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Abstract: This paper analyzes the challenges and requirements of establishing energy data ecosystems
(EDEs) as data-driven infrastructures that overcome the limitations of currently fragmented energy
applications. It proposes a new data- and knowledge-driven approach for management and process-
ing. This approach aims to extend the analytics services portfolio of various energy stakeholders
and achieve two-way flows of electricity and information for optimized generation, distribution, and
electricity consumption. The approach is based on semantic technologies to create knowledge-based
systems that will aid machines in integrating and processing resources contextually and intelligently.
Thus, a paradigm shift in the energy data value chain is proposed towards transparency and the
responsible management of data and knowledge exchanged by the various stakeholders of an energy
data space. The approach can contribute to innovative energy management and the adoption of new
business models in future energy data spaces.

Keywords: data integration systems; energy big data; knowledge graphs; data exchange; semantic
interoperability; big data analytic

1. Introduction

The digital transformation of the electricity sector from traditional electric grids to
smart grids [1] is driven by multiple factors [2], while the emerging information technolo-
gies (e.g., big data, semantic technologies, machine learning algorithms) play a relevant role
of automation and control of the energy value chain. Despite being recognized as crucial
applications for efficiently generating and consuming energy, big data applications in the
energy domain are still underdeveloped and fragmented. Challenges related to controlled
data exchange and data integration are still not fully achieved. Hence, the fragmented
applications are developed against energy data silos, and data exchange is limited. After
the announcement of the Google Knowledge Graph [3] in 2012, semantic technologies and
knowledge graphs (KGs) gained in popularity. They have been applied in various domains,
especially to enhance the integration of distributed resources over the Internet, e.g., for fa-
cilitating product/service discovery [4], managing business registers and company data [5],
managing drug data [6], or emergency management [7]. In this paper (it is an extension of
a conference paper on knowledge-driven frameworks for managing energy data spaces,
see Valentina Janev, Maria Esther Vidal, Kemele Endris, and Dea Pujić. 2021. Managing
Knowledge in Energy Data Spaces. In Companion Proceedings of the Web Conference 2021
(WWW’21 Companion), 19–23 April 2021, Ljubljana, Slovenia. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3442442.3453541, accessed on 23 May 2022), the authors
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assess the applicability of the technologies for managing knowledge [8] in the energy sector
and consequently for specifying new business models.

1.1. Data Ecosystems

Data ecosystems (DEs) are data-driven infrastructures that enable stakeholders to
exchange and integrate data [9,10]. DEs comprise various computational methods to
overcome interoperability issues while preserving data privacy, security, and sovereignty.
They can be aligned to international data strategies, e.g., the European Data Strategy [11],
representing, thus, crucial technological building blocks for digitalization and data markets,
as well as for enhancing competitiveness and digital sovereignty. A DE can be centralized,
and maintain shared data sources and host services on top of these sources. In this case,
several DEs can be interconnected into a DE network [9,12]. As an individual DE, each node
maintains and exchanges data; it can also perform data management and analytical tasks.
DEs resort to semantic data models for providing a uniform view of heterogeneous data
sources. Moreover, mapping rules state how data sources are defined in terms of semantic
data models exported as unified schemas. Lastly, a DE can also be enhanced with a meta-
layer that describes business models, data access regulations, and data exchange contracts.

1.2. The EU Energy Data Ecosystem

A priority on the European Union (EU) Political Agenda for the next period (2019–
2024) is the European Green Deal strategy (2019) that aims to position Europe as the first
climate-neutral continent by the year 2050. Integrated energy systems play a crucial role in
implementing this vision. Hence, a new document—the EU Strategy for Energy System
Integration (COM(2020) 299 final, 8 July 2020), was adopted that envisions coordinated
planning and operation of the energy system as a whole, across multiple energy carriers,
infrastructures, and consumer sectors. The increased volume of data generated from
distributed renewable data sources creates data integration and processing challenges
on different levels (processing in the cloud, processing on edge). Therefore, there is a
need to develop computational methods for ingesting, managing, and analyzing big data.
More importantly, considering the bidirectional flow of information and energy in smart
grids, knowledge needs to be extracted from this data to uncover actionable insights.
Hence, the future energy infrastructure will be based on intelligent power electronics,
smart meters, context-aware devices, IoT, and AI-driven services. Interoperability problems
caused by currently fragmented applications will be overcome in the new generation
of grids, thus enabling data exchange between different players in the energy sector.
For instance, the EU Data Strategy envisages the establishment of energy data spaces
based on semantic web technologies and W3C standards. The information model (https:
//github.com/International-Data-Spaces-Association/InformationModel, (accessed on
23 May 2022)) proposed in the context of the International Data Space includes exemplary
data models for describing datasets and services metadata needed to facilitate information
search, service matching, and data exchange.

1.3. Overview of Main Contributions

The work presented in this paper is built on our previous work (conference paper) on
knowledge-driven frameworks for managing energy data spaces [8] and in the knowledge-
driven data ecosystems [12]. With the focus of achieving the targets envisioned in the latest
EU energy strategy and the European Green Deal Action Plan [13], we present a knowledge-
driven data ecosystem to encapsulate, communicate, and manage the distributed assets in
the energy value chain. The main contributions of this paper are the following:

• A new approach can combine data and knowledge management and enhance the
analytics services portfolio of various energy stakeholders. Thus, energy expert users
can develop analytical methods for two-way electricity flows and information and
optimize electricity generation, distribution, and consumption on top of heterogeneous
data sources.

 https://github.com/International-Data-Spaces-Association/InformationModel
 https://github.com/International-Data-Spaces-Association/InformationModel
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• An abstract architecture for semantic data integration and business analytics. On top of
this architecture, various knowledge-driven services for processing data contextually
and intelligently are devised.

