight
of the active parts of the motor. Figure 7 shows the evolution of the optimization results for
each iteration of the analytical model correction process with FEA.
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It can be seen that the results converge in seven iterations and that the final mass of
the active parts corresponds to 14.7 kg and the power density estimated with the active
parts weight is 10.9 kW/kg.

Figure 8 shows the distribution of the losses of the machine, namely the losses due to
the Joule effect, to the iron of the stator and to the additional losses (aerodynamic losses).
It can be seen that the convergence is very fast. The total losses of the machine remain
constant after the second iteration at 3 kW. Joule Losses represent approximately 2/3 of the
total losses of the machine.
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Figure 9 shows the magnetic induction in different parts of the machine structure such
as the yoke, the stator teeth and the airgap. The magnetic induction in the yoke and in the
teeth reach the constraint value in the third iteration. These quantities must be limited to
avoid magnetic saturation in the machine since the analytical model assumes that magnetic
materials have linear characteristics. Nonlinear characteristics are only taken into account
in the finite element model which is used for the correction method.

As indicated in previous sections, in the SM technique it is necessary to use correction
factors to reduce the discrepancies between the coarse and the fine model. Figure 10 shows
the evolution of the correction factors during the optimization process. The correction
factors of the torque and the inductance show the greatest variations. These variations arise
after each iteration, when the coarse model is adjusted to get as close as possible to the
results produced by the fine model. After the seven iterations, the error with the fine model
is negligible, which confirms that optimal solution found with the analytical model is valid.
The final value of each correction factor shows the error of the uncorrected analytical model
for the five parameters considered.

Figure 11 shows the result of the electromagnetic torque of the optimal solution after
each iteration with the fine model for the correction of the coarse model. The final value of
electromagnetic torque is 102.83 Nm as expected with the specification.
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Figure 12 shows the evolution of geometry for each iteration until the valid optimal
solution is found. It is observed that geometric parameters such as magnet outer diameter,
stator outer diameter, rotor inner diameter, slot depth, among others, vary significantly
between each iteration.
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Table 9 shows the optimal results obtained by SM and the percentage of errors found
between the coarse model and the fine model (reference) at the end of the validation process.

Table 9. Optimal results obtained by SM and validation.

Parameter Description Units Optimal Value

Magnet thickness m 0.010
Motor axial length m 0.167

Stator inner diameter m 0.112
Stator rms current density A/m2 1.50 × 107

Teeth concentration factor - 2.984
Yoke concentration factor - 3.661

Total copper area in stator slots m2 0.0014

Calculated parameters

Parameter Description Units FEA validation SM Error (%)

Electromagnetic Torque Nm 102.54 102.83 −0.28
Total active parts weight kg 14.79 14.68 0.74

Total losses W 2990 3000 −0.33
Fundamental magnetic

induction T 0.933 0.946 −1.39

Teeth flux density T 1.72 1.7 1.16
Yoke flux density T 1.71 1.7 1.16

Nominal phase current Arms 218.90 218.90 0
Electrical phase resistance Ohm 0.0134 0.0137 −2.24

Cooling effort W/(m3Ohm) 8.46 × 1011 8.48 × 1011 −0.24
Magnetic stator losses W 941 933 0.85

For each iteration, the time required for optimization with the coarse model was
tai = 1 min and the time required to validate the results using the FE technique was
tbi = 9 min. In this way, the total simulation time (ttot−SM) for the space mapping tech-
nique is

ttot−SM =
7

∑
i=0

1 + 9 = 80 min



Energies 2022, 15, 3969 17 of 24

Energies 2022, 15, x FOR PEER REVIEW 18 of 26 
 

 

Figure 12 shows the evolution of geometry for each iteration until the valid optimal 
solution is found. It is observed that geometric parameters such as magnet outer diameter, 
stator outer diameter, rotor inner diameter, slot depth, among others, vary significantly 
between each iteration. 

 
Initial motor (Iteration 0) 

(𝐷௘௫௧ = 0.040 m) 
 

Iteration 1 
(𝐷௘௫௧ = 0.1870 m) 

 
Iteration 2 

(𝐷௘௫௧ = 0.140 m) 
 

Iteration 3 
(𝐷௘௫௧ = 0.155 m) 

 
Iteration 4 

(𝐷௘௫௧ = 0.152 m) 

 
Iteration 5 

(𝐷௘௫௧ = 0.156 m) 

 
Iteration 6 

(𝐷௘௫௧ = 0.156 m) 

 
Iteration 7 

(𝐷௘௫௧ = 0.156 m) 

Figure 12. Machine geometries for each iteration. Figure 12. Machine geometries for each iteration.



