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Abstract: One of the most critical aspects of integrating renewable energy sources into the smart grid
is photovoltaic (PV) power generation forecasting. This ensemble forecasting technique combines
several forecasting models to increase the forecasting accuracy of the individual models. This study
proposes a regression-based ensemble method for day-ahead PV power forecasting. The general
framework consists of three steps: model training, creating the optimal set of weights, and testing
the model. In step 1, a Random forest (RF) with different parameters is used for a single forecasting
method. Five RF models (RF1, RF2, RF3, RF4, and RF5) and a support vector machine (SVM) for
classification are established. The hyperparameters for the regression-based method involve learners
(linear regression (LR) or support vector regression (SVR)), regularization (least absolute shrinkage
and selection operator (LASSO) or Ridge), and a penalty coefficient for regularization (λ). Bayesian
optimization is performed to find the optimal value of these three hyperparameters based on the
minimum function. The optimal set of weights is obtained in step 2 and each set of weights contains
five weight coefficients and a bias. In the final step, the weather forecasting data for the target day
is used as input for the five RF models and the average daily weather forecasting data is also used
as input for the SVM classification model. The SVM output selects the weather conditions, and the
corresponding set of weight coefficients from step 2 is combined with the output from each RF model
to obtain the final forecasting results. The stacking recurrent neural network (RNN) is used as a
benchmark ensemble method for comparison. Historical PV power data for a PV site in Zhangbin
Industrial Area, Taiwan, with a 2000 kWp capacity is used to test the methodology. The results for
the single best RF model, the stacking RNN, and the proposed method are compared in terms of the
mean relative error (MRE), the mean absolute error (MAE), and the coefficient of determination (R2)
to verify the proposed method. The results for the MRE show that the proposed method outperforms
the best RF method by 20% and the benchmark method by 2%.

Keywords: PV power forecasting; ensemble method; Random forest; linear regression; support
vector machine; clustering method

1. Introduction

Forecasting photovoltaic (PV) power generation is a vital element in the planning and
operation of an electric power grid. Renewable energy resources are rapidly integrated into
smart grids [1–3]. The variability and uncertainty of PV power output and availability must
be considered in the complex decision-making processes required to balance supply and
demand for the power system. A solar generator at the ground level is affected by cloud
cover, atmospheric aerosol levels, and other atmospheric parameters, so solar power is
intermittent and variable [4]. Meteorological features, such as solar irradiance, air tempera-
ture, relative humidity, and wind speed, directly or indirectly affect the power generated
by a PV [5]. The intermittent nature of power generation from solar PV systems means
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that maximizing power output and connecting to the utility grid is difficult. Forecasting is
critical to the efficient use of solar power for grid operations.

PV power forecasting involves very short-term, short-term, medium-term, or long-
term forecasting horizons. Very short-term forecasting has prediction periods from 1 min
to several hours and is useful for the electricity market, power smoothing, and real-time
electricity dispatch. Short-term forecasting is widely used in the electricity market to ensure
economic load dispatch, and the time horizons range from one day to a week. Medium-
term forecasting ranges from one week to a month and is used for maintenance planning.
Long-term forecasting forecasts for a month to a year ahead and is used to determine plans
for long-term power generation, transmission, distribution, and solar energy rationing [6].

A previous study [7] used a univariate data-driven approach to increase the accu-
racy of very short-term solar power forecasting. The forecasting horizon is 15 min ahead,
and the real solar power dataset is the only input for the model. The performance in-
dices are MAE, mean relative error (MRE), and RMSE. Another study [8] performed
medium- and long-term PV power forecasting using LSTM. The MAE and RMSE are used
as evaluation metrics.

Current methods to forecast PV power generation are categorized as physical, statistical,
or machine-learning, as well as hybrid methods that integrate two or more methods [9,10]. A
physical approach generates PV forecasts using solar and PV models and a statistical approach
uses past data to train models. A physical model uses satellite images and numerical weather
predictions (NWP) to predict PV power generation [11,12].

A previous study [13] used a statistical approach to forecast photovoltaic power
generation using autoregressive moving average (ARMA) models. These models are
simple and give good forecasting results for one-step-ahead predictions using a resolution
of one hour, but forecast errors increase proportionally with forecast times. Support
vector machines (SVM), artificial neural networks (ANN), deep neural networks (DNN),
random forest (RF), and metaheuristic methods are used in machine learning [14–18].
A previous study [19] used the Random forest to forecast solar power using principal
component analysis (PCA)-K-means clustering together with the differential evolution
grey-wolf algorithm. However, the calculation time increases if the algorithm is used to
optimize parameters because the number of iterative operations increases.

The most commonly used machine-learning technique is deep learning. Deep learning
uses neural networks with more than three layers. A previous study [20] compared various
deep learning neural networks for short-term PV power forecasting: long short-term
memory (LSTM), bidirectional LSTM (Bi-LSTM), a gated recurrent unit (GRU), bidirectional
GRU (Bi-GRU), a convolutional neural network (CNN), and other hybrid configurations
such as CNN-LSTM and CNN-GRU. Another study [21] used a hybrid implementation
of physical models and an ANN. Hybrid models give accurate forecasts for photovoltaic
production but there are significant forecasting errors due to inaccurate weather forecasts.

