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Abstract: A comprehensive electric vehicle model is developed to characterize the behavior of the
Smart e.d. (2013) while driving, charging and providing vehicle-to-grid services. To facilitate vehicle-
to-grid strategy development, the EV model is completed with the measurement of the on-board
charger efficiency and the charging control behavior upon external set-point request via IEC 61851-1.
The battery model is an electro-thermal model with a dual polarization equivalent circuit electrical
model coupled with a lumped thermal model with active liquid cooling. The aging trend of the
EV’s 50 Ah large format pouch cell with NMC chemistry is evaluated via accelerated aging tests
in the laboratory. Performance of the model is validated using laboratory pack tests, charging and
driving field data. The RMSE of the cell voltage was between 18.49 mV and 67.17 mV per cell for the
validation profiles. Cells stored at 100% SOC and 40 °C reached end-of-life (80% of initial capacity)
after 431–589 days. The end-of-life for a cell cycled with 80% DOD around an SOC of 50% is reached
after 3634 equivalent full cycles which equates to a driving distance of over 420,000 km. The full
parameter set of the model is provided to serve as a resource for vehicle-to-grid strategy development.

Keywords: electric vehicle; battery components; calendar aging; cycle aging; battery model; liquid
cooling; charging control; charger efficiency

1. Introduction

The Transportation sector is one of the largest contributors to greenhouse gas (GHG)
emissions in the world and is the main cause of air pollution in cities. Therefore, many
countries and regions around the world have sketched out pathways and adopted regulations
in order to reduce GHG emissions of transportation sector. In the EU, the main elements of
the European Strategy for low-emission mobility are “Increasing the efficiency of the transport
system”, “Speeding up the deployment of low-emission alternative energy for transport”
and “Moving towards zero-emission vehicles” [1]. An increased efficiency of the transport
system in terms of energy and area use can be achieved with use of railway, public transport
systems and the transformation to cyclist and pedestrian friendly urban areas. Examples for
low-emission energy alternatives for transport are bio fuels, electricity, renewable synthetic
fuels and hydrogen. In the EU, electricity is a low-emission alternative energy as the share
of renewable energy in the electricity sector has increased to 34.1% in 2019 [2]. The global
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number of electric vehicles (EVs) has increased by 400% from 2016 to 2019 to 4.79 million and
is expected to rise in the future [3]. The primary use of EVs is transportation and mobility.
However, especially privately owned vehicles but also commercial fleet vehicles are only used
for mobility for a small portion of the day. As an example, a privately used vehicle in Germany
is parked for 97% of the time [4]. In contrast to privately owned vehicles, commercially used
vehicles, such as delivery trucks, tend to have predictable operating and idle times which make
them especially interesting for the provision of vehicle-to-grid services. Also, an increasing
number of electric delivery vehicles and trucks are registered in the EU [5]. EVs therefore
offer the potential for secondary use acting as storage systems connected to an electricity
grid or a load. Via an internal or external charger, power can be exchanged with the traction
battery of the EV. Several use cases for the secondary use of EVs are being investigated or
are already commercially offered. For example, in behind-the-meter use cases an EV can be
used as a storage system for on-site energy consumption optimization or an uninterrupted
power supply (UPS). For grid services, EVs can also play an important role. They can offer
TSO services such as frequency containment reserve and DSO services such as congestion
management and power quality improvement. The interplay between EVs and renewable
energy sources in grids is extensively studied in order to increase the share of renewable
energy and avoid grid congestion. Furthermore, EV chargers can be used to form a microgrid
by maintaining its voltage and frequency.

For the simulation of the operation of an EV, an EV model is essential. In the case of the
simulation of an EV connected to a grid, the parameterization of the charger and the charging
process control is also important. This holds especially true for the development and testing of
control algorithms for energy-management systems in order to offer aforementioned services
to grid or site operators via vehicle-to-grid (V2G) functionality. In addition, the provision of
V2G services adds additional loading to the traction battery of the EV. As the traction battery
is an EV’s most expensive component, the evaluation of the impact of V2G services on the
battery lifetime is important for the economic assessments of such services.

In this paper we parameterize a comprehensive model electric vehicle model for vehicle-
to-grid strategy developement for the Smart e.d. (2013). The main contributions of this
paper are:

(a) Electro-thermal model of an EV battery pack
(b) Traction battery break-down (materials, volume and weight distribution)
(c) Accelerated cycle and calendar aging tests of EV battery cell
(d) Efficiency measurements of the on-board charger
(e) Parameterization of the control of the charging process according to IEC 61851-1

Literature Review

Electric vehicles with V2G capability can serve various applications that are being
investigated in literature and tested in the field. EVs can participate in existing markets
via V2G technology such as energy trading (i.e., spot markets) and frequency control.
Furthermore, V2G capability can be utilized to execute behind-the-meter energy flow
optimization such as load leveling and peak shaving [6]. Heiltmann and Friedl review
factors influencing the economic success of vehicle-to-grid applications in market and
behind-the-meter use cases. They find that load leveling and secondary frequency control
provide the highest economic benefits for PHEV controlled charging applications [7].
Furthermore, DSO services such as congestion management, power loss minimization,
power quality improvement and voltage regulation are topics of investigation for EV
participation utilizing V2G technology [8].

The relevant parts of an EV model for V2G applications are the battery model, the charger
model and the charging control model.

Battery models in literature have been mainly divided into three categories for the
electrical component: Physics-based electrochemical models, equivalent circuit models and
data-driven models [9]. In Table 1, we summarize selected literature about li-ion battery
and EV modeling with regards to their focus, results and modeled components.
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Table 1. Summary of selected literature about li-ion battery and EV modeling.

Source Date Focus and Results Model LevelElectrical Thermal Aging

Meshabi et al. [10] 2021

- Electro-thermal model for a LiNiMnCoO2 pouch cell with
distributed dual polarization (2RC) electrical circuits and distributed
thermal (RC) circuits.
- Relative error of less than 1.35 °C was achieved in a constant current
discharge profile with a 1C rate.

X X × Cell

Li et al. [11] 2021

- Modeling of a lithium-ion (LiNiCoAlO2) battery pack
- 2-D battery pack electro-thermal model with aging, cooling and
pack equilibrium management
- First order RC electrical model and thermal model considering
single cells and cooling system
- Genetic algorithm optimization of battery pack charging strategy
considering charging time, aging, and energy loss

X X X Pack & Cell

Schmid et al. [12] 2020

- Matrix-vector-based framework for modeling and simulation of EV
battery packs with LiNiMnCoO2 automotive cells
- Dual polarization electrical model (2RC)
- Modified Cauer thermal model for each cell in a battery pack and
heat transfer between cells, contacts and bus bars of the pack
- Holistic aging model for calendar and cycle aging
- Model allows for the investigation of three fault cases in the battery
pack: Increased contact resistance, external short circuit, internal
short circuit

X X X Pack & Cell

Zhu et al. [13] 2019

- Dual polarization electrical model (2RC) of a LiNiMnCoO2 cell
- Excitation of the battery by inverse binary sequences which
eliminates drift of operating conditions and even-order
non-linearities
- Parameter identification by particle swarm optimization (PSO).
The RMSE under the urban dynanometer driving schedule (UDSS) of
the terminal voltage was 8.61 mV.

X × × Cell

Wen et al. [14] 2019

- Dual polarization electrical model (2RC) of a LiNiMnCoO2 cell
- Parameter identification via recursive least square method with data
from pseudo random binary sequence tests
- Improved precision for parameters via stochastic theory response
reconstruction in contrast to the use of a butterworth filter.

X × × Cell

Irima et al. [15] 2019

- EV model of a Renault Zoe consisting of the following parts: Vehicle,
Driver, Vehicle Control Unit, Electric Motor and Battery.
- Two electrical equivalent models: RC model and 3RC Thevenin
model.
- Simulation of a speed profile with the Simcenter Amesim platform.

X × × Pack & Cell

Hosseinzadeh
et al. [16] 2018

- 1D electrochemical-thermal model of a LiNiMnCoO2 pouch cell for
an EV.
- 3D lumped thermal model of cell.
- Decrease of ambient temperature from 45 °C to 5 °C leads to a
capacity drop by 17.1% for a 0.5C discharge and a power loss of 7.57%
under WLTP drive cycle.

