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Abstract: Well planning for every drilling project includes cost estimation. Maximizing the rate
of penetration (ROP) reduces the time required for drilling, resulting in reducing the expenses
required for the drilling budget. The empirical formulas developed to predict ROP have limited field
applications. Since real-time drilling data acquisition and computing technologies have improved
over the years, we implemented the data-driven approach for this purpose. We investigated the
potential of machine learning and deep learning algorithms to predict the nonlinear behavior of the
ROP. The well was drilled to confirm the geothermal reservoir characteristics for the FORGE site. After
cleaning and preprocessing the data, we selected two models and optimized their hyperparameters.
According to our findings, the random forest regressor and the artificial neural network predicted
the behavior of our field ROP with a maximum absolute mean error of 3.98, corresponding to 19%
of the ROP’s standard deviation. A tool was created to assist engineers in selecting the best drilling
parameters that increase the ROP for future drilling tasks. The tool can be validated with an existing
well from the same field to demonstrate its capability as an ROP predictive model.

Keywords: rate of penetration (ROP); predictive modeling; geothermal energy; machine learning;
deep learning; random forests; artificial neural network; python programming

1. Introduction

Geothermal reservoirs are made of fractures of hard volcanic formations in fields with
a gradient between 7 ◦C and 16 ◦C per 100 m. These are high-temperature (HT) drilling
environments. Thus, the well-planning for geothermal conditions requires additional mate-
rial selection and considerations. In addition, deep geothermal fluids are sub-hydrostatic.
Their hydrostatic pressure is lower than the hydrostatic pressure of the drilling mud. As a
result, drilling in geothermal reservoirs is considered challenging [1].

Deep geothermal drilling accounts for more than 30% of geothermal project costs [2].
Thus, cost reduction is needed for this task. One solution is increasing the speed of
drilling, also called rate of penetration (ROP). The latter is a performance metric for drilling
operation and is dependent on several factors. Weight on bit (WOB), rotating speed (RPM),
and the flow rate are three operational drilling factors that can be modified at the surface to
affect ROP. Formation proprieties such as rock strength, abrasiveness, heterogeneity, pore
pressure, and permeability also affect ROP. However, current technology does not permit
the control of rock parameters [3].

A study by [4] established that the ROP of a roller cone bit, under perfect hole cleaning
conditions, is proportional to the rotary speed and the bit weight squared, and inversely
proportional to the bit diameter squared. However, these conditions are not necessarily
met [5]. Thus, poor hole cleaning scenarios cause an increase in ROP due to the increasing
WOB of the hook load adjustment. Bourgoyne et al. [6] illustrated a relationship between
the ROP and drilling parameters similar to Maurer’s, but added that a minimum WOB is
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needed to start drilling. Dupriest and Koederitz [7] elaborated the concept of mechanical
specific energy (MSE). The latter is the amount of mechanical work needed to excavate
a unit volume of a rock. It quantifies the relationship between input energy and ROP.
The relationship between the ROP and drilling parameters is linear when the MSE is con-
stant. An increase in MSE means that the system is foundering, and a disproportionate
amount of energy is used for the given ROP. Young [8] demonstrated that ROP is influ-
enced by the pressure gradient ahead of the bit. The latter cannot be measured in the
field. Bourgoyne et al. [9] developed a comprehensive ROP analytical model that includes
variables such as the compressive strength of the formation. The confined compressive
strength is a crucial parameter for drilling optimization. However, it is only measured in
the lab [10]. Nevertheless, drilling optimization requires models quantifying the correlation
between all operational factors and the ROP.

Machine learning is a major subfield in computational intelligence; it extracts infor-
mation from raw data. Machine learning has a variety of applications in the information
technology sector, including speech recognition, object recognition in computer vision,
robotics, computer games, etc. Machine learning models have been extensively used for
ROP prediction. Models including multilayer perceptron neural network (MLPNN), radial
basis function neural network (RBFNN), and support vector regression (SVR) have been
implemented successfully for this task [11]. A recent study by [12] demonstrated an imple-
mentation of ensemble learning methods (e.g., random forest regressor) for ROP prediction
of a deep well crossing multiple lithologies. The authors pointed out that the random forest
outperformed the ANN, with an average absolute error percentage of 7.8%.