A metaheuristic method is used to optimize the hyperparameters for a forecasting
model. One study [22] used a metaheuristic method called differential evolution and a
particle swarm optimization (DEPSO) algorithm to optimize the forecasting model for short-
term PV power output forecasting. Another study [23] used a metaheuristic method called
a CNN-salp swarm algorithm (SSA) with a deep learning method. To allow predictions for
different weather types, five CNN regression models were created and the hyperparameters
were optimized using a salp swarm algorithm (SSA). Another study [24] used an LSTM
with four hidden layers and Bayesian optimization to select the best combination of features.
The simulation gives an accurate forecast in sunny and cloudy weather in terms of the
mean squared error (MSE), the mean absolute error (MAE), the coefficient of determination
(R2), and the root mean squared error (RMSE).

Clustering and classification improve forecasting accuracy. One study [25] used K-
means clustering to define the different types of sky for each hour using different levels of
irradiance and weather features, such as solar irradiance, temperature, wind speed, and
relative humidity, as inputs. This produces a 33–44.6% improvement in accuracy compared
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to the benchmark method. Another study [26] compared classification methods, such as
K-nearest neighbor (KNN) and SVM models, in terms of performance. The results show
that an SVM performs well on a small sample scale.

An ensemble learning method is used to increase the accuracy of PV power forecasting,
which involves combining multiple models to make predictions. One study [27] developed
a stacked generalization ensemble model for short-term PV power generation forecasting.
This uses base learners such as extreme learning machines (ELM), extremely randomized
trees, K-nearest neighbor (KNN), and the Mondrian forest model. A deep belief network
is used as a meta learner to generate the final outputs from meteorological features such
as global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), relative humid-
ity, wind direction, and temperature. The MAE, RMSE, mean absolute percentage error
(MAPE), and R2 values are used as evaluation criteria. The proposed model gives a MAPE
that is 2.30% more than that for the benchmark and a single model.

One study [28] used a seasonal time series model to develop a regression-based en-
semble forecasting combination. Seasonal time series models use a seasonal autoregressive
integrated moving average (SARIMA), exponential smoothing (ETS), multilayer perceptron
(MLP), seasonal trend decomposition, a TBATS model, and a theta model. Eight ensemble
forecasting combination methods were used to combine the forecasting results. The normal-
ized root mean squared error (nRMSE), normalized mean bias error (nMBE), forecast skill,
and Kolmogorov–Smirnov test integral (KSI) are used to calculate the accuracy. Sometimes
the best individual model is more accurate than the ensemble model.

Another study [29] used the bagging ensemble method with Random forest (RF) and
extra trees (ET) to predict hourly PV generation, and an SVR was used as the benchmark
model. The inputs for the model are solar radiation, air temperature, relative humidity,
wind speed, and the previous hourly value for PV output. The RMSE and MAE values
are used for error validation. ET outperforms RF and SVR, with an MAE of 1.0851 kWh.
However, this study did not involve different weather conditions, such as sunny, cloudy,
or rainy.

One study [30] blended forecasting results from multiple feedforward neural network
(FNN) predictors using the RF model. Meteorological measurements, such as solar irra-
diance, ambient temperature, and wind speed, were used as model inputs. The method
for this study outperforms six benchmark models in terms of persistence, SVR, linear
regression (LR), RF, gradient boosting (GB), and extreme GB (XGBoost) by 40%, but the
method only uses one-hour-ahead forecasts for very short-term PV power forecasting.

Table 1 shows the previous researches on PV power forecasting using the ensemble
method. Many studies show that the use of the ensemble method can increase the accuracy
of the single forecasting method. In fact, the weight coefficients in every weather condition,
such as sunny, cloudy, or rainy, are different from one another. The suitable weights must
be implemented in the proper weather conditions to increase the accuracy. This study
proposed an ensemble-based model for short-term PV power forecasting to increase the
accuracy of the short-term PV power output predictions. The proposed model incorporates
five RF models for five weather types: sunny, light-cloudy, cloudy, heavy-cloudy, and rainy.
It also uses regression-based methods such as linear regression (LR) and support vector
regression (SVR) and uses LASSO and Ridge regularization for weighting to combine the
forecasting results. A previous study implemented a stacked generalization ensemble
method for short-term PV power forecasting using an RNN meta learner [31]. The stacking
RNN method is used as a benchmark for the ensemble forecasting method for this study.
The goal of this study is to improve the accuracy and performance of the individual
forecasting models for day-ahead PV power forecasting by implementing a regression-
based ensemble method. This study makes the following significant contributions to this
field of study:

• A new PV forecasting structure that incorporates K-means clustering, RF models,
and the regression-based method with LASSO and Ridge regularizations is used to
increase forecasting accuracy.
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• A regression-based ensemble learning with Bayesian optimization is used with LASSO
and Ridge regularization to calculate the five optimal sets of weight coefficients, which
allows us to determine which predictors in the model are significant.