X X × Cell

Jafari et al. [17] 2018

- EV battery cycle aging evaluation for driving and vehicle-to-grid
services
- Cycle aging model for LiFePO4 cells with dependency on C-rate,
total Ah throughput and temperature

× × X Cell

Gao et al. [18] 2017

- Measurement of capacity degradation and resistance increase for
LiCoO2 18,650 cells
- Aging mechanisms are identified via incremental capacity analysis:
Loss of active material and loss of lithium inventory.
- Overall aging accelerates dramatically for rates over 1C and when
the cut-off voltage exceeds 4.2 V.
- Establishment of a capacity degradation model.

× × X Cell

Schmalstieg
et al. [19] 2014

- Holistic aging model for LiNiMnCoO2 based 18,650 lithium-ion
cells
- Calendar aging tests for different storage SOCs and temperatures
and cycle aging tests for different DODs and average SOCs.
- Capacity and inner resistance trend measured with a 1C discharge
and pulse power characterization profile respectively.
- Electric model consists of series resistance, two ZARC elements and
an OCV source parameterized by EIS measurements.

X X X Cell
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Physics-based electrochemical models trace back to the work of Newman and Tieder-
mann [20] and were extended by Fuller [21] for lithium-ion batteries with intercalation.
An extensive review of the electrochemical processes in a battery can be found in [22].
In a single-particle model, a radial diffusion equation describes the lithium-ion diffusion
in the solid phase of one representative particle for each electrode [23]. In pseudo-two-
dimensional (P2D) models each electrode is composed of several spherical particles and
the impact of the electrolyte is taken into account. Numerous partial differential equations
describe the reactions inside the cell which leads to a large number of unknown variables
that need to be identified using global optimization methods.

In electrical equivalent circuit models an electrical circuit is proposed and its compo-
nents are parameterized through measurements such as impedance spectroscopy, pulse
tests and open-circuit voltage (OCV) measurements. Equivalent circuits can vary in their
number and type of components which has an impact on the accuracy and computational
complexity of the model. The simplest model is the Rint model that consists of an ideal
voltage source in series with a resistor [24]. In order to account for transient processes with
different time constants such as the charge-transfer and diffusion phenomena, RC networks
can be utilized. In [11,25] the Rint model is extended with one RC element.

Other studies use data-driven methods, i.e., machine learning, to parameterize bat-
tery models [26–28]. Further studies also model the hysteresis behavior of the OCV of
lithium-ion batteries as was done in [29] for LiCoO2 cells and in [30] for LiFePO4 cells.
In the study conducted by Tran et al. the hysteresis effect was stronger in lithium-ion
batteries with LFP and NCA chemistry compared to NMC and LMO chemistry [31]. In
addition to integer-order models also fractional-order models are used for equivalent circuit
models, which can offer 15–30% higher accuracy than their integer-order analogues but
add complexity [32] . Electrical battery models are coupled with thermal models as the
electrical parameters, such as the inner resistance, are temperature dependent. An example
for the coupling of a thermal 3D model with a P2D model can be found in [33]. Yang et al.
employ machine based learning to the thermal parameterization of EV Li-Ion batteries
from external short circuit experiments [34]. In this study we choose to parameterize a
electrical dual polarization electrical model (2RC) in order to achieve a good trade-off
between computational complexity and accuracy for charging processes and dynamic
vehicle-to-grid profiles.

In addition to an electro-thermal battery model, an aging model of the traction battery
is relevant for EV simulation models. We conduct accelerated cycle and calendar aging
tests and evaluate the aging trend with periodic check ups which include a capacity test
(full discharge), impedance spectroscopy and pulse tests. This approach was also carried
out by Ecker et al [35,36]. In [37] the authors used differential voltage analysis in order to
evaluate calendar and cycle aging of a LiFePO4 cell. Further extensions of a battery model
treat mechanical stress during charging and discharging [38,39] or lithium-plating [40].

Within the AVTE project, conducted in the US, numerous EVs were operated and
extensively tested. Among others, also the Smart e.d. was tested. The researchers conducted
battery tests, such as static capacity tests and pulse power characterization tests along the
lifetime of the EV. After two years of operation and 19,000 km the traction battery of the
Smart e.d. lost 6.6 % of its capacity and 15.9 % of its 30 s discharge power capability at 80 %
depth-of-discharge (DOD) [41]. For an EV model for V2G applications a charger model and
a charging control model are essential components.

In [42], the authors developed an on-board charger prototype that achieves a peak
efficiency value of 97.3 % in boost operation mode and 97 % in buck operation mode.
The on-board charger developed by Radimov et al. is a bi-directional, three-stage, on-
board charger with a peak efficiency of 96.65 % [43]. Schram et al. determined the V2G
round-trip efficiency of a Renault Zoe with a bi-directional on-board charger to be 85.1 %
and of a Nissan Leaf connected to an external charging station to be 87.0 % [44]. Due to
the increasing demand for power electronic devices that are also used in EV powertrain
systems researchers work on their improvements. One important improvement is the
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development of wide-bandgap SiC and GaN based power semiconductor devices allowing
enhanced performance and improved power density [45]. Dini and Saponara propose
a model-based approach for the design of such bidirectional onboard charger electric
vehicles [46]. For V2G services that require fast power provision, the delay of the power
provision after the power set-point request is an important specification of the charging
system. Furthermore, the difference between power request (set-point) and power output
is of importance. These factors are often overlooked in literature but have been measured
in previous research projects. In the Parker project, grid services were offered with a V2G
setup using commercial DC-chargers and commercial EVs using CHAdeMO DC-charging.
The researchers set power set-points and evaluated that the provided power by the charger
lagged 7 s behind the requested power and the set-point error was 8.7 %. The maximum
charger efficiency of the 10 kW chargers was 86 % and the efficiency exhibited a large drop at
charging power below 20 % of the rated power [47]. Another project that investigated V2G
services with EVs was the INEES project in Germany. In this project, experimental 10 kW
DC charging stations were used with VW eUps that use a CCS plug system. The power
set-point was reached almost instantaneously with this setup [48]. In the provision of power
by a fleet of EVs it was observed that the power set-point for the fleet was reached within
1 s [49]. In conclusion, extensive literature exists about individual component models
of an EV but especially the charging control model with the charger delay and power
set-point accuracy is often overlooked. In this publication we specifically parameterize
all components of an EV relevant to driving, charging and the provision of V2G services
which lacks in literature.

2. Methodology

We parameterize and validate the EV model with the Smart electric drive (3rd Gen-
eration [50], production year and manufacturer: 2013, Daimler AG) shown in Figure 1a.
The specifications of the Smart e.d. (3rd Generation) are summarized in Table 2. The model
is implemented in Matlab®/Simulink.

Table 2. Specifications of Smart e.d. (3rd Generation) [51].

General Specifications

Max. speed 125 km/h
Acceleration 0–100 km/h 11.5 s
Weight 900 kg

Traction Battery

Chemistry Li-Ion (NMC/Graphite)
Nominal Capacity 17.6 kWh
Rated/Max Voltage 339 V/391 V
Rated capacity 52 Ah
Layout 93s1p
Weight 179.6 kg
Permissible Temperature −25–55 °C
Cooling liquid cooling (water/glycol mixture)

Electric Motor

Motor type AC synchronous motor
Max. output 55 kW
Max. continuous output 35 kW
Peak Torque 130 Nm
Max. rpm 11,800

On-Board Charger

Standard IEC62196-2 & ISO 155118
Type 1-phase AC & 3-phase AC
Max. Power 22 kW
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(a) (b)

(c) (d)
Figure 1. Pictures of the Smart e.d., its battery pack and a single battery pack module. (a) Smart e.d.
(2013) in front of a charging station; (b) Single Module with outer plate taken off with a visible single
cell of the 31 cells of the module; (c) Traction battery pack of Smart e.d.; (d) Traction battery pack
of Smart e.d. without casing. 3 Modules with 31 cells each connected in series (93s1p) with liquid
cooling plates and slave BMS. Bottom left:Master BMS. Bottom right: DC connector.