• A unified knowledge graph that converges data and knowledge collected from the data
ecosystem. The knowledge graph is connected to existing encyclopedic knowledge
graphs (e.g., DBpedia [14] and Wikidata [15]). Additionally, a federated query engine
allows for query processing on top of the connected knowledge graphs in a unified
way. This engine provides the basis for the development of interactive and explainable
AI-based services on top of the knowledge-driven data ecosystem.

• An analytical layer composed of advanced analytical services (statistical and ML
models that work on edge and on top of integrated data). Depending on the stake-
holders’ needs and the available data, the services offered are related to renewable
energy source (RES) production forecast, RES effects calculation, buildings operation
optimization, and asset predictive maintenance.

The description of the detailed design and implementation of advanced analytical
services (statistical and ML models that work on top of integrated data) is out of the scope
of this paper. The large-scale validation is still underway.

The paper is organized as follows. Section 2 presents motivation scenarios from the
energy sector. Our approach for big data management and analytics in the energy domain
is introduced in Section 3. Sections 4 and 7 present proof-of-concept and discuss the results.
Finally, related work is summarized in Sections 8, and 9 wraps our lesson learned up.

2. The Electricity Value Chain: Overview of Challenges
2.1. Example Case Study

The recently adopted EU energy-related strategies create opportunities to modernize
the energy system, making it competitive and environmentally sustainable. Herein, we will
use the example of the electricity system from Serbia (see Figure 1). The SCADA system of
the Institute Mihajlo Pupin has been deployed at many parts of the national electricity grid.
The system monitors and controls energy production, distribution, and usage with different
objectives, including improving energy efficiency, increasing flexibility and renewable
generation share, and reducing energy costs. Hence, in this paper, the authors describe a
case study for an innovative energy management service layer on top of existing SCADA
based on reusable semantic models or knowledge graphs. The proposed approach facilitates
the integration of data silos and their fine-grain semantic description. Further, the semantic
description using knowledge graphs provides a common understanding of the energy
domain based on existing domain-based vocabularies. Additionally, this approach provides
a ground for new business models and facilitates integration in the EU energy data space.

Figure 1. The electricity value chain.
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Because the national electricity infrastructure is not isolated, interoperability should
be ensured at different levels (i.e., legislation, functional, syntactic, and semantic) and
in different parts of the energy value chain, i.e., electricity generation, transmission, and
consumption. Figure 1, for instance, gives a simplified illustration of information and
electricity flows between stakeholders, while in reality, the electricity infrastructure and
data exchange processes are very complex, i.e., infrastructure consists of many energy
systems/infrastructures (generation, transmission, and demand infrastructures).

2.2. EU Energy Data Spaces and New Business Models

Interoperability and the possibility of building cross-border and cross-sector services
are the focus of many initiatives in Europe; see, for instance, the Interoperable Europe pro-
gram (https://joinup.ec.europa.eu/collection/interoperable-europe/interoperable-europe,
(accessed on 23 May 2022)). The high-level vision of the European Union for 2030 is to
create a single internal market through a standardized laws’ system transposed in the
national legislation of all member states and a single European data space for data
exchange. The overall idea behind data spaces for Europe lies in setting up the needed
software infrastructure that fosters data reuse, data valorization, and the creation of new
business models and actors along the value chain of each industry, based on agreement
on common standards and design principles. Hence, such software infrastructure will
differentiate between data platforms where data and services reside and market plat-
forms that facilitate matchmaking and the exchange of data and services. Implementing
analytics and big data processing pipelines for more efficient and targeted services is
part of the data platforms. The following innovative scenarios provide the playground
to position our research questions.

In order to drive data-driven innovations, standardization should be applied, for in-
stance, using metadata schemata, data representation formats, license terms for data and
services, data integration, and data exchange approaches. The International Data Spaces
(IDS) [16], launched in Germany at the end of 2014, follow the DE concept introduced
above and have been foreseen for establishing the EU energy data space. The IDS reference
architecture aims at

• Data governance according to regulations imposed by data providers;
• Ensuring a trusted and secure data exchange;
• Semantically representing main data concepts and relationships;
• Exchanging formats and protocols;
• Providing software design principles for guiding the implementation of the reference

architecture components.