Comprehensive ROP modeling requires additional formation variables, such as pres-
sure gradient compressive strength of the formation. The latter is obtained from well
log data or from lab measurements of retrieved core samples. These procedures are ex-
pensive and time-consuming. Consequently, it is necessary to build a new approach for
ROP prediction. Previous studies established by [13] on drilling optimization of the same
drilling dataset of the Utah FORGE site. The authors applied an optimization method
called the differential evolution algorithm (DEA). It predicts the unconfined compressive
strength (UCS) for the drilled feet to simulate the ROP for the next drilling feet, based on
the previous UCS value.

The successful application of machine learning is the main motivation to choose
these methods. The latter require continuous data collection during drilling. It is feasible,
thanks to advancements in drilling data acquisition and computing technologies. In
addition, no previous research has applied a data driven approach (e.g., machine learning
and deep learning) for predicting the ROP of the 58–32 well. This research outlines the
procedure of transforming the abundance of raw data into useful information, also called
data mining [14]. Our contribution is building a predictive model explaining the behavior
of the ROP based on the analysis of the patterns and extracting correlations from our
drilling data. The ROP predictive model takes as input the drilling parameters and other
factors related to drilling. We share the developed code for public access as follows:
https://github.com/Arbi-ben-aoun/Drilling-rate-of-penetration-prediction (accessed on
1 May 2022).

In the following section, we will present the theory underlying the best-performing
machine learning algorithm used.

2. Related Work
2.1. Decision Trees

The random forest method is based on a popular method developed by Leo Breiman
in 1984 [15]. The regression and classification tree (CART) divides the predictor space into
several regions [16]. Regression trees delineate the regions of predictions from a given
training dataset. They assign the mean of the corresponding sample to each specified region.
The term decision tree originates from the rules of splitting, which are summarized into a
tree. Even though decision trees have high interpretability compared to other supervised

https://github.com/Arbi-ben-aoun/Drilling-rate-of-penetration-prediction
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learning algorithms, they produce less accurate results, due to the major problem of
overfitting. The solution to this problem is ensemble learning, which is the central idea
behind the random forest algorithm.

For simplicity, consider a two-dimensional feature space and a binary splitting in the
following example. First, the feature space is split into two regions, and the mean of the
samples for each region is calculated. The choice of a split variable and the split point
is dependent on the best fit. Next, the two regions are split further. This procedure will
continue until a certain stopping rule is applied.

Figure 1 shows that the first split is at X1 = t1. Next, the region of X1 ≤ t1 is split at
X2 = t2. Then, the region X1 > t1 is split at X1 = t3. Finally, the region X1 > t3 is split at
X2 = t4.
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We obtain five regions in the end. The following regression tree model predicts an
output f̂(X), with a constant Cm representing the mean for each region Rm, considering
I() as an indicator function that returns 1 if its argument is true and 0 if the argument is
false [15]. Equation (1) is the prediction output after splitting.

^
f(X)=

5

∑
m=1

Cm∗ I∗ {(X1, X2)∈ Rm } (1)

Equations (2) and (3) consider a binary split variable j with a split point s to find the
best split point, resulting in two half-planes R1(j,s) and R2(j,s).

R1(j, s)={X |Xj<s } (2)

R2(j, s)={X |Xj>s } (3)

Equation (4) defines Ĉm as tthe average of the samples of the corresponding regions
after the split:

^
Cm=average (yi|xi ∈ Rm) (4)

This leads to an optimization problem that searches the splitting variable j and the
split point s for solving the following minimization problem [18].