2.1. Electric Vehicle Model

The EV model is divided into several parts:

1. Traction battery model

(a) General (Section 2.1.1)
(b) Electrical model (Sections 2.1.2 and 3.1))
(c) Thermal model and traction battery pack materials, volume and weight distri-

butions (Sections 2.1.3 and 3.2)
(d) Aging model (Sections 2.1.4 and 3.3)

2. BMS and charger model (Sections 2.2 and 3.5)

(a) Charger efficiency
(b) Charging control model

2.1.1. Traction Battery

The traction battery of the Smart electric drive (2013) is mounted at the bottom of the
vehicle, has a battery layout of 93s1p and a capacity of 17.6 kWh. The battery management
system (BMS) limits the the usable SOC range to 3.2–95.3%, which results in a usable battery
capacity of 16.2 kWh. More specifications about the battery given by the official data sheet
can be found in Table 2. The traction battery is housed in a case (see Figure 1c) that is
constructed from a bottom part made of steel and a top part made of aluminum. The battery
consists of three modules with 31 cells each that are all connected in series (see Figure 1b,d).
In addition to the modules, the pack contains the Master BMS, the DC connector, HV
contactors, shunt, precharge circuit, cooling system pipes and a desiccant cartridge.

Each module houses 31 cells which are held in place by plastic frames and are electri-
cally connected via copper connectors. Two metal parts at each end and metal rods that go
through the whole module provide stability. The slave BMS sits between the aluminum
cooling plates on top of the module. The cooling plates cool (or heat) the terminals of
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the cells which allows cooling (heating) within the cell. Between the copper conductor
and the cooling plate, strips of thermal interface material (TIM) are placed such that the
aluminum cooling plates do not short-circuit the cells. Within the cooling plates a coolant
(water/glycol mixture) circulates in order to cool the battery pack during driving and
charging. If the battery temperature falls below 0 °C the coolant is heated in order to ensure
safe operation of the battery pack [51].

The battery cell is the HEA50 high energy cell (ICS 13/330/162, IMP 13/330/162)
manufactured by Li-Tec (Daimler) with a nominal capacity of 52 Ah. The manufacturer
also provides details about the aging characteristics of the cell in the data sheet (see
Table 3). Cycle life time is given as 3000 cycles at 100% depth of discharge (DOD) and a
charge/discharge rate of 2C/2C. The calendar lifetime is given as ≥5 years of shelf life at
50 % SOC and −30–25 °C.

Table 3. Specifications of battery cell HEA50 high energy cell (ICS 13/330/162, IMP 13/330/162) of
Smart e.d. (3rd Generation) [52].

Battery Cell Specifications:

Name HEA50 high energy cell
Type specification ICS 13/330/162, IMP 13/330/162
Manufacturer li-Tec (Daimler AG)
SOC operation limit 3.2–95.3 %
Nominal capacity 52 Ah (0.5 C discharge)
Nominal voltage 3.65 V
Voltage range 3.0–4.2V
Temperature range −25–55 °C
Gravimetric energy density 147 Wh/kg
Volumetric energy density 280 Wh/L
Inner resistance ≤1.8 mΩ (5 s, 200 A, 50 % SOC)

Cathode Li-Ion with LITARION ® NMC
(33% Ni, 33% Co, 33% Mn [53])

Anode Graphite
Anode terminal Copper
Cathode terminal Aluminum
Separator Ceramic (SEPARION®)
Cell case material PET
Width × length × depth 32.8 cm × 16.1 cm × 1.3 cm (50 % SOC)
Weight 1296.5 g

2.1.2. Electrical Model

The electrical model of the traction battery is based on the model of a single battery
cell. Cell-to-cell variations within the pack in terms of capacity and inner resistance are
neglected. Hence, also a balancing system is not required. This simplification leads to
faster simulation times and is referred to in literature as a model on pack level in contrast
to models on material or cell level [54].

In systems theory, classification of models are based on their physical interpretability.
With this in mind, battery models can be divided into three categories: white box models,
grey box models and black box models [55]. In this work a grey box model based on an
equivalent circuit model (ECM) is used to model the electric behavior of the battery cell.
A multitude of different ECMs is used in literature, such as in Ref. [56], which differ in their
complexity, accuracy and required computational power. The ECM of choice in this work
is shown in Figure 2 which is expected to provide a good trade-off between computational
requirements and accuracy for the simulations. It consists of a voltage source, representing
the OCV, in series with a resistance Rser and two RC-elements. It is referred to in literature
as a dual polarization model (Thevenin 2RC).
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R1

C1

+ -

R2

C2

Rser OCV

Figure 2. Equivalent circuit diagram of battery cell.

All parameters are dependent on the state of charge (SOC) and temperature of the
cell. OCV measurements were carried out with a battery cell in a climate chamber while
regulating the temperature. During the measurement the cell was discharged. For each
SOC state the cell voltage was measured after a relaxation period (period with no load
on the cell) such that the measured voltage can be regarded as the OCV. Additionally,
two RC-elements and an ohmic resistance Rser were parameterized in order to model
physical processes occurring within the cell that have an impact on the electrical behavior.
The resistance Rser is the ohmic resistance due to limited conductivity for electrons and
ions within the cell. It leads to instantaneous voltage drops when the cell is under load.
The first RC element models the intercalation/de-intercalation of Li-Ions into/from the
electrodes where R1 models the charge transfer resistance and C1 models the double layer
capactity at the respective electrodes. The second RC element models the concentration
gradient of Li-Ions and diffusion in the electrolyte [57–59].

The dynamic processes within the cell have different speeds. The overvoltage at a
reaction surface with double layer capacitance builds up within milliseconds, the inhomo-
geneous electrolyte concentration reaches a steady state after one or several minutes and
the solid state diffusion overvoltage builds up and decays even more slowly [53].

The resistance and capacity parameters of the equivalent circuit diagram for the cell
were fitted with impedance spectroscopy measurements using a Digatron EIS-Meter in a
frequency range of 1 mHz to 6 kHz and a temperature regulated climate chamber. Further
information about impedance spectroscopy measurements with EIS-Meters can be found in
the dissertation of Kiel [60]. Further information about extraction of ECM parameters and
their interpretation with regards to physical processes within the cell can be found in the
dissertation of Witzenhausen [53]. Impedance spectra at different SOCs and temperatures
of the cell were measured and the parameters were extracted from resulting Nyquist
diagrams. The results are described in Section 3.1.

2.1.3. Thermal Model

The temperature of the battery pack has a direct influence on its electrical performance,
capacity, efficiency and safety. During the operation of the battery pack, heat is produced.
According to Bernardi et al. [61] the following equation describes the heat generation
current Q̇ in a cell

Q̇gen = Q̇irr + Q̇rev + Q̇react + Q̇mix, (1)

where

• Q̇irr is the irreversible ohmic heat generation,
• Q̇rev is the reversible heat generation due to the intercalation and deintercalation of

ions at the electrodes,
• Q̇react is the heat generation due to side reactions of the electrolyte with the electrodes

(i.e., phase changes) and
• Q̇mix is the heat generation associated to the relaxation of concentration profiles.

The heat currents Q̇react and Q̇mix are often neglected in literature in lithium-ion battery
modeling [55]. In this model also only Q̇rev is not considered. This simplification can also
be found in the work of Magnor [62]. In order to model reversible heat, the entropy
coefficients of the cell would have to be determined. In theory, the parameterization of the
entropy coefficients could be achieved with the measurement of the voltage response after
a temperature change of the cell. A lumped thermal model is used in this publication as the
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irreversible ohmic heat generation Q̇irr is dominant for large currents [63]. We deem this to
be an acceptable simplification due to the scope of this research on large signal application.

The battery pack of the Smart e.d. is cooled during driving and charging by a liquid
cooling system in contrast to other battery packs which are cooled by forced convection
with the use of a Fan (i.e., Mitsubishi iMiEV) or free convection (i.e., VW eUp). Furthermore,
privately owned vehicles only spend less than 4% of their time driving (own analysis with
data of [64] in Germany). The use of a simplified reduced order model is therefore assumed
to be sufficient to account for the impact of temperature on performance and aging of the
battery pack.

The equivalent circuit model for the reduced order model is shown in Figure 3.

Figure 3. Equivalent circuit model of the thermal model of the battery pack.