IDS provides building blocks for the development of data-driven services, while data
sovereignty for data providers is guaranteed. IDS propose a message-based infrastructure
to enable the communication of the different nodes and components in a DE. Moreover, IDS
resorts to the Semantic Web standards to express the content and meaning of the shared
data source. The resource description framework (RDF) and ontologies defined using
RDF are proposed to specify metadata, and data control and protection in a decentralized
or federated DE. The IDS shared information model states standards for representing
content, concept, community of trust, commodity, and communication. Proposed W3C
standards including SHACL (https://www.w3.org/TR/shacl/, (accessed on 23 May 2022))
are proposed to express content and integrity constraints; SKOS (https://www.w3.org/
2004/02/skos/, (accessed on 23 May 2022)) for modeling concepts and relationships;
and PROV (https://www.w3.org/TR/prov-overview/, (accessed on 23 May 2022)) for
representing data and service provenance.

 https://joinup.ec.europa.eu/collection/interoperable-europe/interoperable-europe
https://www.w3.org/TR/shacl/
https://www.w3.org/2004/02/skos/
https://www.w3.org/2004/02/skos/
https://www.w3.org/TR/prov-overview/
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2.3. Example Scenario: The RES Forecasting

Modernization of the grid implies fast integration of RESs, adapted power system
planning, new forecasting methods, more flexible use of power plants, standardized data
exchange, increased transfer capacity, and others. The volatile production of renewable
energy sources creates particular challenges for the daily electricity balancing process,
i.e., balancing the deviations between the planned or forecast production and demand on
the one side and the actual performance in real-time on the other side [17]. Given that
renewable energy sources are increasing their share in the electricity market, to maintain
the stable grid; i.e., to match the production and the demand, it is crucial to have accurate
predictions of the expected accessible energy. In this regard, the need for a precise RES
production forecaster is obvious. Addressing Europe’s current energy crisis due to under-
performance by wind power [18] demands an accurate forecast of RES production capacities
(wind and PV plants) and estimates the effects of the production on the grid. Moreover,
interoperability between different analytical services and cross-service integration requires
harmonizing domain-specific vocabularies applied in the information layer and reusing
the models to expose analytical services on marketplace platforms. As standardization at
different levels (such as metadata schemata, data representation formats, and licensing
conditions of open data) are demanded, the authors formulated the following research
questions as pillars of the work:

• RQ1 How to establish a software platform taking into consideration open-standards
and reference architecture (e.g., SGAM [19], BRIDGE Data Management Reference
Architecture [20])?

• RQ2 Which ontologies cover the needs for modeling the energy value chain and
ensure uniform access [21] to data collected with the proprietary SCADA system?

• RQ3 How to build a knowledge graph that will be ready for integration with services
in future energy marketplaces?

• RQ4 From a business perspective, what are the benefits of advanced analytics for
different kinds of energy actors?

Example Data Sources

The RES data source provides relevant data and information regarding renewable
energy source (RES) systems, and, therefore, could provide the following datasets:

• Production dataset contains historical wind power production measurements from
the wind power plant.

• Predictive maintenance dataset contains high-resolution measurements collected by
the phasor measurement unit (PMU) installed on the renewable power plant.

• Meteorological dataset contains both historical and forecasted meteorological data,
which are crucial for providing precise RES production forecast.

• RES effects contains estimations regarding the effects of the renewable energy source
on the power system based on the PMU measurement (predictive maintenance
dataset).

3. Developing a Multi-Layer Software Architecture

The approach presented in this section is inspired by the International Data Space
(IDS) initiative and the EU Data Strategy. It will showcase how a “network” of distributed
data integration platforms can be instantiated in the energy value chain for establishing a
»network of trusted data«. Herein, we propose an energy big data integration platform as
an instantiation of a data ecosystem (DE) [12]; see Figure 2.
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Figure 2. The energy big data integration platform as a knowledge-driven data ecosystem.

3.1. Energy Big Data Integration Platform

An energy big data integration platform is composed of several data integration
platforms (one per Node i). Each node corresponds to a DE and can be integrated on
the central level through mappings among nodes, data sharing, and service agreements.
Each node (in Figure 2 denoted by Node, see red rectangle) applies a data integration
process to a specific use case and can deploy its services for query processing, analytics
as well as dashboards. Communication between nodes needs to be through an access
agreement and can employ data connectors (IDS connectors) to secure data exchange
according to data access contracts and regulations. Nodes have control over their data
and may have data integrated in unified knowledge graphs. Moreover, each individ-
ual knowledge graph can be linked to knowledge graphs in other nodes, or to external
knowledge graphs such as DBpedia [14], Wikidata [15], or others in the Linked Open
Data cloud (https://lod-cloud.net/, (accessed on 23 May 2022)). Metadata are expressed
using common semantic data models (e.g., CIM (https://ontology.tno.nl/IEC_CIM/, (ac-
cessed on 2 May 2022)), DCAT (https://www.w3.org/TR/vocab-dcat-3/, (accessed on 2
May 2022)), and SKOS (https://www.w3.org/2004/02/skos/, (accessed on 2 May 2022))),
and the RDF mapping language (RML [22]) is utilized to define each pilot dataset in
terms of the energy semantic data models. This framework enables pilots to preserve
data sovereignty, privacy, and protection of data and analytical outcomes, as foreseen in
IDS. More importantly, it represents a decentralized infrastructure empowered with the
components that pave the way for interoperability across stakeholders.

3.2. Instantiating a DE

The main features of the energy data integration platform are illustrated in the in-
stantiation of a DE; for instance, in the Serbian pilot depicted in Figure 3, DEs shall be
instantiated at

• Producer site (e.g., at a wind power plant, a unified knowledge graph shall be inte-
grated with the production forecast and the predictive maintenance services);

• Supplier site, an organization that integrates data from many producers and sells
electricity to TSO (e.g., the power industry of Serbia might be interested to integrate
the data sources from power plants it owns and manages);

• Transmission system operator site, an organization that operates and balances the
grid (e.g., the joint stock company EMS might be interested in improving the data
integration and the transparency of data exchanged with other actors).

https://lod-cloud.net/
https://ontology.tno.nl/IEC_CIM/
https://www.w3.org/TR/vocab-dcat-3/
https://www.w3.org/2004/02/skos/
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Figure 3. Software architecture for one node (Institute Mihajlo Pupin, 2021).