Energies 2022, 15, 3969 18 of 24

Finally, Figure 13 shows a comparison of the magnetic induction in the air gap of the
machine, determined with the analytical expression reported in [21] and by means of the
FEM. This confirms the analytical model provides a good estimation of the flux density in
the air gap knowing that this model is not corrected.
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7.2. FEA

Figure 14 shows the mesh density of the motor geometry which is optimized with
finite elements. This mesh has 5724 nodes and a complete analysis of a structure required
three transient simulations which take into account the rotation with 30 rotor positions
per 1.5 electrical period. This gives a time of 150 s (≈0.0417 h) to complete the scan of a
machine. A total of 129 machines were considered and the optimization required 10 major
iterations, which corresponds to a total of 5.38 h for a personal computer (16 GB of RAM
with an i7 processor). It should be noted that the initial structure for this optimization
corresponds to that found with the SM method.
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Table 10 shows the values of the optimized variables and Table 11 gives the results of
the performance of this machine.

Table 10. Optimal results for FEA.

Parameter Description Units Optimal Value

Slot depth m 0.014
Rotor inner diameter m 0.098

Nominal RMS phase current A 242
Slot opening angle rad 0.084

Stator yoke thickness m 0.0059
Motor axial length m 0.15

Machine control angle deg −10.97
Magnet thickness m 0.007

Table 11. Performance of the machine for the optimal design found.

Parameter Description Units Value

Electromagnetic Torque Nm 103.5
Total active parts weight kg 14.25

Total losses W 3000
Fundamental magnetic induction T 0.83

Teeth flux density T 1.7
Yoke flux density T 1.58

Nominal phase current Arms 242
Electrical phase resistance Ohm 0.011

Cooling effort A2/m3 9.20 × 1011

8. Discussion

Starting from different optimization variables and constraints, a motor PM with
Halbach array was optimally designed using two different techniques: Space mapping and
Direct FEA. Space mapping was applied to the analytical machine sizing model and its
outputs were fitted with a small number of FE simulations to find some correction factors.
Only seven simulations were necessary to converge towards a valid optimal solution. The
correction factor of the electromagnetic torque

(
kcoupl

)
indicates that the analytical model

underestimates the torque by 16%. Therefore, the same optimization without correction of
the analytical model is not acceptable and leads to results that are not valid.

Table 12 summarizes the comparison of the optimal results found by the SM technique
and direct FEA. In the SM technique, the convergence towards an optimal solution is made
according to the sensitivity of the coarse model. The correction mechanism implemented
only corrects the accuracy of the coarse model. Therefore, the optimal solution is valid with
good accuracy but obtaining the best optimum of the problem is not guaranteed.

The solution found by means of the SM technique met the torque specifications with
a margin of error of less than 1%. However, we showed that the optimization of this
geometry is not the optimal solution of the problem since it has been improved with the
direct FE optimization method. The sensitivity of the fine model is therefore greater than
that of the analytical model. Nevertheless, the gain on the total mass is only 430 g, which
represents a reduction of 3%. Even if the length of the motor has been reduced by 10%, it
can be seen that the impact on the total mass of the motor is not significant because the
diameter has increased slightly. This geometric modification is also reflected by a reduction
in the no-load flux per phase, an increase in the current and an increase in the section
of conductors.

However, the total simulation time is significantly reduced with the SM. Indeed, it
requires less than 20% of the computation time compared to direct FE optimization. This is
an essential advantage to better explore the whole field of study with a multistart method.
The running time of 5.38 h is relatively low for the FE simulation because the mesh density
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is low and the starting point of this optimization is based on the results obtained by the
SM. This accelerated the convergence towards the final solution and reduced the number
of iterations or machines studied. With another starting point, the average resolution time
should be around 9 h [15].

Table 12. Comparison of the optimal results found by the space mapping and optimization
direct techniques.

Parameter Description Units FEA SM Difference (%)

Electromagnetic Torque Nm 103.5 102.8 +0.7
Total active parts weight kg 14.25 14.68 −3

Total losses W 3000 3000 0.0
Fundamental magnetic induction T 0.83 0.946 −14

Teeth flux density T 1.58 1.7 −7.6
Yoke flux density T 1.7 1.7 0.00

Nominal phase current Arms 242 218.90 +9.6
Electrical phase resistance Ohm 0.0110 0.0137 −24.6

Magnetic stator losses W 888 933 −5.1
Power density kW/kg 11.41 10.90 +4.5

Simulation time h 5.38 1.2 +77.7

In this work, an analytical model was used as a coarse model, unlike what was
reported in [14], which involved the use of a less dense FE model. Similarly, the approach
considered in this work allows a reduction in computational time by a factor greater than
4.5, unlike the authors of [14] who report a factor of 2.5. It was also demonstrated that the
sensitivity of the analytical model is very good and ensures convergence towards a solution
close to the optimum.

9. Conclusions

In this work, a comparison was made between Space Mapping and direct FEA opti-
mization to find an optimal geometry of a PM motor with Halbach array. The results show
that the Space Mapping method converges easily, in a few iterations, with a correction of the
model by FEA. It was possible to obtain a valid optimal solution with a nonlinear resolution
method based on the generalized reduced gradient (GRG2) and a multistart option. The SM
method has already been successfully applied for the design of high-performance machines
and the exploration of a wide array of solutions. However, there was no real comparison
between the solution found by SM and the solution of a direct optimization by the fine
elements model. We know that changing the model accuracy leads to a modification of the
final solution in an optimization process and we see an improvement if the optimization is
done directly with the finite element model. This article allows for the quantification of the
differences between the two optimization methods for the specifications of a PM motor for
an aircraft application.