• The regression-based method is easier to implement and has fewer hyperparameters
compared to the stacking RNN method. The results show that the proposed regression-
based method outperforms the benchmark stacking RNN by 2%.

Table 1. The previous study of ensemble PV power forecasting.

Single Methods Ensemble Method Ref. Error Validation Forecasting
Horizon Resolution Best Result

FNNs RF [30] nRMSE, nMAE 1-h 1-h nMAE = 2.42%

ANN, DNN, SVR,
LSTM, CNN RNN [31] MRE, MAE, nRMSE, R2 1-day 1-h MRE = 4.29%

ARIMA, VAR,
LSTM CNN [32] MAE, MSE, RMSE 1-year 1-month MAE = 16.70 MWh

GRU, XGBoost,
MLP Simple averaging [33] RMSE, MAE, MAPE 1-day 1-h MAPE = 1.60%

RFs Weighted averaging [34] nMBE, nMAE, nRMSE,
forecast skill 1-day 1-h nMAE = 4.06%

SVM, MLP, MARS Weighted averaging [35] RMSE, MAE, MAPE 1-day 5-min MAPE = 0.78%

The remainder of the paper is structured as follows. Section 2 briefly describes the
proposed methodology and setup modeling. Section 3 explains the ensemble forecasting
strategy. Section 4 details the proposed PV power forecasting simulation results, and
Section 5 details the conclusions and future applications.

2. Modelling and Methodologies
2.1. The K-Means Model

The K-means clustering method is used for this study to divide the training set into
clusters. K-Means clustering is a type of unsupervised machine-learning technique that
is frequently used to divide a set of data into several subgroups. K-means is a traditional
clustering method that is simple, fast, and robust [36] and produces groups that have
similar characteristics that are significantly different from those other groups.

The K-Means clustering minimizes the sum of squared errors (SSE) as in [37]:

SSE =
k

∑
j=1

n

∑
i=1
‖ xi − cj ‖2 (1)

where k represents the number of clusters, n represents the number of observations, xi
represents the ith observation, and cj represents the centroid for cluster j.

To iteratively update the centroid of each cluster, Equation (2) is used:

cj =
1∣∣Cj
∣∣ ∑

xiεCj

xi (2)

where
∣∣Cj
∣∣ represents the total number of points in cluster j.

The following are the steps of the K-means clustering:

1. The initial centers of each group, K samples, are chosen at random to eliminate the
dimensional effects. Each feature is normalized using the min-max method.

2. Samples are assigned to groups based on their Euclidean distance from the cen-
ter of the group, and the group with the smallest Euclidean distance is chosen for
each sample.
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3. The centers of each group are recalculated using the sample data for each group, and
the results are output if none of the centers are changed.

4. Steps 2 and 3 are repeated until convergence is achieved.

The elbow method is a common method for determining the optimal number of
clusters. This method uses the concept of the within-cluster sum of squares (WCSS)
value [38]. The total variance within a cluster is defined using the WCSS.

The elbow method uses the following steps to determine the optimal value of clusters:

1. K-means clustering is performed on a given dataset for various K values.
2. The WCSS value is calculated for each value of K.
3. A line is drawn between the calculated WCSS values and the number of clusters K.
4. When the point on the plot looks like an arm, it has the best value for K.

The elbow method is defined as:

WCSS = ∑
K

(
∑

XiεK
(Dist(Xi, CK))

)2

(3)

where K denotes the number of clusters, Xi denotes the number of observations, and CK
denotes the cluster center.

2.2. The Random Forest Model

Random forest is a machine-learning approach that is used for classification and
regression problems. A Random forest is an ensemble of decision trees. The Random forest
output is the class that is chosen by the majority of trees that are used for classification
problems, but for regression problems the mean or average prediction for an individual
tree is used.

Figure 1 shows the structure of the Random forest model. Random forest uses the
ensemble technique of bagging, which is also known as bootstrap aggregation. Bagging
selects a sample at random from the original dataset, so rows are sampled to construct each
model using the bootstrap samples from the original data. The bootstrap method is used
for row sampling with replacement. The results are generated using each model, which
is independently trained. A majority vote or mean decision is made when all models are
combined. Aggregation involves combining all of the results and generating output. The
RF model is robust to missing values and outliers and is less affected by noise. A detailed
model of RF is shown in [39].
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2.3. The Stacking RNN Ensemble Method

In this study, the stacking RNN was used as the benchmark method. Stacking RNN is
the ensemble method based on stacked generalization by training the first-level learners
and combining them using the second-level learner to obtain the final forecasting results. A
more detailed explanation of the stacking RNN ensemble method can be found in [31].

2.4. The Ensemble Combination Strategy
2.4.1. The Linear Regression (LR) Model

This study uses a linear regression model [41] with ordinary least squares (OLS) to
combine the forecasting results of five different RF forecasting models:

y = f (x) = w.xi + b (4)

where xi denotes the forecast result for model i, w denotes the weight coefficient, and b
denotes the intercept or bias.