3.2.1. Description of the DE Architecture on the Node Level

Figure 3 illustrates the adopted reference architecture on a DE node level. As already
discussed, the energy domain is characterized by the presence of many actors, often large
organizations, and there are many technological solutions and proprietary systems. In order
to connect the existing platforms and advanced business services, an interoperability layer
is responsible for transforming data collected from data sources into structures that can be
managed by analytical applications. Figure 3 depicts three interoperability layers:

• The first layer (denoted with number 1) ensures syntactic interoperability and com-
munication with physical architecture, for example, phasor measurement units for
collecting high-resolution data about the generating units (inverters of PV production
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plant or turbines of wind plant); a building or a complex of buildings; or single devices,
such as energy meters on the consumption side.

• The second layer (denoted with number 2) ensures syntactic interoperability and
communication between the control SCADA system and the intelligent layer, analytical
services that work on top of one kind of data, for instance, one MySQL base is used
for retrieving the data.

• The third layer (denoted with number 3) ensures semantic interoperability for ad-
vanced business services where integration of different big data sources are needed
because of different interoperability issues.

Interoperability issues explored in the process of building the unified knowledge
graph are related to

• Representation of attributes’ values: Timestamps standardization, measurement unit
generalization, and measurement scale.

• Granularity: different aggregations (daily vs. hourly, weather at wind farm vs. at the
city level); different measurement for same time intervals (example temperature from
wind farm sensor and temp in WeatherBit of the city).

• Structuredness: SCADA—structured (MySQL); Weatherbit—semi-structured (JSON),
ENTSO-E—semi-structured data (XSML).

• Schematic interoperability: various representations of attributes and concepts are used
for modeling the same semantic concept (outtemperature in Wind RES database vs.
temp at WeatherBit; obtime at WeatherBit vs. timestamp in Wind RES database).

3.2.2. Instantiating a Node at the Producers’ Site

SCADA RES data are available in real time through a MySQL database. Data operators
for preprocessing, mapping, linking, transformation, and validation are applied to the
pilot data sources for creating a materialized version of the unified knowledge graph.
The mapping rules among data sources and the unified schema are part of the DE as
well. Furthermore, mappings between concepts from different ontologies are included
in each DE. Data sources are also described in terms of provenance and main properties;
these descriptions are utilized for the creation of a knowledge graph (e.g., by using SDM-
RDFizer [23]) and during query processing (e.g., by using Ontario [24]). Links between
entities in the knowledge graph and external data sources can be made by performing
entity linking. Tools such as Falcon2.0 [25] can be applied to linking the pilots’ datasets
with external knowledge graphs such as DBpedia and Wikidata, while SHACL validation
engines (e.g., Trav-SHACL [26]) enable the validation of integrity constraints. Lastly, RDF
knowledge graph will feed the semantic-based analytics engine SANSA [27] to perform
tasks of knowledge discovery and prediction.

3.2.3. Instantiating an IDS Data Connector

The IDS Connector is one of the central technological building blocks of IDS-based
digital ecosystems that allow the participant (node) to exchange, share, and process digital
content while the data sovereignty of the data owner is guaranteed. The data connector
should provide metadata to the data consumer connector. Hence, the data harmonization on
an ecosystem level is a prerequisite for the smooth integration of different data connectors.
The data connector architecture (technical interface description, authentication mechanism,
exposed data sources, and associated data usage) is out of the scope of this paper; see more
information in PLATOON D3.4 [28].

4. Data Standardization and Harmonization
4.1. Developing a Global Schema for the Energy Domain

Different ontologies are proposed in the literature for development of a global schema
including (i) upper ontologies (e.g., SUMO, Dolce, BFO), (ii) core ontologies (e.g., agent
ontology, time ontology), (iii) domain ontologies for a specific domain, and (iv) domain-
specific ontologies that can be reused and extended in order to meet a specific need of the
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application [29]. In the literature review phase, we concentrated on gathering information
about the common semantic concepts and properties applicable for the targeted scenarios.
Different existing data models have been consulted and considered for reuse in the piloting
phase, such as

• IEC Common Information Model standards (CIM) (https://www.dmtf.org/standards/
cim/cim_schema_v2530), (accessed on 2 May 2022)), see CIM V2.53.0 Schema (MOF,
PDF and UML);

• Smart Appliances REFerence ontology (SAREF), and the extension of SAREF to fully
support demand/response use cases in the energy domain (SAREF4EE);

• The International Data Space (IDS) (https://w3id.org/seas/, (accessed on 2 May
2022)) Information Model;

• SEAS—Smart Energy Aware Systems (https://ci.mines-stetienne.fr/seas/index.html,
(accessed on 2 May 2022)).