A considerable advantage was found in the computational cost of this method com-
pared to a direct optimization by FEA. This saves simulation time and allows a large
amount of designs to be studied to explore the whole solutions domain in more detail.

Similarly, the comparison between the solution found by the Spatial Mapping opti-
mization method with that obtained by the direct FEA optimization method shows that
these solutions are very close (the difference in mass of the active parts is only 3%). Even if
the geometry has been slightly modified, it is obvious that the FEA optimization does not
significantly improve the results obtained by Space Mapping.

The correction of the electrical model including the value of the inductance makes
the analytical model sufficiently efficient to take into account a constraint on the supply
voltage. The analytical model can also be easily improved to estimate the additional losses
in the magnets without affecting the performance of the optimization by Space Mapping.
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In summary, this study demonstrates that the Space Mapping Method is a very
powerful method to optimize the power density of electric motors:

- There is an important reduction in computing time with SM. Almost an 80% time
reduction was found, considering that for direct FEA optimization, the mesh density
is low and the starting point of this optimization was based on the results obtained by
the SM method.

- The motor geometry of the final solutions of both optimization methods is different
but the motor mass difference is small (less than 3%). Power density and torque
density are very similar.
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Nomenclature

B f Peak fundamental magnetic induction
B Peak no load airgap induction
Bmoy Average airgap induction value per pole
Bd Teeth flux density
Bc Yoke flux density
A Linear specific load
felec Electrical frequency
Nenc Slot number
Da Magnet outer diameter
Dla Magnet inner diameter
Des Stator bottom slot diameter
Dext Stator outer diameter
Dint Rotor inner diameter
Hes Slot depth
eculs Stator yoke thickness
ke Stator slot opening factor
Ls Minimal stator length with end coil winding
Lspire One turn length per coil (Concentrated winding)
Ncoil Number of coils per phase
Scubob Coil section
Form f Motor form factor
Form f t Teeth form factor
Scur Copper section
Vmag Magnet volume
Vf err Rotor iron volume
Vf ersd Stator teeth iron volume
Vf ersc Stator yoke iron volume
Vf ers Stator iron volume
Vcu Total copper volume
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Pj Joule losses in stator winding
Pf ery Magnetic losses in the yoke
Pf ert Magnetic losses in the teeth
Pf er Magnetic stator losses
Pa Airgap aerodynamic losses
Pad Lateral rotor surface aerodynamic losses
Psupp Total aerodynamic losses
Ptot Total losses
Pbear Bearing friction losses
Tarbmot Shaft torque
σ Electrical conductivity of electrical sheet steel at 120 ◦C
rotol Sheet steel mass density
k f ois Fill coefficient
xhys Hysteresis coefficient
xexce Excess loss coefficient
CF Correction factor
kLcs Correction factor of inductance
kBd Correction factor of teeth flux density
k f er Correction factor of magnetic stator losses
kcoupl Correction factor of electromagnetic torque
kBc Correction factor of yoke flux density
ttot−SM Total optimization time by space mapping technique
tai Simulation time by the space mapping technique

tbi
Simulation time by finite element for the validation of results obtained by space
mapping technique

Wcu Copper weight
Wmag Magnets weight
Wironr Iron rotor weight
Wiron Iron stator weight
Wmot Total active parts weight
Pd Power density
Td Torque density
Is Nominal RMS phase current
Phivs No-load RMS phase flux
Rph Electrical phase resistance
Lo Self inductance
Lcs Cyclic phase inductance
Twr Winding rated temperature
ρTwr Electrical resistivity at nominal temperature (Twr)
AJ Cooling effort
AJeq Limit cooling effort
Pmeca Nominal Mechanical power
Nrpm Nominal Rotation speed
Nrpmmax Maximum Rotation speed
Udcbat DC bus voltage
Udc Inverter input voltage
Vphmax Maximal RMS Phase voltage (line neutral)
mph Stator Phase number
Nsp Number of turns per coil
kw Winding factor
Spp Number of slots per pole and per phase
Ncouch Number of winding layers
e f ret Rotor sleeve thickness
evar Mechanical air gap thickness
Bsatd Stator teeth maximal induction
Bsatc Stator yoke maximal induction
Br Remanent magnetization of magnet at 100 ◦C
α Stator slot fill factor
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ecbec Teeth tips thickness or slot wedge thickness
kbec Teeth tips width in percent of slot opening
rocu Copper density
ro f er Iron (sheet) density
ros Sleeve density
roaim Magnet density
d Stator electrical sheet thickness
FE Finite element
FEA Finite element analysis
SM Space mapping
θe Slot opening angle
L Motor axial length
Psi Machine control angle
la Magnet thickness
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