The best fit is determined by minimizing the sum of squared errors:

min
m

∑
i=1

(yi − ŷi)
2 =

m

∑
i=1

(yi − (w.xi + b))2 (5)

The solution involves solving:

ŵ =
(

XTX
)−1

XTY (6)

To avoid overfitting, a regularization term is used (to minimize the magnitude of w):

- LASSO regression:

LASSO stands for least absolute shrinkage and selection operator. LASSO regression
performs L1 regularization by adding a penalty coefficient λ equal to the absolute value of
the magnitude of the coefficients.

min
m

∑
i=1

(yi − w.xi − b)2 + λ
n

∑
j=1

∣∣wj
∣∣ (7)

- Ridge regression:

Ridge regression performs L2 regularization by adding a penalty coefficient λ equal to
the square of the magnitude of the coefficients.

min
m

∑
i=1

(yi − w.xi − b)2 + λ
n

∑
j=1

∣∣∣w2
j

∣∣∣ (8)

where λ represents the penalty coefficient.

2.4.2. The Support Vector Regression (SVR) Model

Support vector regression (SVR) is used in this study to combine the forecasting results
for five different RF models. Figure 2 shows the structure of the SVR.

The function of SVR is:

y = f (xi) = wT ϕ(xi) + b (9)

where f (x) represents the forecast values, ϕ(x) represents the kernel function (RBF function
as a kernel function) for the inputs, and w and b represent the weighted coefficient and the
bias, respectively.
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A penalty function is used to calculate the values of coefficients w and b:

R(C) =
1
2
‖ w ‖2 + C· 1

n

n

∑
i=1
|yi − f (x)|ε (10)

|y− f (x)|ε =
{

0, |y− f (x) ≤ ε,|
|y− f (x)| − ε, otherwise

(11)

where ‖ w ‖2 represents the regularization term, C represents the penalty coefficient, and ε
represents the maximum value for the tolerable error.
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2.4.3. Bayesian Optimization

In machine learning, hyperparameters need to be tuned to ensure the performance of
the prediction model. The best results can be obtained by using the optimal hyperparame-
ters. Hyperparameter optimization is used to optimize the model. Bayesian optimization
is one of the global optimization algorithms that generates a probabilistic model of the
function mapping from hyperparameter values to the target, which is then tested on
a validation set. A detailed description of the Bayesian optimization algorithm can be
found in [43].

2.5. Setup Modelling
2.5.1. Data Preprocessing

Data preprocessing involves data normalization, cleaning, repair, and data splitting.
During the data preparation stage, data are normalized using min-max normalization. The
min-max normalization is defined as:

xn =
xn − xmin

xmax − xmin
(12)

where xn is the normalized data, xn is the original data, and xmax and xmin are the maximum
and minimum values of xn.

After data normalization, data cleaning removes outliers and data repair replaces
missing values using linear interpolation. The good data are then divided into data training
and testing sets.
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2.5.2. Datasets

The PV site for this study is located at Zhangbin Industrial Area in Taiwan, at a
latitude of 24.12809◦ and longitude of 120.4281◦. Zhangbin Industrial Area’s PV site has a
ground-mounted panel with a 2000 kWp capacity. The PV power output data for 2020 is
used for this study.

Two types of datasets are used for this study: meteorological data that is obtained
from Solcast and measurement data from the PV site. The meteorological data from Solcast
is open access data that contains the real values for irradiance and weather with a 10 min
resolution [44]. The meteorological data features for this study are solar irradiance (GHI),
air temperature, precipitation, relative humidity, and wind speed. This data is averaged to
a one-hour resolution to meet the requirements of this study. The measured real data for
PV power output from the PV site’s ground panel in Zhangbin Industrial Area, Taiwan, is
also used as a data feature.

The Pearson correlation coefficient (PCC) and t-statistics are used to select appropriate
data features. PCC is used to calculate the correlation value between each weather variable
and the PV power output. The values are between −1 and 1 [45]. A value of r = 1 indicates
a positive correlation, r = 0 indicates no correlation, and r = −1 indicates a negative
correlation. The formula for PCC is:

r = ∑ (xi − x)(yi − y)√
∑ (xi − x)2 ∑ (yi − y)2

(13)

where r is the Pearson correlation coefficient (PCC), x = 1
n ∑N

i=1 xi represents the mean of x,
and y = 1

n ∑N
i=1 yi represents the mean of y.

The PCC, t-test, and p-value between weather features and PV power output are
shown in Table 2. Precipitation and wind speed have a low correlation with PV power
output, but solar irradiance, air temperature, and relative humidity have a high correlation.
Even though precipitation and wind speed have a low correlation, the t-test results show
that input variables with p-values less than 0.05 are still significant and can be used
as input variables [24]. A previous study [5] also demonstrated that precipitation and
wind speed indirectly affect PV power output. Therefore, solar irradiance (GHI), air
temperature, precipitation, relative humidity, and wind speed are the weather variables
used for this study.

Table 2. The statistical test between weather features and PV power output.