The selection was performed based on a set of scenarios (electricity balancing ser-
vices, predictive maintenance services, and services for residential, commercial, and in-
dustrial sector). In our analysis, we used the semantic CIM model (https://ontology.
tno.nl/IEC_CIM/, (accessed on 2 May 2022)). It is a canonical taxonomy in the form
of packages of UML class diagrams referring to the components of power utility net-
works with functional definitions and measurement types to a high degree of granularity
(packages: Core, Topology, Wires, Generation, LoadModel, Outage, SCADA, ControlArea,
and others). The concepts selected for reused come from different packages. For in-
stance, cim:PowerSystemResource (Core package) can be an item of equipment such as
a switch, and a cim:EquipmentContainer containing many individual items of equip-
ment such as a substation. Each cim:PowerSystemResource is registered on the grid
(cim:RegisteredResource) and belongs to a control area (cim:HostControlArea) that is
operated by a cim:ControlAreaOperator, see Figure 4. The cim:ControlAreaOperator
is responsible for stabilizing the system frequency (cim:Frequency); it is, therefore, also
called frequency control.

Figure 4. Applying the CIM standard.

https://www.dmtf.org/standards/cim/cim_schema_v2530)
https://www.dmtf.org/standards/cim/cim_schema_v2530)
https://w3id.org/seas/
https://ci.mines-stetienne.fr/seas/index.html
https://ontology.tno.nl/IEC_CIM/
https://ontology.tno.nl/IEC_CIM/
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Example—RES forecasting: Another use case is related to a resource connected to the
grid. Independent producers (IPP) and producers (cim:Producer) from distributed and
renewable sources (DER) will be actors in the balance reserve market in the future. The goal
of this scenario is to develop and test a service for more accurate prediction of renewable
energy generation from RES plants (cim:Plant). Electricity production, however, from solar
and wind plants (cim:Plant) is subject to considerable forecast errors that drive demand
for balancing, i.e., for (cim:ReserveReq). The amount for each reservation is defined by
the agreement (cim:Agreement) on the provision of system services signed between the
transmission system operator (cim:SystemOperator) and the balancing service provider
(cim:BalanceSupplier). Once the global schema has been developed, it can be used across
the nodes established in the energy data ecosystem.

Example SPARQL query: Showing the total energy produced (active power) by
WindFarms in Montenegro, on 31 December 2017. An example SPARQL query is presented
in Figure 5.

Figure 5. Example SPARQL query.

4.2. Unified Knowledge Graph Creation Process

In this section, two scenarios of the knowledge graph creation process and their pros
and cons are discussed. Creating a knowledge graph from heterogeneous data sources
at the supplier site requires the description of the entities in the data sources using RDF
vocabularies. Additionally, it requires data curation and entity alignment to enhance data
quality, e.g., missing values or duplicates. Two types of knowledge graph creation strategies
are materialized (i.e., data warehousing) and virtual (i.e., via semantic data lakes). Both
strategies are applicable for the above discussed use cases.

Materialized Knowledge Graph Creation Process: In a materialized knowledge
graph creation process, data from individual data sources are loaded and materialized
into an RDF format and stored in a physical database, the so-called triplestore. Figure 6
shows the data curation and integration subcomponents for creating a unified knowledge
graph. The ingestion and preprocessing component is the gateway to the knowledge graph
creation process. Input from producers’ data sources is first stored in a raw data repos-
itory, i.e., staging repository. Any preprocessing steps, such as cleaning, normalization,
and aggregation, that are predefined for input data are applied and provenance is recorded.
The data integrator component then orchestrates the knowledge graph creation process
according to the data source’s configuration by invoking the linking and enrichment, SDM-
RDFizer/semantifier, and data validation subcomponents, and finally integrating data to
the supplier’s unified knowledge graph. The linking and enrichment component performs
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entity linking and enrichment using external as well as existing materialized knowledge
graphs. The SDM-RDFizer/semantifier component transforms non-semantic, i.e., raw,
data to a RDF graph based on mapping rules. Data validation component checks data
constraint conformance.

Figure 6. Unified knowledge graph creation process.

Virtual Knowledge Graph Creation Process: In a virtual knowledge graph creation
process, data remain in the sources (in raw format) and are accessed as needed during query
time. The federated query processing component can handle this process. The federated
query processing component employs the data source descriptions stored in the metadata
store to perform the integration during query time. Metadata about the number of data
sources available, the provenance of the datasets, and mapping rules to transform data
to RDF graph are stored in a separate data store available for both materialized and
virtual data integration processes. If the datasets are already included in the materialized
knowledge graph, then the federated query processing component can directly access them
without performing data transformation at query time. However, if the data sources are
stored in raw format, then the data transformation rules will be applied only for the part of
the dataset required to answer the query; see also Janev et al. (2021) [8].

4.3. Data Harmonization

The data catalog (DCAT) vocabulary provides the basis for the harmonized data source
and services description. In our approach, classes dcat:Catalog and dcat:Dataset have
been used to describe the collection of datasets employed in a service in the way that
it is understandable by humans and also by machines. The SDM-RDFizer/semantifier
component is applied in the pipeline to make the use of the metadata, and guided by
mapping rules, to generate a harmonized description that can be uploaded in a form of
RDF knowledge base into a Virtuoso SPARQL endpoint for further exploration. Thus,
datasets are annotated with concepts from the energy domain vocabularies whose mean-
ing is commonly accepted by the energy sector community. Figure 7 presents the data
harmonization pipeline, while Figure 8 visualizes the links between the target datasets,
e.g., RES-PROduction. As observed, these annotations allow for establishing connections
among the energy sector datasets. More importantly, they provide the basis for a semantic
search based on classes of energy vocabularies, and enable a common understanding of the
data collected from these datasets.
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Figure 7. Data harmonization pipeline.