Minj,s [ Min C1 ∑
xi∈R1(j,s)

(yi−c1)2+Min C2 ∑
xi∈R2(j,s)

(yi−c2)2] (5)
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The objective is to minimize the mean squared error of each tree node. When it comes
to stopping the tree growth, deep splits will produce good results on the train set, but
will be inaccurate on the unseen test set. This problem is called overfitting and must be
avoided in supervised learning tasks. A strategy to prevent deep trees is first building a
large tree T0. Then, this large tree is pruned (by cutting away its branches) for the flowing
cost-complexity pruning [15].

Cα (T)=
|T|

∑
m=1

∑
xi∈Ri

(yi−cm)2+α|T| (6)

In Equation (6), |T| is the number of the terminal nodes of the subtree T for the
subtree T ⊂ T0.

This implies another optimization problem to find the variable α that minimizes Cα (T).

2.2. Bagging

The overfitting problem is due to the high variance. The concept of bagging, or
aggregation, is introduced for a given training set with size m [19], considering a random
sample of size k < m for n training sets with replacement, known as bootstrap sampling.
The outcome of the latter is n independent samples. Equation (7) explains the variance of
the bootstrap samples, with variance σ2 as the variance for each sample.

σ2
n=

σ2

n
(7)

When bagging is applied in decision trees, the average of n set of bootstrap samples
reduces the variance and predicts more accurate results. n numbers of regression trees
are built on the n separated bootstrapped samples [20]. The n averaged predictions are
explained by Equation (8).

^
favg(X)=

1
N

n

∑
i

^
fb(X) #(8) (8)

where
^
fb is the prediction of a single decision tree built on a single bootstrap sample.

Figure 2 summarizes the bagging procedure.

2.3. Random Forest Regressor

The random forest method is an improvement of bagged decision trees by adding a
tweak that decreases the correlation of our decision trees. m number of predictors (inde-
pendent input variables) are chosen from a total of p predictors for each tree. Equation (9)
is an estimation of m for regression tasks [17,19].

m ≈ √p (9)

Additionally, the random forest regression will have other advantages in feature se-
lection, such as variable importance. As mentioned previously, the random forest method
selects a subset of predictors during bagging and records the loss for each tree. Intuitively,
the predictors that decrease the loss are more important to our predictions, and the pre-
dictors that do not affect the accuracy are considered the least important [20]. However,
domain knowledge is also essential for selecting the predictors. Analytical ROP models
also highlight the parameters required for prediction.
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3. Materials
3.1. Study Area

The U.S. Department of Energy’s Frontier Observatory for Research in Geothermal
Energy (FORGE) is a field laboratory that offers opportunities to research, develop, and test
new technologies for enhanced geothermal systems. In 2018, the U.S. Department of Energy
selected the location of south-central Utah for establishing their site. Since the 1970s, several
geological and geophysical studies had been directed in this region to develop geothermal
resources at Roosevelt Hot Springs. The FORGE project has been realized in three major
phases. Phase one involved desk studies of existing data from five sites within the United
States. Phase 2 involved drilling the well 58–32, with a total depth of 2290 m GL, and a
bottom-hole temperature of 199 ◦C. The latter reached low permeability crystalline rocks at
961 m GL. The site is located in south-central Utah, U.S.A. The Utah Frontier Observatory
for Research in Geothermal Energy (FORGE) site is located 350 km south of Salt Lake City
and 16 km north-northeast of Milford, Utah [22]. The site area covers 5 km2 and is located
on the west sloping part of an alluvial fan in the Milford Valley (Figure 3).

Energies 2022, 15, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 3. Forge site location [23]. 

The main activity of phase 2B of this project is drilling a deep vertical well 58–32 with 
a depth of 2298 m. The well determines whether the geothermal reservoir characteristics 
meet the FORGE site’s requirements for enhanced geothermal system development. Field 
and laboratory measurements confirmed that the reservoir is hosted by a hot crystalline 
low permeability granitic rock with a temperature greater than 175 °C. The success in 
proving this result was due to a synthesis of a large amount of geoscientific data collected 
over a 40-year period [24,25]. Figure 4 shows the simplified geology of the FORGE site. 