The thermal model equation is then

Cpack ·
dTpack

dt
= Q̇gen − Q̇diss, (2)

with
Cpack = mpack · Cpack−spec. (3)

Here, Cpack is the specific heat capacity of the battery pack, mpack is the battery pack
mass, Q̇gen and Q̇diss are the heat generation rate and heat dissipation rate respectively. The
dissipation rate Q̇diss is seperated into two components

Q̇diss = Q̇cool + Q̇conv, (4)

where Q̇conv is the cooling rate due to the heat transfer to the surroundings by convection
and Q̇cool is the cooling/heating rate due to the the liquid cooling system. The convection
rate is calculated as

Q̇conv = (αx + αy + αz) · ∆T (5)

with ∆T = Tpack − Tambient and α being the convection coefficient in one spatial direction:

α = αspec · A (6)

A is the surface area and αspec is the specific heat transfer coefficient. Literature values
for αspec relevant for this study are shown in Table 4

The cooling system of the drive train components cools the traction battery, charger,
engine, power electronics control unit and motor. It consists of two coolant pumps, trac-
tion battery heater, chiller, electric expansion valve and an electromotive water valve.
The coolant is a glycol/water (50:50) mixture. The BMS can also decouple the coolant
circuit of the traction battery from the rest of the cooling circuit via the electromotive water
valve if the traction battery needs specific cooling [51].

The calculation of the flow rate and cooling power of the liquid cooling system is
based on the model done by Cédric [65]. The flow rate depends linearly on the battery
temperature and the coolant temperature is assumed to be equal to the ambient temperature.
The cooling power provided by the liquid cooling system is

Q̇cool = ∆T · ρcoolant · ccoolant · vcoolant, (7)
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with the density ρcoolant = 1080 kg/m3 , specific heat capacity ccoolant = 3320 J kg−1 K−1

and

vcoolant =

∣∣∣∣Tpack

45
· 1.513 × 10−5 m3/(s°C)

∣∣∣∣ (8)

which is devised from information found in [65].
At low temperatures the inner resistance of the battery increases due to, among other

effects, lower ion conductivity of the electrolyte. When charging a lithium-ion battery at
low temperatures, high surface area lithium deposition on the graphite anode, also known
as plating, can occur, which is a safety issue due to short-circuit risks [66].

Therefore, during the charging process the coolant is heated when the battery temper-
ature falls below 0 °C [51]. To take this into account, during charging, the temperature of
the battery pack is kept above 0 °C in the model.

Table 4. Literature values for specific heat capacity.

Material Specific Heat Capacity in kJ/(kg K)

Cell 1095 [67]
Steel 502 [68]
Aluminum 891 [69]
Plastic (PP) 1570 [70]
Air 1.01 [67]

2.1.4. Aging Tests

In order to account for the aging of the EV battery cell we evaluated accelerated aging
tests of Li-Tec HEA40 cells. These cells are identical in composition and construction to
the Li-Tec HEA50 cells apart from the capacity and dimensions. Therefore, the results are
transferable to the Li-Tec HEA50 cell of the Smart e.d. (3rd Generation).

The aging process of a battery cell leads to a reduction in capacity and an increase of
its inner resistance. Calendar and cycle aging were considered separately. This approach
and the parameterization process is described in detail by Schmalstieg in [19]. The aging
behavior of the Li-Tec HEA40 cell was tested in accelerated aging tests in the laboratory at
the institute for power electronics and electrical drives (ISEA) at RWTH Aachen. In order
to separately measure the effects of calendar and cycle aging factors, two separate test
procedures were carried out. The test conditions are shown in Figure 4a,b. Periodically,
every 30–50 days, each cell underwent a checkup. During a checkup the capacity of the cell
was measured in a 1C discharge and the inner resistance was evaluated from the voltage
response of the cell to a 1C current charge pulse after 10 s. The overall aging of the cell is
given by the superposition of calendar and cycle aging.
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Figure 4. Accelerated aging test conditions. (a) Calendar aging test conditions at different SOCs and
temperatures; (b) Cycle aging test conditions at different average SOCs and DoDs. All cycle aging
tests were carried out at 40 °C.
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Calendar Aging

Calendar aging occurs at all times during storage and operation. In the calendar aging
test the battery cells were stored in climate chambers at a constant cell temperature and cell
voltage. The test conditions for calendar aging are shown in Figure 4a. Three cells were
tested for each test condition and their performance was averaged.

Cycle Aging

In contrast to calendar aging, cycle aging occurs only when the cell is charged and
discharged (cycled). During cycling the intercalation and de-intercalation of lithium ions
leads to volume changes of the electrode material. This in turn can lead to crack-and-repair
of the solid-electrolyte-interface (SEI) that consumes lithium (capacity loss) and increases
its inner resistance. Furthermore active material particles can loose contact to the electrode
(capacity loss) [19].

During the cycle aging test the battery cells were cycled (charged and discharged)
with a current of 1C (50 A) and the cell temperature was kept constant at a temperature of
40 °C in a climate chamber. The test conditions are shown in Figure 4b. One cell was tested
for each condition. During the cycle aging tests also calendaric aging occurs which has to
be accounted for during the fitting process.

2.2. Charger and BMS Charge Control

In Figure 5 the laboratory setup for the parameterization of the charger and the
controller for the charging process is shown. Two measurement points were used. At mea-
surement point 1 the battery voltage and the battery current were measured. For this
measurement the internal measurement devices of the vehicle were used which broadcast
the values via the CAN-Bus. Via a CAN-Bus interface, the communication and therefore the
measurement values were recorded. Measurement 2 was carried out on the grid side with a
smart meter. The EV has an in-built 3-phase AC charger with a maximum charging power
of 22 kW. The wallbox in the test setup has a Type 2 socket at which EVs can be charged
via Mode 3 of IEC 61851-1. The maximum rated charging power is 11 kW (16 A, 3-phase).
The supply equipment communication controller (SECC) of the wallbox was controlled and
monitored via a Modbus-TCP interface. Via this interface the maximum current can be set
which the SECC transmits to the EV via pulse-width modulation (PWM) in accordance to
IEC 61851-1. The SECC that was used, was only able to set integer values for the maximum
charging current. Therefore, the charging current could only be increased/decreased in 1 A
steps starting at a minimal current of 6 A.

Figure 5. Laboratory setup for charger efficiency measurement

As it was not possible to switch from 3-phase to 1-phase charging mode via the SECC
for the Smart e.d., the measurements for 1-phase charging were carried out with the emer-
gency charging cable of the Smart e.d. without the use of the wallbox. The emergency
charging cable plugs into a Schuko (protective contact) socket and enables 1-phase charging
via Mode 2. The charging current is set by an in-cable communication controller. The con-
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troller has two settings which set two different charging power settings: 1.8 kW and 2.9 kW.
The possible set-points for the charging process in the laboratory are summarized in Table 5.

Table 5. Charging power setpoints for a grid voltage of 230 V and the Smart e.d. of the wallbox
(3-phase charging) and the emergency charging cable (1-phase charging).

Charging Mode Possible Setpoints

1-phase charging 1.8 kW and 2.9 kW
3-phase charging 4.1−11 kW in 690 W steps

3. Results

In this section we show the results of the EV model parameterization.

3.1. Electrical Model Parameters

Impedance spectra at different SOCs and temperatures of the cell were measured and
the parameters for the ECM (see Figure 2) were extracted from resulting Nyquist diagrams.
Furthermore, OCV measurements of the battery cell were conducted at different cell tem-
peratures. The results are shown in Figure 6. Resistance Rser shows little dependency of the
SOC which indicates that no transient polarization process is occurring. Furthermore, Rser
varies approximately half an order of magnitude with the cell temperature. The increased
resistance at higher temperatures correlates with the underlying chemical process of an
increased reaction rate. This behavior is also visible for R1 and R2 and proves the physical
interpretability of these parameters. Besides the resistances other important parameters to
evaluate the parameterization of the ECM and the correspondence with physical processes
are the time constants τ1 and τ2 of the RC elements. In our model, the time constants τ1
and τ2 model the duration of the reaction and balancing processes, respectively. Thus the
following has to apply:

τ1 = R1 · C1 < R2 · C2 = τ2 (9)

The results show the time constant τ1 to be in the range of 10−2 s to 10−1 s while
τ2 in the 101 s to 102 s range. This is in accordance to the previously discussed physical
interpretation and inequality (9). For the simulation of charging and discharging pro-
cesses (V2G) with the simulation mode these time constants fit the dynamic processes.
Impedance components in the ECM with smaller time constants are not necessary. The ECM
and parameterization is therefore appropriate for prosumer household simulations and
V2G applications.