Figure 8. Annotation of data sources. Visualization powered by Cystoscape.

By using Cytoscape (https://cytoscape.org/, (accessed on 23 May 2022)), the main
properties of annotation knowledge graph are analyzed in terms of graph measures (e.g.,
number of nodes, number of edges, average number of neighbors), see Table 1. The results
place into perspective the relevant role that annotations from domain-specific vocabularies
have in the discovery of connections among energy datasets.

Table 1. Datasets.

Dataset Number of Annotations

PUPIN-RES-PROD 34
PUPIN-RES-PV 26

PUPIN-ENTSO-E 22
PUPIN-RES-Effects 4

5. Knowledge Exploitation
5.1. Traversing the Knowledge Graph

Once the knowledge graph creation process is established, exploring the knowledge
base will be possible via a query engine. Additionally, data exploration and knowledge
discovery services can be employed. Results of executing a federated query can be used as
input of data analytics or knowledge discovery tasks. As the knowledge base is defined

https://cytoscape.org/


Energies 2022, 15, 3973 13 of 17

through mapping to semantic data models for energy, the query processing engine is able to
process queries posed using the SPARQL query language. If the materialization approach is
applied and data are stored in a centralized triple store, e.g., Virtuoso, then the knowledge
base can be accessed using SPARQL query over the query engine embedded in the triple
store, see Figure 9. However, if the materialized knowledge base is large, then partitioning
and distribution is necessary for timely response from the query engine and handling the
resource requirements to store such large data in expensive servers. Such distribution of
data needs to be accessed through a federated query engine that is able to distribute the
posed query to each partition and merge data returned from them. Virtual integration
approach can also be applied over heterogeneous data sources. In this case, the query
processing engine not only queries each data source and merges results, but also should
be able to transform raw data into the semantic models specified in the mappings during
query time [8].

Figure 9. Energy analytics dashboard.

5.2. Federated Query Processing

A unified knowledge graph can be partitioned into various graphs accessible inde-
pendently via SPARQL endpoints. A federation of knowledge graphs comprises all these
graphs together with the external knowledge graphs linked from the unified knowledge
graph (e.g., DBpedia [14] and Wikidata [15]). Although each graph in a federation can
process SPARQL queries individually, queries that require data collected from one or more
knowledge graphs need to be executed by a federated query engine [30]. Federated query
processing demands the implementation of data management techniques for selecting the
knowledge graphs that will answer a query and decomposing the queries into sub-queries
on the chosen knowledge graphs. Moreover, a federated query engine must be equipped
with physical operators capable of merging the answers produced by executing the sub-
queries on top of the selected knowledge graphs. Furthermore, the federated query engine
identifies query plans that minimize the execution time of the queries. The federated query
engine interoperates across the unified knowledge graphs and DBpedia in this project.

6. Integration of Advanced Analytics
6.1. Res Forecasting

For the purpose of the development of the ML-based wind power production forecast-
ing model for the Krnovo Wind Plant (Montenegro), the RES-PROD dataset was created.
Meteorological data were collected from the local meteo-station and included the following
characteristics: wind speed, wind direction, and temperature. The collected dataset covered
a six-month-long period and had measurements with hourly time resolution. Production
measurements were obtained from 26 wind turbines installed with 2.85 MW capacity. When
wind power production forecast is considered, hybrid neural network approaches intend
to provide improved estimation performances in comparison with other methods, which is
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the main reason why authors decided to choose the hybrid approach within this research.
Apart from the optimization regarding the number and type of the hidden layers, activation
functions were chosen carefully as well. Namely, since the network output is limited with
the turbine capacity, tansig activation function was selected. Training process for the final
model was carried out using ADAM optimization method with the learning rate 0.001 and
mean square error as the criterion function. The dockerized service was integrated with the
knowledge graph discussed above. The federated query engine can select results based on
the user query set via a graphical user interface; see Figure 9.

6.2. Data Analytics on the Edge

The integration of RES into the low-voltage (LV) grid together with the fusion of
environmentally friendly technologies entering the low-voltage grid at the consumer’s
site presents a new challenge for the design of a reliable and manageable power grid [31].
Data services on edge, together with the sensors, represent the bottom-most layer in the
architecture. There are many heterogeneous data sources in the field, from hardware
sensors with analog output to more advanced intelligent electronic devices (IEDs) with
standardized protocols and APIs. We developed a new method to analyze the impact of
PV power plants before they are integrated into the grid, which can be easily extended
to other types of RESs. In the case where the PV power plant is already installed, we
first estimate the situation without the PV power plant to understand the impact of PV
integration. By comparing the worst-case scenarios with and without the PV power plant
(e.g., maximum or minimum daily voltages) over a longer period of time, we can estimate
the impact and calculate the grid insertion capacity at that time. Once the data are available
from a node, it can be semantically enriched to better understand where it came from and
what exactly the processed values are. Once many nodes are integrated with the edge data,
various big data analyses can be performed, for example, to reconstruct the topology of the
critical grid infrastructure and to better understand and monitor the bidirectional energy
flows in the power grid.