 
Figure 4. Geological map of the FORGE Utah site [25] based on the compilation from new field 
observations, well data, and previous work [26,27] Abbreviations: Qa-1 = Lake Bonneville silts and 
sands; Qa-2 = alluvial fan deposits; Qr = quaternary rhyolite lava and pyroclastic deposits; Tg = 
tertiary granitoid; PC = Precambrian gneiss; black filled circles = wells. 

The Utah forge reservoir has a very low porosity (<0.1) and a low permeability (0.1 
to 80 micro-darcies μD). Due to these factors, there is no evidence of an existing hydro-
thermal flow. The only natural hydrothermal system is hosted in the shallow aquifer of 
the basin fill alluvium overlying the granitoid layer. The latter is the outflow from the 

Figure 3. Forge site location [23].



Energies 2022, 15, 4288 6 of 21

The main activity of phase 2B of this project is drilling a deep vertical well 58–32 with
a depth of 2298 m. The well determines whether the geothermal reservoir characteristics
meet the FORGE site’s requirements for enhanced geothermal system development. Field
and laboratory measurements confirmed that the reservoir is hosted by a hot crystalline low
permeability granitic rock with a temperature greater than 175 ◦C. The success in proving
this result was due to a synthesis of a large amount of geoscientific data collected over a
40-year period [24,25]. Figure 4 shows the simplified geology of the FORGE site.
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Figure 4. Geological map of the FORGE Utah site [25] based on the compilation from new field
observations, well data, and previous work [26,27] Abbreviations: Qa-1 = Lake Bonneville silts
and sands; Qa-2 = alluvial fan deposits; Qr = quaternary rhyolite lava and pyroclastic deposits;
Tg = tertiary granitoid; PC = Precambrian gneiss; black filled circles = wells.

The Utah forge reservoir has a very low porosity (<0.1) and a low permeability (0.1 to
80 micro-darcies µD). Due to these factors, there is no evidence of an existing hydrothermal
flow. The only natural hydrothermal system is hosted in the shallow aquifer of the basin
fill alluvium overlying the granitoid layer. The latter is the outflow from the Roosevelt Hot
Springs system that lies more than 3 km to the east [25]. This geothermal water is abundant,
but proved to be non-potable. However, it still fulfills the water requirement for future
injection-production testing at the Utah FORGE site. Additionally, the Opal Mound Fault,
which serves as a no-flow lateral barrier, separates the natural hydrothermal system from
the EGS reservoir. Figure 5 shows the hydrogeological setting of the site.
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observations, well data, and previous work [26,27].

3.2. Drilling Dataset

Diagnostic drilling data (Pason log files) from Well 58–32 are collected using drill bits
integrated with sensors, computers and an entire networking infrastructure to record the
drilling data in real-time. The collected data contained useful information about the drilling
rig’s performance, such as the rate of penetration (ROP), and drilling parameters, such as
weight on bit, temperature, pump pressure, etc. The drilling dataset of Well 58–32 [28] was
obtained and summarized in Table 1.

Table 1. Well 58–32 drilling dataset statistics.

Count Mean std Min 25% 50% 75% Max

Depth (m) 7311 1168.864 654.5272 25.96 600.545 1173.99 1734.71 2296.94

ROP (m/h) 7311 12.80416 23.13962 0 3.47 5.48 13.5 907.62

Weight on Bit (kg) 7311 10,483.76 4135.825 0 8303.85 10,807.26 13,460.32 21,337.87

Temp Out (◦C) 7311 52.2553 6.811023 28.93 46.74 51.59 58.05 66.5

Temp In (◦C) 7311 47.95309 6.629486 29.44 42.695 47.34 52.7 63.51

Pit Total (m3) 7311 37.6687 2.9034 27.17 35.7 37.86 39.68 44.5

Pump Press (KPa) 7311 8733.445 3382.374 137.49 4589.24 9877.5 11,512.44 1,5171.96

Hook Load (kg) 7311 36,864.21 12019.88 12,367.35 24,816.33 36,344.67 47,904.76 67,541.95