3.2. Thermal Model Parameters

We disassembled a battery pack of the Smart e.d. and measured its dimensions (see
Table 6). We also determined the weight and volume distributions of the pack and a single
module (see Figure 7)). This was done by the disassembly of a Smart e.d. battery pack in the
laboratory. In addition to the cells the modules and pack are made up of active and passive
components. Active components are components that enable the functionality of pack such
as the cooling system, BMS system and electrical connectors. The passive components are
the housing components such as plastic frames between cells, metal binders, screws and
the pack enclosure. Even though the Smart e.d. battery pack is highly compact, free air
space makes up 47.46% of the pack volume. Due to the active and passive components and
free air space the gravimetric and volumetric energy densities at pack level are considerably
lower than on cell level. The gravimetric and volumetric energy densities on pack level are
98.3 Wh/kg (33.13% lower than on cell level) and 184.3 Wh/L (34.18% lower than on cell
level) respectively.
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(a) Open-circuit voltage (OCV) (b) Resistance Rser

(c) Time constant τ1 = R1 · C1 (d) Time constant τ2 = R2 · C2

(e) Resistance R1 (f) Resistance R2

Figure 6. Electrical parameters of Li-Tec 52 Ah LiNiMnCoO2 pouch cell.

Table 6. Traction battery pack and module dimensions.

Parameter Pack Modules with Slave BMS

Volume in L 95.86 74.5
Mass in kg 179.6 146.5

Surface area in m2 1.69 1.36
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(a) Volume distribution of modules. (b) Weight distribution of modules.

(c) Volume distribution of pack. (d) Weight distribution of pack.

Figure 7. Volume and weight distributions of the Smart e.d. battery pack.

We calculate the thermal parameters for the thermal equivalent circuit diagram (shown
in Figure 3) using literature values for the specific heat capacity (shown in Table 4) and
the pack dimensions and weight distributions shown in Table 6. Different materials have
different specific heat transfer coefficients to air and the battery pack is made up of different
materials. Therefore, we fit the specific heat transfer coefficient for the open pack by
performing simulations of the cooling phase of the pack without load after the 1C discharge
measurement in the laboratory. The resulting specific heat transfer coefficient that provided
the best agreement between simulation and data was αspec = 5 W/m2/K. As the battery
pack was not mounted in the car during the pack tests in the laboratory we obtain different
heat transfer coefficients sets for the EV operation tests. The resulting parameters are shown
in Table 7.

Table 7. Values for heat capacity of the pack Cpack and the convective heat transfer coefficients α for
each spatial direction (x,y,z). Parameters of thermal battery pack model shown in Figure 3.

Parameter EV Operation Lab Pack Test

Cpack in kJ/K 17.12 17.12
αx in W/K 0.726 0.472
αy in W/K 3.470 2.863
αz in W/K 1.383 0.899
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3.3. Aging Model Parameters

We analyzed the aging of the battery cells in accelerated aging tests and fitted aging
functions to the data.

3.3.1. Calendar Aging

The experimental data of the calendar aging test together with the time fit is shown in
Figure 8a,b for the normalized capacity and in Figure 9a,b for the normalized resistance of
the cell. As the cells age, their capacity decreases and their resistance increases. For each
set point we tested three cells. The figures show that the aging characteristic of three cells
at the same set point can differ to a large extent. In a previous study this was linked to
variances of material properties and process parameters in the production process [71]. In
order to fit the time dependence for calendar aging we averaged the experimental results
for each set point and fit Equations (10) and (11) for capacity and resistance respectively:

Cnorm = 1 − αC · t (10)

Rnorm = 1 + αR · t, (11)

with capacity and resistance given as normalized parameters:

Cnorm =
C
C0

(12)

Rnorm =
R
R0

, (13)

where C0 is the initial capacity and R0 is the initial inner resistance.
Other exponents for the time dependency can be found in literature, such as 0.75,

which was found to describe the time dependence for calendar aging in [19]. In [36],
Ecker et al. used a square root time dependency for the fit which was motivated by the
assumption of solid electrolyte interface on the negative electrode as the dominating aging
factor. However, the authors observed a linear trend, especially at low SOCs. In this work
the linear also approach yielded the best fit overall and was therefore chosen for this cell.
The coefficients αC are shown in Figure 8c,d. The coefficients αR are shown in Figure 9c,d.

The results for calendar aging at 40 °C show accelerated loss of capacity of cells stored
at higher SOCs with a plateau between 50% and 75%. The results for the cell resistance
show a plateau for cells stored between 25% and 75% SOC. The capacity of cells stored at
100% SOC decreases at a 250% higher rate than the capacity of cells stored at 90%. In turn
the capacity of cells stored at 90% decreases at a 202% higher rate than the capacity of
cells stored at 75% SOC. The highest rate of increase of the inner resistance exhibited cells
stored at 90% and 100% SOC (see Figure 9a). However, the cell resistance never reached
the end-of-life criterion of a 100% increase of the inner resistance. Figures 8b and 9b show
the calendar aging test results for cells stored at 66% SOC and different temperatures.
The aging rate of the cell depends strongly on the cell temperature. The rate of capacity
decrease at an SOC of 66% is 617% higher at 60 °C than at 40 °C which in turn leads to a
655% higher rate than for cells stored at 25 °C. The results follow the same trend for the
inner resistance. The cells stored at 60 °C and 66% SOC reached the end-of-life criterion
of the inner resistance first after 200 to 300 days. In conclusion, avoidance of high cell
temperatures (<60 °C) and high storage SOCs (>75%) is highly beneficial to reduce calendar
aging of this cell. These results are in accordance with other studies in which lithium ion
cells generally showed accelerated aging at higher SOCs and temperatures [19,72,73]. The
fit of the SOC and temperature dependence of the linear coefficient αC is beyond the scope
of this paper.
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(a) (b)

(c) (d)

Figure 8. Capacity test and time fit results for cell capacity in calendar aging tests. (a) Capacity test
and time fit results for cells stored at 40 °C in the calendar aging tests; (b) Capacity test and time fit
results for cells stored at 66% SOC in the calendar aging tests; (c) Linear coefficient αC of the time
fit results for cells stored at 40 °C in the calendar aging tests; (d) Linear coefficient αC of the time fit
results for cells stored at 66% SOC in the calendar aging tests.
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(a) (b)

(c) (d)

Figure 9. Capacity test and time fit results for inner cell resistance in the calendar aging tests.
(a) Inner resistance measurement and time fit results for cells stored at 40 °C in the calendar aging tests;
(b) Inner resistance measurement and time fit results for cells stored at 66% SOC in the calendar
aging tests; (c) Linear coefficient αR of the time fit results for cells stored at 40 °C in the calendar
aging tests; (d) Linear coefficient αR of the time fit results for cells stored at 66% SOC in the calendar
aging tests.

3.3.2. Cycle Aging

The results of the cycle life tests are shown in Figures 10a,b for the capacity and
Figures 10c,d for the inner resistance. All tests were carried out at 40 °C. The cells in the
cycle life tests age due to calendar aging and cycle aging.The results of tests carried out
with different DOD show that the lifetime of the cells decrease with increasing DOD. All
cells reached at least one of the two end-of-life criteria (80% of initial capacity and 200% of
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initial inner resistance) with the exception of the cells cycled with a DOD of 30% around a
mean SOC of 60% and 75%. The first cell to reach EOL was the cell that was cycled with a
DOD of 95% around a mean SOC of 50%. The EOL was reached in the EQFC range of 2649
to 2849. The second cell to reach EOL is the cell that was cycled with 80% DOD around an
SOC of 50%. The EOL is reached after 3634 EQFC.