7. Discussion

In the last decade, the big data paradigm has gained momentum and is generally
employed by businesses on a large scale to create value that surpasses the investment and
maintenance costs of data. The energy sector is an example where tremendous amounts of
data are collected from numerous sensors, which are generally attached to different plant
subsystems. The new paradigm of DEs for smart grids that includes renewable energy
sources challenges the existing network infrastructure and the energy management systems
even more. In the EU project PLATOON, we have explored the possibilities for

• The use of new approaches capable of data managing and processing for extending
the analytics services portfolio of various energy stakeholders. Examples include
ESCOs, DSOs, and utilities to achieve two-way flows of electricity and information for
optimized generation, distribution, and electricity consumption.

• Distributed/edge processing and data analytics technologies to optimize the operation
of the real-time energy system management and automate the “monitor–forecast–
optimize–control” loop.

• Effective integration of relevant digital technologies. It will transform energy systems
from the top down and move from centralized production and rigid distribution
framework into a collaborative ecosystem of self-managed prosumers able to act
independently on the liberalized energy markets.

Next, we showcase how “networks” of distributed data integration platforms can be
instantiated in the energy value chain for establishing a »network of trusted data«. Some
benefits for main actors are the following:

• Secure data exchange: For instance, using the industrial data space concept that
features various levels of protection, data are exchanged securely across the entire
data supply chain (and not just in bilateral data exchange).
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• Data governance and sovereignty: In a network of energy DEs, data owners deter-
mine the terms and conditions of use of the data provided, while data sovereignty
always remains with the respective data provider. A provider makes data available
to be requested by certain contractors in a data space by its own rules. Additionally,
the provider can also offer data services (e.g., via an »AppStore«) to be found by all
DE participants.

• Innovative scalable and replicable energy management services: a network of en-
ergy DEs opens opportunities for new data-driven and model-driven services that
will complement and enhance the existing, e.g., balancing services, energy gen-
eration and consumption intelligent forecasts services, and energy performance
assessment services.

8. Related Work

Ref. [32] highlights the value of data-driven solutions in the digitization era and
outlines the challenges that need to be addressed in DEs in emerging areas such as maritime,
manufacturing, and science. Controlled and secured data exchange in a traceable way are
among the most relevant challenges. However, despite years of research in data governance
and management, trustability is still affected by the absence of transparent and traceable
data-driven pipelines. The need for responsible data management (see [33]) intensifies with
the growing impact of data on society.

As shown in the described scenarios, DEs for energy big data are demanded to provide
computational methods and semantic-based formalisms (e.g., ontologies) to represent the
meaning of the data to be shared and processed. The metadata layer comprises unified
schemas, mappings between datasets and concepts in the unified schema, and alignments
across ontologies. Furthermore, following the IDS reference architecture, integrity con-
straints are represented using declarative formalisms (e.g., SHACL), while data provenance
and quality are described based on standard vocabularies (e.g., PROV and DQV). These
semantic descriptions provide building blocks for documenting data sharing, integration,
and processing. As a result, services for tracking down DE components can be provided.

Several approaches have been defined to follow the DE architecture with the aim of
solving interoperability across heterogeneous datasets during query processing time; they
are usually named as federated query engines. Exemplary approaches include GEMMS [34],
PolyWeb [35], BigDAWG [36], Constance [37], and Ontario [24]. These systems collect
metadata about the main characteristics of their datasets, e.g., formats and query capabilities.
Additionally, they resort to a global ontology to describe contextual information and the
relationships among datasets, for purposes of optimized data integration, query processing,
and automated schema discovery in quasi-central settings. This metadata has shown to
be crucial for enabling these systems to perform query processing needed in advanced
business services effectively. Knowledge-driven DEs are built on these results and make
available the semantic description of the data collections made available by stakeholders.
Furthermore, a DE empowers federated query processing engines with factual statements
about the integrity constraints satisfied by the data retrieved and merged during query
processing. As a consequence, a new paradigm shift in data management is devised
towards tracing down data integration during query processing.

9. Concluding Remarks

Smart grids are cyber-physical energy systems, the next evolution step of the tradi-
tional power grid, and are characterized by a bidirectional flow of information and energy.
One of the requirements related to data access procedures in future business solutions for
electricity markets is related to interoperability of energy services. Therefore, the overall
goal of the paper was to showcase and evaluate data ecosystems (DEs) and the International
Data Space concept for advanced business services in the energy sector. The International
Data Space initiative is based on the use of semantic technologies for creation of knowledge-
based systems that will aid machines in integrating and processing resources contextually
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and intelligently. In our work, we showed how DES provides the building blocks for
enhancing the interoperability of energy management applications/services; they also
enable the integration of energy data in the European Energy Data Space. The metadata
layer in DEs, together with the internal SCADA information model, can be used as an
information hub (“knowledge graphs”) for (1) building data connectors that will facilitate
integration of services in future integrated energy systems and (2) improving the explain-
ability of machine learning services/analytical applications. The selection of models was
made based on a set of scenarios (electricity balancing services, predictive maintenance
services, and services for residential, commercial, and industrial sector). The proposed
approach is being used in the EU-funded H2020 project PLATOON. The validation of all
the computational components and unified schemas to fulfill the analytic requirements on
a large scale (country level) is part of our future agenda.
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29. Janev, V.; Popadić, D.; Pujić, D.; Vidal, M.E.; Endris, K. Reuse of Semantic Models for Emerging Smart Grids Applications. arXiv
2021, arXiv:2107.06999.