Weather Variables Correlation Coefficient t-Test p-Values

Irradiance (W/m2) 0.970 56.499 0
Temperature (◦C) 0.364 −2.119 0.034

Precipitation (kg/m2) −0.012 2.189 0.029
Humidity (%) −0.521 −2.451 0.014

Wind speed (m/s) −0.056 7.975 2.038 × 10−15

2.5.3. Evaluation Criteria

The mean relative error (MRE), the mean absolute error (MAE), and the coefficient
of determination (R2) are used as evaluation criteria to validate the error. The MRE is
calculated by dividing the actual and forecasted values by the nominal capacity of the
photovoltaic facility [46]. MAE represents the accuracy of the prediction [47]. R2 is the
coefficient of determination, which ranges from 0 to 1 [48]. The higher the value of R2, the
more accurate the model. The formulas for MRE, MAE, and R2 are:

MRE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
Np

∣∣∣∣× 100% (14)
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MAE =
1
N

N

∑
i=1
|yi − ŷi| (15)

R2 =
∑N

i=1(ŷi − yi)
2

∑N
i=1(yi − yi)

2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (16)

where yi and ŷi are the forecast value and the true value for PV power output at the ith
point, respectively, N is the number of prediction points, Np is the PV site’s nominal power
capacity, and yi is the average PV power output.

3. Ensemble Forecasting Strategy

The clustering method, classification techniques, RF models, and the regression-based
ensemble model are used for the proposed PV power ensemble forecasting strategy. Figure 3
shows the overall structure of the ensemble PV power generation forecast. The general
framework consists of three steps: model training, optimal set of weights creation, and
model testing. In step 1, K-means clustering uses the daily average historical PV power
output for k different weather conditions using the optimal number of k. The optimal
number of k is calculated using the elbow method, which is five in this case. The five
clusters are labeled as rainy, heavy-cloudy, cloudy, light-cloudy, and sunny. Then an RF
model was trained on each cluster using the historical hourly weather data as input and
PV power generation as output. In addition, an SVM classification model was also trained
using the historical daily average weather data as input and the label defined by K-means
clustering as output. There were five RF models (RF1, RF2, RF3, RF4, and RF5) and an SVM
classification model obtained in this step. Figure 4 shows the detailed process of step 1.
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In step 2, the dataset for each cluster was trained using RF models that we obtained
from the first step. Then, the PV power output of each Random forest model is used as an
input to the regression-based method to construct the set of weights. The hyperparameters
for the regression-based method are learner (LR or SVR), regularization (LASSO or Ridge),
and λ (penalty coefficient for regularization). Bayesian optimization is performed to find
the optimal value of these three hyperparameters. The optimal set of weights is obtained
in this step and each set of weights contains five weight coefficients and a bias. Different
weather conditions have different sets of weights to ensure accurate forecasting results.
Figure 5 shows the detailed process of step 2.
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In order to simulate weather forecasting inaccuracies, random errors of 10%, 20%, 30%,
40%, 50%, and 60% are applied to the actual weather value in load forecasting [49]. In step
3, we assumed that a random error of ±20% is added to the actual weather data to allow it
to be used as forecasting data due to insufficient weather forecasting data. The weather
forecasting data for the target day is used as input for five RF models. The average daily
weather forecasting data is also used as input for the SVM classification model obtained
in step 1. The SVM output selects the weather conditions, and the corresponding set of
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weight coefficients from step 2 is combined with the output from each RF model to obtain
the final forecasting results by using (17):

Ŷ = w1ŷ1 + w2ŷ2 + . . . + w5ŷ5 + b (17)

where Ŷ is the final forecasting results, w1, w2, . . . , w5 are the weight coefficients, ŷ1, ŷ2, . . . ,
ŷ5 are the forecasting results of RF models, and b is the bias. Figure 6 shows the detailed
process of step 3.

Energies 2022, 15, x FOR PEER REVIEW 10 of 21 
 

 

In step 2, the dataset for each cluster was trained using RF models that we obtained 

from the first step. Then, the PV power output of each Random forest model is used as an 

input to the regression-based method to construct the set of weights. The hyperparame-

ters for the regression-based method are learner (LR or SVR), regularization (LASSO or 

Ridge), and λ (penalty coefficient for regularization). Bayesian optimization is performed 

to find the optimal value of these three hyperparameters. The optimal set of weights is 

obtained in this step and each set of weights contains five weight coefficients and a bias. 

Different weather conditions have different sets of weights to ensure accurate forecasting 

results. Figure 5 shows the detailed process of step 2. 

 

Figure 5. The detailed process of step 2. 

In order to simulate weather forecasting inaccuracies, random errors of 10%, 20%, 

30%, 40%, 50%, and 60% are applied to the actual weather value in load forecasting [49]. 

In step 3, we assumed that a random error of ±20% is added to the actual weather data to 

allow it to be used as forecasting data due to insufficient weather forecasting data. The 

weather forecasting data for the target day is used as input for five RF models. The aver-

age daily weather forecasting data is also used as input for the SVM classification model 

obtained in step 1. The SVM output selects the weather conditions, and the corresponding 

set of weight coefficients from step 2 is combined with the output from each RF model to 

obtain the final forecasting results by using (17): 

�̂� = 𝑤1�̂�1 + 𝑤2�̂�2 + ⋯ + 𝑤5�̂�5 + 𝑏 (17) 

where �̂� is the final forecasting results, 𝑤1, 𝑤2, …, 𝑤5 are the weight coefficients, �̂�1, �̂�2, 

…, �̂�5 are the forecasting results of RF models, and b is the bias. Figure 6 shows the de-

tailed process of step 3. 