(a) (b)

(c) (d)

Figure 10. Capacity test results for cycle aging tests. (a) Capacity test results for cells cycled with
30% in the cyclic aging tests (T = 40 °C); (b) Capacity test results for cells cycled around 50% in the
cyclic aging tests (T = 40 °C); (c) Inner resistance measurement results for cells cycled with 30% in
the cyclic aging tests (T = 40 °C); (d) Inner resistance measurement results for cells cycled around
50% in the cyclic aging tests (T = 40 °C).
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3.4. Validation of Traction Battery Model

In the research project GoELK several Smart e.d. were operated in commercial fleets.
After approximately two years of operation in a fleet for geriatric care, the battery packs
of two Smarts were tested and disassembled in the laboratory at ISEA (RWTH Aachen).
The battery pack was removed from the EV, the lid was taken off the battery pack and the
pack was connected to a Digatron Pack Test unit. During the operation of the pack using the
Digatron Pack Test unit, the BMS and the liquid cooling system of the Smart were not acti-
vated. The pack voltage, each cell voltage, ambient temperature and cell temperatures were
recorded. In Figure 11a,b, the measurement of a full discharge and charge test respectively
are shown and compared to the model simulation results. As the lid had been removed and
the liquid cooling system was not activated, the thermal model was parameterized with
the values for “Lab Pack Test” in Table 7. In Figure 11c,d, the measurement and simulation
of a driving profile and a charge process with 11 kW is shown. For these simulations the
thermal model was parameterized with the values for EV Operation in Table 7 for a normally
operated EV (Smart e.d.).

In Table 8 the profile characteristic and the deviation between measurement and
simulation are shown for the four profiles. Overall, the comparison between measurement
and simulation shows good agreement. It should be noted that in the model the possible
deviation in voltage, state of charge and state of health between the 93 cells is neglected.
Especially in the case of the laboratory pack test measurements this could have a non
negligible effect as the BMS, and therefore also cell balancing, is not operational. The RMSE
per cell (93s1p configuration) between measurement and simulation is between 18.49 mV
and 31.26 mV for the profiles with a low dynamic (charging and constant current profiles).
The RMSE per cell for the driving profile was higher with 67.17 mV, which is still sufficiently
accurate. Furthermore, this was expected as the ECM of the battery cell was parameterized
to show higher accuracy for long profiles with low dynamics as the EV spends longer
times charging than driving in the prosumer simulations. The accuracy of the model is
comparable to previous studies on battery cell and pack modeling. Li et al. achieved a
RMSE of 70 mV per cell in a 0.5C charge of a battery pack. However, no dynamic drive
cycle was tested in this study [11]. Studies that model single cells achieve more accurate
results as the effect of cell variations within a pack is not present. Zhu et al. reached a lower
RMSE of 8.61 mV under the urban dynanometer driving schedule (UDSS) for a single cell.
Schmid et al. reached a similar RMSE of 5.74 mV to 12.32 mV for single cells in a battery
pack with a profile based on the WLTP driving cycle and battery fault introduction [12].
In case of the pack temperature, the errors in the lab test however, showed acceptable
accuracy with maximum absolute errors of 1.05 K and 1.99 K for the 1C discharge and
1C charge respectively. The errors are comparable to the results of Mesbahi et al. who
reached a maximum error of 1.35 K with the use of distributed equivalent thermal circuit
modeling of a 40 Ah NMC pouch cell [10]. The impact of inaccuracies of the thermal model
during operation are also limited as a privately used vehicle in Germany is parked for
97% of the time [4]. The simulation time for the model is 17 s for a slow charge profile
of 12 h with Simulink 2020a on a standard laptop with an Intel Core i7-6820HQ (2.7 GHz)
without parallelization.

In summary, the simulation model yields accurate results for the operation of an EV in
prosumer households.
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(a) (b)

(c) (d)

Figure 11. Validation of battery model using laboratory and field test data. (a) Laboratory pack
test measurements and simulation: Full 1C Discharge; (b) Laboratory pack test measurements and
simulation: Full 1C Charge; (c) Driving profile measurement and simulation with 1 s resolution; (d)
Measurement and simulation of 11 kW charge.
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Table 8. Summary of validation profile parameters and simulation deviations.

Laboratory Pack Test EV Operation

Profile parameters:
Profile 1C Discharge 1C Charge Driving Charge (11 kW)
Figure Figure 11a Figure 11b Figure 11c Figure 11d
Charge in Ah −46.46 ± 0.47 46.54 ± 0.47 −10.34 ± 0.10 47.16 ± 0.47
Energy in kWh −15.87 ± 0.32 16.60 ± 0.33 −3.41 ± 0.07 16.9 ± 0.34
Duration in min 55.95 60.78 29.88 105
Cell voltage deviation:
RMSE in mV 18.49 31.26 67.17 30.22
Max. abs. error in mV 80.92 59.45 278.87 43.59
Pack temperature deviation:
RMSE in K 0.36 1.29 n.a. n.a.
Max. abs. error in K 1.05 1.99 n.a. n.a.

3.5. Charger

In this section, we present the results of the charger efficiency and charge control pa-
rameterization.

3.5.1. Charger Efficiency

In Figure 12a, the DC current of the traction battery at measurement point 1 (see
Figure 5) is shown versus the SOC during charging processes. The power values denote the
maximum power that was reached during the charging process. The curves for 1.8 kW and
2.9 kW were carried out with 1-phase whereas the other measurements were carried out
with 3-phases. As the EV charges with constant power until the voltage limit is reached,
the battery current decreases with increasing SOC. The sharp drop of the battery current
at high SOC values is due to the constant voltage (CV) phase upon reaching the voltage
limit. In Figure 12b, the efficiency of the charging process between AC power output of
wallbox and DC power of battery (measurement points 2 and 1 respectively in Figure 5)
is shown versus the battery voltage for the same charging processes. The battery voltage
is in the range of 318.1 V–391.8 V for these measurements. The efficiency of the charger
increases with the charging power. The efficiency for one full charge ranges from 73% for
1-phase charging with a setting of 1.8 kW to 92% for 3-phase charging with a setting of
11 kW. The lower values for the efficiency at low and high values of the battery voltage are
due to low charging powers during the ramp up at the beginning of the charging process
and the ramp down during the CV phase respectively.

(a) (b)

Figure 12. Measurement results of EV charging. (a) Charging current (DC) versus SOC using differ-
ent charging power settings; (b) Charging efficiency versus battery voltage using different charging
power settings.
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3.5.2. Charge Control

When the setting of the maximum charging current is changed via the CP, the new
charging current is not reached by the EV immediately, but with a delay. This behavior is
shown in Figure 13 for the Smart. In Figure 13a, the charging power on the AC side of the
wallbox is shown after a new maximum current setting has been communicated to the EV
via the CP at time t = 0 s. The new power set-point PEV,EMS is not reached immediately
but it takes some time for the power to ramp up. In all measurements the power set-point
was reached after at most 52 s. The ramp up follows a similar curve for all measurements.
Only in the case that the initial power set-point of the EV was 0 W, we observed an initial
reaction delay in the order of seconds. We illustrate the similar behaviour of the EV upon
a new power set-point with the normalized power Pnorm in Figure 13b. We calculated it
as follows:

Pnorm =
(P(t)− P(t = 0))

Pdi f f
(14)

Pdi f f = PEV,EMS − P(t = 0) (15)

In order to model the delay in the simulation we parameterize the average ramp up
behavior Pramp+ using the average of all measurements Pnorm,mean(t) shown in Figure 13b.
We model the ramp up for a requested power increase according to Equation (16) , where t
denotes the time after the the new power set point has been set.

Pramp+(t) =

{
P(t = 0) + Pdi f f · Pnorm,mean(t) 0 ≤ t ≤ 52 s
PEV,EMS t ≥ 52 s

(16)

The ramp down time until a lower power set point is reached is shorter with 4 s
on average. We model the ramp down for a requested power decrease is according to
Equation (17) , where t denotes the time after the the new power set point has been set.

Pramp−(t) =

{
P(t = 0) 0 ≤ t ≤ 4 s
PEV,EMS t ≥ 4 s

(17)

In Figure A1 a measurement of a charging process of the EV is shown with the
requested charging power by the EMS and the actual charging power of the EV.