30. Endris, K.M.; Vidal, M.E.; Graux, D. Chapter 5 Federated Query Processing. In Knowledge Graphs and Big Data Processing; Janev, V.,
Graux, D., Jabeen, H., Sallinger, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 73–86. [CrossRef]

31. Fathabad, A.; Cheng, J.; Pan, K.; Qiu, F. Data-Driven Planning for Renewable Distributed Generation Integration. IEEE Trans.
Power Syst. 2020, 35, 4357–4368. [CrossRef]

32. Gelhaar, J.; Otto, B. Challenges in the Emergence of Data Ecosystems. In Proceedings of the 24th Pacific Asia Conference on
Information Systems, PACIS, Dubai, United Arab Emirates, 22–24 June 2020; Vogel, D., Shen, K.N., Ling, P.S., Hsu, C., Thong,
J.Y.L., Marco, M.D., Limayem, M., Xu, S.X., Eds.; 2020; p. 175.

33. Stoyanovich, J.; Howe, B.; Jagadish, H.V. Responsible Data Management. Proc. VLDB Endow. 2020, 13, 3474–3488. [CrossRef]
34. Quix, C.; Hai, R.; Vatov, I. GEMMS: A Generic and Extensible Metadata Management System for Data Lakes. In Proceedings of

the 28th International Conference on Advanced Information Systems Engineering (CAiSE 2016), CEUR-WS, Ljubljana, Slovenia,
13–17 June 2016; pp. 129–136.

35. Khan, Y.; Zimmermann, A.; Jha, A.; Gadepally, V.; D’Aquin, M.; Sahay, R. One Size Does Not Fit All: Querying Web Polystores.
IEEE Access 2019, 7, 9598–9617. [CrossRef]

36. Duggan, J.; Elmore, A.J.; Stonebraker, M.; Balazinska, M.; Howe, B.; Kepner, J.; Madden, S.; Maier, D.; Mattson, T.; Zdonik, S. The
BigDAWG Polystore System. SIGMOD Rec. 2015, 44, 11–16. [CrossRef]

37. Hai, R.; Geisler, S.; Quix, C. Constance: An Intelligent Data Lake System. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD, San Francisco, CA, USA, 26 June–1 July 2016; ACM: New York, NY, USA, 2016; pp. 2097–2100.
[CrossRef]

https://www.fit.fraunhofer.de/content/dam/fit/en/documents/Industrial-Data-Space_Reference-Architecture-Model-2017.pdf
https://www.fit.fraunhofer.de/content/dam/fit/en/documents/Industrial-Data-Space_Reference-Architecture-Model-2017.pdf
http://dx.doi.org/10.1109/TELFOR51502.2020.9306549
https://www.forbes.com/sites/davidblackmon/2022/01/03/how-europes-energy-crisis-could-force-the-eu-to-adopt-more-sensible-policies/?sh=4e5e9a6e3ed3
https://www.forbes.com/sites/davidblackmon/2022/01/03/how-europes-energy-crisis-could-force-the-eu-to-adopt-more-sensible-policies/?sh=4e5e9a6e3ed3
http://dx.doi.org/10.1109/ISGT.2017.8085977
https://ec.europa.eu/energy/sites/default/files/documents/bridge_wg_data_management_eu_reference_architcture_report_2020-2021.pdf
https://ec.europa.eu/energy/sites/default/files/documents/bridge_wg_data_management_eu_reference_architcture_report_2020-2021.pdf
http://dx.doi.org/10.1145/3366030.3366054
http://dx.doi.org/10.1007/978-3-030-27615-7_29
http://dx.doi.org/10.1145/3340531.3412777
http://dx.doi.org/10.1007/978-3-319-68204-4_15
https://cordis.europa.eu/project/id/872592/results
http://dx.doi.org/10.1007/978-3-030-53199-7_5
http://dx.doi.org/10.1109/TPWRS.2020.3001235
http://dx.doi.org/10.14778/3415478.3415570
http://dx.doi.org/10.1109/ACCESS.2018.2888601
http://dx.doi.org/10.1145/2814710.2814713
http://dx.doi.org/10.1145/2882903.2899389

	Introduction
	Data Ecosystems
	The EU Energy Data Ecosystem
	Overview of Main Contributions

	The Electricity Value Chain: Overview of Challenges
	Example Case Study
	EU Energy Data Spaces and New Business Models
	Example Scenario: The RES Forecasting

	Developing a Multi-Layer Software Architecture
	Energy Big Data Integration Platform
	Instantiating a DE
	Description of the DE Architecture on the Node Level
	Instantiating a Node at the Producers' Site
	Instantiating an IDS Data Connector


	Data Standardization and Harmonization
	Developing a Global Schema for the Energy Domain 
	Unified Knowledge Graph Creation Process
	Data Harmonization

	Knowledge Exploitation
	Traversing the Knowledge Graph
	Federated Query Processing

	Integration of Advanced Analytics
	Res Forecasting
	Data Analytics on the Edge

	Discussion
	Related Work
	Concluding Remarks
	References