 

Figure 6. The detailed process of step 3. Figure 6. The detailed process of step 3.

4. PV Power Forecasting Simulation Results

The software package, MATLAB 2021b edition, with an Intel Core i7 CPU at 3.60 GHz
and an 8 GB RAM computer, is used for the simulation. The stacking RNN ensemble
method is used as a benchmark model to compare the results for one-day-ahead PV power
forecasting. The stacking RNN ensemble method is proven to give accurate short-term PV
power forecasts [31].

4.1. Test System

A case study used a 2000 kWp PV farm in Zhangbin Industrial Area, Taiwan, as a test
system to determine the accuracy of PV power output forecasting. The actual irradiance
and weather features from Solcast are used to train the model. There is a lack of weather
prediction data, so a ±20% random error is generated in the actual data to simulate the
weather forecast. The measured PV power generation for this study was obtained from the
Zhangbin Industrial Area’s PV site in Taiwan.

The test system includes historical data for PV power output and hourly average
values for irradiance, temperature, precipitation, relative humidity, and wind speed. The
data for 2020 is used as a dataset for the system. The data preprocessing that is described
in Section 2.5.1 gives 300 days of good data that is used for the simulation. This study uses
twelve points for each PV power output and corresponding weather variables on one day:
the PV power output and weather variables from 06:00–17:00.

The collected data is classified into five weather conditions using K-means clustering,
and the elbow method is used to determine the optimal number of clusters. The weather
conditions are sunny, light-cloudy, cloudy, heavy-cloudy, and rainy.
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The training and testing datasets for various weather conditions that are used to train
and test the RF model and the ensemble method are shown in Table 3. From the 300-day
dataset, 223 days (75%) are used to train a single RF model, and 77 days (25%) are used to
test the model. The test results for the single RF model are used as datasets to train and test
the ensemble learner. Sixty days (80%) are used to train the ensemble learner, and 17 days
(20%) are used for testing. A total of 10 days of the ensemble learner’s testing data are used
to test the proposed method for each model, and the proposed method is tested using the
ensemble learner’s testing data for seven consecutive days from 14 May to 20 May 2020.
Figure 7 shows a detailed illustration of the RF model and the data preparation for the
ensemble learner.

Table 3. The number of days that are used for training and testing.

Weather Conditions
Random Forest Model Ensemble Learner

Training Testing Training Testing

Sunny 59 20 16 4
Light-cloudy 57 19 15 4

Cloudy 54 17 14 3
Heavy-cloudy 27 11 8 3

Rainy 26 10 7 3

Total 223 77 60 17
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4.2. Hyperparameters Setting for the RF and Ensemble Models

The hyperparameters for the RF model are the number of trees and the minimum
leaf size. The search spaces are 100, 200, 500, and 1000 trees, with minimum leaf sizes of
1, 3, and 5. Table 4 shows the parameters for each single RF model, as determined by the
experiment.

Table 4. Parameters for the single RF models.

Model Parameters Value

RF1
Number of trees 1000

Min leaf size 3

RF2
Number of trees 1000

Min leaf size 3

RF3
Number of trees 800

Min leaf size 3

RF4
Number of trees 1000

Min leaf size 3

RF5
Number of trees 200

Min leaf size 3
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The penalty coefficient (lambda), a learner, and regularization are used to tune the
optimal hyperparameters for the proposed ensemble model. Lambda is a positive coef-
ficient. The regression-based learners are linear regression using ordinary least square
(OLS) and support vector regression (SVR), and the regularization methods are LASSO and
Ridge regression.

The ensemble model uses Bayesian optimization to optimize the hyperparameters.
“Bayesian optimization” is a global optimization problem [50]. The benchmark method
is a stacking RNN, which has the same structure as that of a previous study [31]. Table 5
shows the parameters for the benchmark model and the optimal hyperparameters for the
proposed ensemble model that are determined using the optimization process.

Table 5. Hyperparameters for the ensemble model.