Surface Torque (KPa) 7311 903.1323 335.8324 0 806.715 967.44 1084.45 1887.23

Rotary Speed (rpm) 7311 54.94729 25.94765 0 38.09 50.38 75.965 271.58

Flow In (liters/min) 7311 2711.315 536.7113 0 2347.94 2650.58 3121.485 12,558.14

Flow Out % 7311 79.69283 11.9094 0.69 72.65 80.71 88.845 111.21

WH Pressure (KPa) 7311 −246.571 1535.307 −8493.47 20.13 40.96 56.95 120.04

H2S Floor 7311 −0.02737 0.042453 −0.1 −0.07 −0.01 0 0.78

H2S Cellar 7311 0.004303 0.025282 −0.08 −0.01 0 0.02 0.07

H2S Pits 7311 0.148833 0.11529 −0.06 0.06 0.14 0.22 0.72

This data is made publicly accessible under the license Attribution 4.0 International
(Creative Commons BY 4.0). The file format of the drilling data is a comma-separated value
(CSV). The dataset is clean from missing values, thanks to Utah FORGE’s precise real-time
drilling measurement.
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4. Methods

Supervised learning is a type of machine learning algorithm that requires both features
(input variables) and the desired output. The algorithm tries to train and adjust its parame-
ters to produce the desired output from the training set. Then, the trained model is tested
on unseen data, also known as the test set, for which we already know the output. Finally,
the model predictions are compared with the known output values. These models are
referred to as supervised learning algorithms because they have a “teacher” that provides
supervision to the algorithms in the form of the known outputs for each example learned
from the training data. Concerning the workflow for performing our data analysis and
predictive modeling, the first step consists of the preprocessing of our data to prepare it for
predictive modeling. The second step consists of the predictive modelling step. First, we
train our model using the training set. Second, we validate it on an existing validation set
to tune and optimize our model parameters. Lastly, the model is tested on unseen data [29].
The best model is selected according to the error. Figure 6 summarizes the workflow of our
predictive modeling.

Energies 2022, 15, x FOR PEER REVIEW 8 of 23 
 

 

value (CSV). The dataset is clean from missing values, thanks to Utah FORGE’s precise 
real-time drilling measurement. 

4. Methods 
Supervised learning is a type of machine learning algorithm that requires both fea-

tures (input variables) and the desired output. The algorithm tries to train and adjust its 
parameters to produce the desired output from the training set. Then, the trained model 
is tested on unseen data, also known as the test set, for which we already know the output. 
Finally, the model predictions are compared with the known output values. These models 
are referred to as supervised learning algorithms because they have a “teacher” that pro-
vides supervision to the algorithms in the form of the known outputs for each example 
learned from the training data. Concerning the workflow for performing our data analysis 
and predictive modeling, the first step consists of the preprocessing of our data to prepare 
it for predictive modeling. The second step consists of the predictive modelling step. First, 
we train our model using the training set. Second, we validate it on an existing validation 
set to tune and optimize our model parameters. Lastly, the model is tested on unseen data 
[29]. The best model is selected according to the error. Figure 6 summarizes the workflow 
of our predictive modeling. 

The main tool used was the open-source Jupyter computational notebook. It has an 
integrated development environment for Python version 3.9.0, which comes with the es-
sential libraries needed for data analysis and machine learning included. The random for-
est regressor and the artificial neural network are the predictive models we applied for 
our dataset, and both are included in the Python libraries. 

 
Figure 6. Workflow required for machine algorithms [30].



Energies 2022, 15, 4288 9 of 21

The main tool used was the open-source Jupyter computational notebook. It has
an integrated development environment for Python version 3.9.0, which comes with the
essential libraries needed for data analysis and machine learning included. The random
forest regressor and the artificial neural network are the predictive models we applied for
our dataset, and both are included in the Python libraries.

4.1. Data Preprocessing

Data preprocessing techniques are transformations applied to the training set to
improve the performance of predictive models. Prediction is improved by transformations
such as reducing data skewness [31] and removing outliers [32]. Feature selection is a
simpler strategy that involves removing predictors based on their lack of information
and is another effective technique for improving the performance of machine learning
algorithms [33].