(a) Charging power (b) Normalized charging power

Figure 13. Charging power (AC, measurement point 2) after a new maximum current setting is
communicated to the EV via the CP at time t = 0 s. Each colored line is one measurement and in (b)
the black line illustrates the mean of all normalized charging power measurements. After 52 s the
new charging power setting is reached by the EV.
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4. Conclusions

In this publication, we parameterized a comprehensive EV simulation model. We
parameterized a model for the traction battery, charger and charging process control via
an EMS system for the Smart e.d. (2013). The electrical model of the battery cell (50 Ah,
manufactured by li-tec (Daimler AG)) is based on an equivalent circuit diagram (Figure 2)
with a serial resistance, two RC circuits and a voltage source (dual polarization Thevenin
model). It was parameterized via capacity tests, OCV measurements, pulse tests and
impedance spectroscopy tests. The two time constants τ1 and τ2 of the electrical model are
in the range of 10−2 s to 10−1 s and 101 s to 102 s range respectively. The electrical model
of the battery cell was scaled to obtain the electrical model of the traction battery pack
(17.6 kWh, 93s1p, manufactured by Deutsche Accumotive). In order to parameterize the
thermal model of the traction battery pack we disassembled a battery pack and collected
measurements of its size, composition and materials (Figure 7). We parameterized a
simplified lumped thermal model (Figure 3) using these measurements, literature values of
thermal parameters, a liquid cooling system model and laboratory pack measurements.

Furthermore, we measured the 1-phase and 3-phase charging efficiency of the on-board
charger. The maximum efficiency of 93% was reached with a charging power of 11 kW. We
also measured the delay between setting a new charging current limitation via the charging
cable and the time when the new charging current is reached. On average it took 52 s to
reach a higher charging current by the EV and 4 s to reach a lower charging current.

We carried out extensive aging tests on the battery cells to measure the aging trends due
to calendar and cyclic aging. We observed accelerated calendar aging at high temperatures
and SOCs above 75%. A linear function of time fit the measurement data of capacity and
inner resistance during the aging test. Cells stored at 100% SOC and 40 °C reached end-of-
life (80% of initial capacity) after 431–589 days. In the cycle aging test, the first cell to reach
end-of-life had been cycled with a DOD of 95% around a mean SOC of 50%. The end-of-life
was reached in the range of 2649 EQFC to 2849 EQFC. An EQFC of 2649 is equivalent to
a driving distance of over 306,000 km for an average consumption of 15.2 kWh/100 km.
However, this DOD is not achievable in the Smart e.d. as the BMS limits the SOC range
between 3.2% and 95.3%. The maximum DOD that could be reached is therefore 92.1%
and would also only be reached in V2G applications as drivers would not take the risk to
fully discharge the battery. The second cell to reach EOL is the cell that was cycled with
80% DOD around an SOC of 50%. The EOL is reached after 3634 EQFC which equates
to a driving distance of over 420,000 km. Higher DODs lead to accelerated aging of the
battery cells but overall the impact of cycle aging of the Li-Tec cell of the Smart e.d. is small
compared to the impact of calendar aging. This holds especially true if the EV is primarily
used for mobility. In V2G applications, such as energy trading, participation in reserve
markets or grid boosting the cycle life might play a larger role. In the primary use case of
mobility calendar, aging is the dominant aging factor for the traction battery pack studied
in this paper.

The complete traction battery model was validated using laboratory pack measure-
ment tests and measured battery data collected during driving tests via the CAN-Bus of
the Smart. The simulation results of the parameterized EV model showed good agreement
with the validation data. The RMSE of the cell voltage was between 18.49 mV and 67.17 mV
for the laboratory pack and the EV operation tests. The RMSE of the pack temperature was
between 1.05 K and 1.99 K for the laboratory pack tests.

The full parameter set of the traction battery model is provided in Appendix A.
The model presented here is specifically suited to serve as a resource for vehicle-to-grid
strategy development as it accurately describes the relevant components of the EV and
charger for vehicle-to-grid applications.
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Appendix A

Figure A1. Measurement of charging power control. PEV,EMS is the power requested by the EMS and
PEV is the charging power of the EV.

Table A1. Values for parameter C1 in F of electrical model shown in Figure 2 in dependence of cell
temperature and SOC.

SOC −15 ◦C −5 ◦C 5 ◦C 15 ◦C 25 ◦C 35 ◦C

0 6.2036 7.9584 7.4502 13.0975 7.3923 67.3145
5 6.7057 7.9584 7.0831 12.0634 7.6907 52.7914

10 7.0351 7.9058 8.1745 9.7993 9.7993 31.2679
15 7.0362 7.7804 8.2376 8.5921 8.5921 20.3526
20 7.025 7.6302 7.8927 7.8728 7.8728 15.4208
25 7.0074 7.5035 7.6377 7.4329 7.4329 12.8902
30 6.9953 7.3938 7.4458 7.1292 7.1292 11.4807
35 6.9859 7.321 7.3006 6.9232 6.9232 10.5764
40 6.9818 7.2501 7.1929 6.766 6.766 9.9806
45 6.9876 7.2037 7.1078 6.647 6.647 9.6004
50 6.9984 7.1727 7.0403 6.5529 6.5529 9.2664
55 7.0174 7.1526 6.9983 6.4947 6.4947 9.1936
60 7.0358 7.1427 6.9704 6.4468 6.4468 8.8458
65 7.0524 7.1361 6.9536 6.4166 6.4166 8.6808
70 7.0797 7.1536 6.9604 6.4035 6.4035 11.7327
75 7.1131 7.1699 6.9866 6.4153 6.4153 8.769
80 7.1384 7.2062 7.0192 6.44 6.44 8.891
85 7.1669 7.2432 7.0495 6.4431 6.4431 8.9094
90 7.2004 7.272 7.0808 6.4539 6.4539 8.9672
95 7.2463 7.3147 7.1279 6.4731 6.4731 9.121
100 7.2979 7.4146 7.2229 6.5136 8.3874 9.2603
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Table A2. Values for parameter C2 in F of electrical model shown in Figure 2 in dependence of cell
temperature and SOC.

SOC −15 ◦C −5 ◦C 5 ◦C 15 ◦C 25 ◦C 35 ◦C

0 4141.5919 4286.6052 5516.4437 2118.5361 60.0993 5531.9622
5 5022.3094 4286.6052 6159.9236 3033.2749 58.1937 6678.5867

10 5708.5295 4697.046 7798.3847 4918.0826 4918.0826 9448.3505
15 6041.7281 5284.4166 8813.2291 6317.1787 6317.1787 11,285.6717
20 6374.0387 5884.8955 9432.6452 7257.1822 7257.1822 12,596.6965
25 6708.384 6360.1984 9963.4325 7980.8923 7980.8923 13,341.3285
30 6518.6387 6706.3331 10,449.2833 8444.132 8444.1321 13,997.3891
35 6397.0799 7245.0718 10,766.5061 8976.0607 8976.0606 14,755.9898
40 6431.3843 7358.5873 10,865.4071 9414.1746 9414.1746 15,398.4024
45 6525.6152 7433.5444 10,937.0734 9504.4511 9504.451 16,183.0849
50 6657.4635 7507.8527 11,099.9621 9544.943 9544.943 16,387.729
55 6923.1851 7640.8721 11,096.09 9674.996 9674.996 17,946.6885
60 7163.0191 7773.424 11,214.6962 9685.1701 9685.1701 16,451.9069
65 7360.0617 7546.9592 11,164.4429 9733.1104 9733.1105 16,327.2941
70 7291.066 7660.2968 11,049.7543 9769.1101 9769.1101 19,108.3983
75 7107.4896 7490.5601 10,869.0289 9647.1047 9647.1047 18,348.4586
80 7378.1886 7369.5919 11,006.2558 9745.2247 9745.2247 16,253.7877
85 7507.6149 7374.4778 11,587.7219 10,077.6235 10,077.6234 16,871.9588
90 7317.6989 7519.7098 12,025.6155 10,226.4339 10,226.4339 17,445.8639
95 7615.8306 7787.3085 12,402.6332 10,509.1678 10,509.1677 17,726.0212
100 8229.7746 8162.5097 12,688.7936 10,981.5609 63.7065 18,549.9549

Table A3. Values for parameter R1 in Ω of electrical model shown in Figure 2 in dependence of cell
temperature and SOC.