Model Parameters Sunny Light-Cloudy Cloudy Heavy-Cloudy Rainy

Stacking RNN

Hidden layer 1 1 1 1 1
Hidden neuron 5 7 7 5 4

Input delay 2 2 2 2 2
Learning rate 0.001 0.05 0.005 0.005 0.005

Proposed
Method

Lambda (λ) 4.898 × 10−5 5.145 × 10−6 1.448 × 10−5 1.191 × 10−4 0.015
Learner LR SVR SVR LR SVR

Regularization LASSO LASSO LASSO Ridge Ridge

4.3. Short-Term PV Power Output Forecasting

K-means clustering is used to label the data. The elbow method is used to determine
the optimal number of clusters (k). The plot with the best number of clusters is shaped like
an arm. The elbow method gives the results that are shown in Figure 8. The optimal value
for k is 3–5 clusters. Ensemble forecasting requires diverse models [51] so different individ-
ual models use different datasets [32], or the same dataset uses different parameters [52] so
a maximum value must be assigned for k, which in this case is 5.
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The results of a previous study [31] show that an ensemble of five models outperforms
an ensemble of three models in terms of accuracy. The five weather conditions for this
study are sunny, light-cloudy, cloudy, heavy-cloudy, and rainy. The RF models are trained
using these five weather conditions, and five RF models are produced: RF1, RF2, RF3, RF4,
and RF5, for rainy, heavy-cloudy, cloudy, light-cloudy, and sunny, respectively. The dataset
for each weather condition is trained using these five RF models in order to calculate a
set of weights. Each set contains five weight coefficients and a bias. Regression-based
ensemble learning with Bayesian optimization is then used to calculate five optimal sets
of weight coefficients and a bias for each weather condition, and Equation (17) is used to
calculate the final ensemble forecasting results for each weather condition.

The SVM classification gives the weather conditions for the target day, and an appro-
priate weight set is used. The SVM classification model receives weather forecasts as input
and weather conditions as output. To simulate weather forecasting, a ±20% random error
is added to the real weather value.

Figure 9 shows the results for the RF models and the proposed regression-based
ensemble forecasting method for sunny weather conditions. The RF5 model has the lowest
MRE value of 7.91% compared to other RF models. The stacking RNN shows that the
ensemble method gives more accurate PV power forecasting, with an MRE value of 4.49%.
However, the proposed ensemble method provides the most accurate results, with an MRE
of 3.49%.
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Figure 9. Results for one-day-ahead PV power forecasting for sunny weather conditions.

Figure 10 shows the results for the RF models and the proposed regression-based
ensemble forecasting method for light-cloudy weather conditions. Compared to other RF
models, the RF5 model has the lowest MRE value of 5.83%. With an MRE value of 5.61%,
the stacking RNN demonstrates that the ensemble model provides more accurate PV power
forecasting. On the other hand, the proposed ensemble method produces the most accurate
results with an MRE of 5.22%.
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Figure 10. Results for one-day-ahead PV power forecasting for light-cloudy weather conditions.

The results for the RF models and the proposed regression-based ensemble forecasting
method for cloudy conditions are shown in Figure 11. The RF3 model has the lowest MRE
value of 6.19% compared to the other RF models. In terms of forecasting PV power, the
stacking RNN outperforms the best RF model, with an MRE value of 5.49%. However, the
proposed ensemble method has the lowest MRE of 4.19%.
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Figure 11. Results for one-day-ahead PV power forecasting for cloudy weather conditions.

The results for the RF models and the proposed regression-based ensemble forecasting
method for heavy-cloudy weather conditions are shown in Figure 12. The RF3 model has
the lowest MRE value of 4.62% compared to the other RF models. With an MRE value of
4.4%, the stacking RNN outperforms the best RF model in forecasting PV power. However,
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the proposed ensemble method has the lowest MRE of 3.93% compared to all other models.
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Figure 12. Results for one-day-ahead PV power forecasting for heavy-cloudy weather conditions.

Figure 13 shows the results for the RF models and the proposed regression-based
ensemble forecasting method for rainy conditions. The RF3 has the lowest MRE value of
1.87% compared to the other RF models, but the stacking RNN outperforms the best RF
model with an MRE value of 1.76%. Nevertheless, the proposed ensemble method has the
best MRE value of 1.59%.
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Figure 13. Results for one-day-ahead PV power forecasting for rainy weather conditions.
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Table 6 compares the proposed method to the RF model and benchmark method in
terms of one-day-ahead observations. The proposed method produces the lowest MRE and
MAE values. The MRE for sunny weather conditions is 3.492%, and the MRE values for the
stacking RNN and the best RF model are 4.495% and 7.905%, respectively. The proposed
method gives an MAE of 69.833 kW, and the best RF and stacking RNN models give MAE
values of 158.1 kW and 89.893 kW, respectively. The proposed method achieves a 5.222%
MRE and a 104.434 kW MAE for light-cloudy weather conditions. The best RF and stacking
RNN models give MRE values of 5.833% and 5.607%, respectively, and MAE values of
116.651 kW and 112.13 kW.

Table 6. Forecasting accuracy for all weather conditions.

Error
Validation

Weather Type
Random Forest Model Ensemble Model

RF1 RF2 RF3 RF4 RF5
Stacking

RNN
Proposed
Method

MRE (%)

Sunny 21.752 14.846 11.269 10.066 7.905 4.495 3.492
Light-cloudy 16.254 9.862 7.286 6.081 5.833 5.607 5.222

Cloudy 11.549 7.754 6.189 6.567 6.628 5.497 4.195
Heavy-cloudy 6.704 6.338 4.616 5.019 6.215 4.402 3.934

Rainy 1.929 2.478 1.871 2.204 4.068 1.760 1.599

MAE (kW)

Sunny 435.046 296.928 225.394 201.311 158.100 89.893 69.833
Light-cloudy 325.073 197.232 145.719 121.612 116.651 112.130 104.434

Cloudy 230.982 155.086 123.781 131.342 132.556 109.935 83.902
Heavy-cloudy 134.071 126.755 92.321 100.389 124.296 88.047 78.688

Rainy 38.584 49.566 37.420 44.087 81.351 35.199 31.976

R2

Sunny 0 0.372 0.641 0.718 0.812 0.941 0.964
Light-cloudy 0 0.662 0.827 0.874 0.898 0.866 0.868

Cloudy 0.297 0.733 0.829 0.795 0.819 0.830 0.893
Heavy-cloudy 0.649 0.717 0.845 0.825 0.763 0.854 0.891

Rainy 0.830 0.738 0.829 0.755 0.268 0.835 0.865

For cloudy weather conditions, the proposed method gives an MRE of 4.195% and an
MAE value of 83.902 kW, values that are lower than those for the stacking RNN model with
a 5.497% MRE and a 109.935 kW MAE. The best RF model is less accurate than the stacking
RNN model, which gives a 6.189% MRE and a 123.781 kW MAE. The proposed method is
more accurate than the best RF and stacking RNN methods for heavy-cloudy conditions,
with a 3.934% MRE and an MAE value of 78.688 kW. The proposed method gives a 1.599%
MRE and a 31.976 kW MAE for rainy conditions, and the best RF method performs worse,
with a 1.871% MRE and an MAE of 37.42 kW. The MRE value for the stacking RNN method
is 1.76% and the MAE value is 35.199 kW.

The proposed method is more accurate than the best RF and benchmark methods
in terms of the coefficient of determination (R2). It has a higher R2 value for all weather
conditions than the best RF and benchmark methods and the lowest R2 value is for rainy
conditions. The benchmark model stacking RNN is an ensemble method and is much
more accurate than a single forecasting method such as the RF model. However, the
proposed ensemble method is more accurate than the benchmark stacking RNN model,
as demonstrated by the results for the sunny, light-cloudy, cloudy, heavy-cloudy, and
rainy datasets.

The proposed regression-based ensemble method for short-term PV power forecasting
performance was also tested using the data for seven consecutive days to represent a real
industrial application. Figure 14 shows a 7-day comparison of the proposed method, and
Figure 15 compares the MRE, MAE, and R2 for the best RF model, the stacking RNN,
and the proposed method. The best single RF model has an MRE of 5.611%, an MAE of
112.223 kW, and an R2 of 0.903. The benchmark method with stacking RNN has an MRE
of 4.457%, an MAE of 89.130 kW, and an R2 of 0.93, so it is more accurate than the best RF
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model. The proposed method has an MRE of 4.362%, an MAE of 87.242 kW, and an R2 of
0.933, so it is the most accurate method. In terms of the MRE, the proposed method is 22%
better than the best RF model and 2% better than the benchmark method.
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5. Conclusions

To increase the prediction accuracy for a one-day-ahead PV power forecasting strat-
egy, this study has proposed a short-term PV power forecasting algorithm that uses the
regression-based ensemble forecasting method. The ensemble model is constructed by
combining individual forecasting models for the RF algorithm. K-means clustering and an
SVM classification model are also used to increase the accuracy of the proposed method.

The combination strategy for this study uses linear regression (LR) and support vector
regression (SVR), with LASSO and Ridge as regularization methods. The simulation
results show that the proposed method is 20% more accurate than the best RF model. The
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benchmark ensemble forecasting method for this study is a stacking RNN. The proposed
method is 2% more accurate than the stacking RNN. The results of this study show that
ensemble forecasting strategies, particularly the proposed method, are much more accurate
than single forecasting models.

Future studies will involve the use of a metaheuristic optimization method to de-
termine the optimal weighting coefficients and increase the accuracy of the proposed
method. Dynamic ensembles will also replace static ensembles to increase the accuracy by
recalculating the weight of the individual prediction model for each new input sample [53].
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Abbreviations

ANN Artificial neural network
ARMA Autoregressive moving average
ARIMA Autoregressive integrated moving average
CNN Convolutional neural network
DNN Deep neural network
ET Extra trees
ETS Exponential smoothing
FNN Feedforward neural network
GRU Gated recurrent unit
KNN K-nearest neighbors
LASSO Least absolute shrinkage and selection operator
LR Linear regression
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MARS Multivariate Adaptive regression spline
MLP Multilayer perceptron
MRE Mean relative error
MSE Mean squared error
nMAE Normalized mean absolute error
nMBE Normalized mean bias error
nRMSE Normalized root mean squared error
NWP Numerical weather prediction
OLS Ordinary least square
PCA Principal component analysis
PCC Pearson correlation coefficient
R2 Coefficient of determination
RBF Radial basis function
RF Random forest
RMSE Root mean squared error
RNN Recurrent neural network
SARIMA Seasonal autoregressive integrated moving average
SVM Support vector machine
SVR Support vector regression
VAR Vector autoregressive
WCSS Within cluster sum of squares
XGBoost Extreme gradient boosting
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