SOC −15 ◦C −5 ◦C 5 ◦C 15 ◦C 25 ◦C 35 ◦C

0 0.080049 0.022681 0.0075994 0.0031085 0.0016543 0.00083272
5 0.080813 0.022681 0.0074289 0.0029965 0.0016361 0.00072845

10 0.081019 0.022443 0.0072283 0.0027771 0.0027771 0.00055252
15 0.080114 0.02204 0.0069696 0.0026011 0.0026011 0.00047537
20 0.079403 0.02157 0.0067263 0.0024714 0.0024714 0.00043031
25 0.07879 0.021096 0.006519 0.0023783 0.0023783 0.00040173
30 0.077989 0.020618 0.0063371 0.0022976 0.0022976 0.00037995
35 0.07717 0.020242 0.0061748 0.0022282 0.0022282 0.00036301
40 0.076315 0.019882 0.0060269 0.0021654 0.0021654 0.00034835
45 0.075792 0.01956 0.0059057 0.0021135 0.0021135 0.00033465
50 0.075435 0.019288 0.0058104 0.0020704 0.0020704 0.00032324
55 0.074636 0.019064 0.0057405 0.0020316 0.0020316 0.00031829
60 0.073822 0.01886 0.0056725 0.0019981 0.0019981 0.00030497
65 0.072979 0.018613 0.005597 0.0019707 0.0019707 0.00029527
70 0.071834 0.018422 0.0055279 0.0019368 0.0019368 0.00040059
75 0.070536 0.018181 0.0054476 0.0019037 0.0019037 0.00028212
80 0.068815 0.017865 0.0053462 0.0018703 0.0018703 0.00027528
85 0.067044 0.01751 0.0052494 0.0018425 0.0018425 0.00026975
90 0.065175 0.017177 0.0051842 0.0018259 0.0018259 0.00026606
95 0.064342 0.01697 0.0051215 0.0018122 0.0018122 0.00026224
100 0.063995 0.017087 0.005135 0.0017995 0.00025511 0.00026057
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Table A4. Values for parameter R2 in Ω of electrical model shown in Figure 2 in dependence of cell
temperature and SOC.

SOC −15 ◦C −5 ◦C 5 ◦C 15 ◦C 25 ◦C 35 ◦C

0 0.017962 0.0064332 0.0053752 0.0022864 0.0024531 0.0013569
5 0.018272 0.0064332 0.0050855 0.0018491 0.0020993 0.0010403

10 0.018677 0.0064312 0.0051359 0.0016798 0.0016798 0.00078285
15 0.019272 0.0063328 0.0051021 0.001635 0.001635 0.00067566
20 0.019571 0.0062175 0.0050268 0.0016498 0.0016498 0.00064434
25 0.019723 0.0061373 0.0049072 0.0016547 0.0016547 0.00062327
30 0.018976 0.0060186 0.0047806 0.0016445 0.0016445 0.0006072
35 0.018648 0.0060566 0.0047452 0.0016123 0.0016123 0.00059305
40 0.019136 0.0059892 0.0047685 0.0015945 0.0015945 0.00058318
45 0.01889 0.0060495 0.0047247 0.0016043 0.0016043 0.00058044
50 0.018277 0.0060949 0.0047132 0.0016106 0.0016106 0.00058404
55 0.01845 0.0061307 0.0047856 0.0016312 0.0016312 0.00066865
60 0.018579 0.0061718 0.0048406 0.0016228 0.0016228 0.00060349
65 0.018618 0.005976 0.0048874 0.0016475 0.0016475 0.00061131
70 0.019384 0.0059645 0.00508 0.0016698 0.0016698 0.00083064
75 0.020515 0.0061409 0.0052437 0.001762 0.001762 0.0008464
80 0.019859 0.0062924 0.0051007 0.001704 0.001704 0.0007167
85 0.01902 0.0060444 0.0047286 0.0016229 0.0016229 0.00069362
90 0.017825 0.0055591 0.0044844 0.0015623 0.0015623 0.00068559
95 0.016545 0.0053424 0.0043247 0.0015262 0.0015262 0.00068296
100 0.015225 0.0050156 0.0043414 0.0014648 0.00043849 0.00070003

Table A5. Values for parameter Rser in Ω of electrical model shown in Figure 2 in dependence of cell
temperature and SOC.

SOC −15 ◦C −5 ◦C 5 ◦C 15 ◦C 25 ◦C 35 ◦C

0 0.0023895 0.0018717 0.0011043 0.00092052 0.00072483 0.00066083
5 0.002708 0.0018717 0.0010703 0.00089389 0.00073228 0.00063753

10 0.0029141 0.0018574 0.0011518 0.00083587 0.00083587 0.00059699
15 0.0028961 0.0018258 0.0011529 0.00079821 0.00079821 0.00056968
20 0.0028806 0.0017895 0.0011236 0.00077344 0.00077344 0.00055148
25 0.0028664 0.0017592 0.0011007 0.00075798 0.00075798 0.00053972
30 0.0028439 0.0017321 0.0010823 0.00074604 0.00074604 0.00053164
35 0.0028218 0.0017115 0.0010676 0.00073729 0.00073729 0.00052591
40 0.0028001 0.0016923 0.0010559 0.00072961 0.00072961 0.00052104
45 0.0027863 0.0016799 0.0010462 0.00072353 0.00072353 0.00051694
50 0.0027766 0.0016695 0.0010386 0.0007186 0.0007186 0.00051324
55 0.0027659 0.0016603 0.0010338 0.00071487 0.00071487 0.00051207
60 0.0027513 0.001653 0.0010291 0.00071147 0.00071147 0.00050736
65 0.0027293 0.001643 0.0010244 0.00070907 0.00070907 0.00050419
70 0.0027054 0.001637 0.0010215 0.0007063 0.0007063 0.0005252
75 0.0026805 0.0016297 0.0010183 0.00070426 0.00070426 0.00049973
80 0.0026493 0.0016201 0.0010142 0.00070208 0.00070208 0.00049713
85 0.0026158 0.0016098 0.0010108 0.00070045 0.00070045 0.00049454
90 0.0025779 0.0016007 0.0010086 0.00069938 0.00069938 0.00049214
95 0.0025621 0.0015961 0.0010072 0.00069868 0.00069868 0.00048918
100 0.0025566 0.0016054 0.0010105 0.0006979 0.00054062 0.00048606
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Table A6. Values for parameter OCV in V of electrical model shown in Figure 2 in dependence of cell
temperature and SOC.

SOC −5 ◦C 5 ◦C 15 ◦C 25 ◦C 35 ◦C

−5 3.3785 3.4228 3.4152 3.2082 3.1035
0 3.4064 3.4481 3.4427 3.3287 3.3076
5 3.4342 3.4734 3.4703 3.4477 3.4526
10 3.4621 3.4987 3.4978 3.4963 3.498
15 3.49 3.524 3.5254 3.5223 3.5229
20 3.5178 3.5494 3.5523 3.5498 3.5499
25 3.5457 3.5746 3.577 3.5754 3.5748
30 3.5735 3.5965 3.5991 3.5974 3.5967
35 3.6014 3.6194 3.6234 3.6214 3.6204
40 3.6292 3.6427 3.6485 3.6498 3.6496
45 3.6571 3.6648 3.6702 3.6715 3.6749
50 3.685 3.6884 3.6927 3.6936 3.6978
55 3.7128 3.715 3.7192 3.7201 3.7241
60 3.7451 3.7469 3.7509 3.7516 3.7553
65 3.7825 3.7839 3.7887 3.7892 3.7922
70 3.8254 3.8274 3.8313 3.8316 3.8341
75 3.8746 3.8751 3.8789 3.8794 3.8805
80 3.9326 3.9303 3.934 3.9357 3.9342
85 3.9954 3.996 3.9978 3.998 3.9966
90 4.0589 4.0586 4.0584 4.0574 4.0564
95 4.1242 4.1209 4.1198 4.1176 4.1165

100 4.1862 4.1862 4.1862 4.1835 4.1816
105 4.1862 4.1862 4.1862 4.1862 4.1862
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