4.1.1. Feature Selection Based on Domain Knowledge

We chose the following features or predictors based on domain knowledge for drilling
engineering:

Target variable Y: ROP (m/h).
Predictors Xi: Depth(m), weight on bit (kg), rotary speed (rpm), pump press (KPa),

temp in (◦C), flow in (L/min), and flow out %.

4.1.2. Correlation Measurement

Correlation is obtained using the Pearson correlation coefficient, which measures the
linear relationship between two predictors. Table 2 summarizes the correlation results.

Table 2. Pearson correlation results.

Predictors Pearson Correlation between ROP (m/h) and Predictors

Depth (m) −0.508247

Weight on Bit (kg) −0.523441

Rotary Speed (rpm) 0.28907

Pump Press (KPa) −0.49319

Temp In (degC) −0.221713

Flow In (liters/min) 0.481607

Flow Out % −0.116068

4.1.3. Outlier Removal

A dataset can contain extreme values that are outside of the expected range and
are unlike the other data. These outliers reduce the machine learning algorithm’s ability
to generalize. Removing these outliers improves the model’s performance. There is no
universal solution for outlier removal, but it is common is to rely on data visualization. We
used both pair plot and boxplot for this purpose. Figure 7 shows the pair plot results
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Figure 7. Pair plot of our drilling dataset with the encircled outliers.

The pair plot shows the distribution plot and the scatter plot associated with each pair
of features. We found outliers in the ROP, rotary speed, flow in, and flow out features.

The previous features were examined in-depth using the boxplot. The ROP boxplot
below clearly demonstrates that ROP above 800 (m/h) is an outlier (Figure 8).



Energies 2022, 15, 4288 11 of 21

Energies 2022, 15, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 8. ROP boxplot. 

Rotary speed above 200 (rpm) is considered an outlier (Figure 9). 

 
Figure 9. Rotary speed boxplot. 

Flow in above 7000 (L/min) is considered an outlier (Figure 10). 

Figure 8. ROP boxplot.

Rotary speed above 200 (rpm) is considered an outlier (Figure 9).

Energies 2022, 15, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 8. ROP boxplot. 

Rotary speed above 200 (rpm) is considered an outlier (Figure 9). 

 
Figure 9. Rotary speed boxplot. 

Flow in above 7000 (L/min) is considered an outlier (Figure 10). 

Figure 9. Rotary speed boxplot.

Flow in above 7000 (L/min) is considered an outlier (Figure 10).
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4.1.4. Tree Based Feature Selection

As we recall from tree-based models, they indicate the importance of features [34].
Therefore, we train a random forest model, without any optimization, to identify the most
important predictors in the random forest split. The feature importance between the target
variable and the predictors is shown in Figure 12.
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To summarize, the flow out feature has the least correlation, and the flow out and
weight on bit have the least importance based on the tree model (Figure 13).

Energies 2022, 15, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 12. Feature importance. 

To summarize, the flow out feature has the least correlation, and the flow out and 
weight on bit have the least importance based on the tree model (Figure 13). 

After examining Figure 14 further, we discovered that the weight on bit (WOB) be-
havior along the ROP is nearly constant over the high ROP values. The latter explains the 
WOB’s low importance score for this dataset. 

 
Figure 13. Cumulative feature importance with a 0.95 threshold line. Figure 13. Cumulative feature importance with a 0.95 threshold line.

After examining Figure 14 further, we discovered that the weight on bit (WOB) be-
havior along the ROP is nearly constant over the high ROP values. The latter explains the
WOB’s low importance score for this dataset.
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The WOB feature cannot be removed due to the engineering importance of this
predictor. Additionally, it showed a high linear correlation in Table 2. After combining
domain knowledge and statistical scores, we decided to remove the flow out predictor.

4.1.5. Data Scaling

Machine learning algorithms rely on minimizing the cost function. Thus, data normal-
ization is employed to speed up the calculation of gradient descent. This involves using a
common scale for the values of the predictors [35]. Based on the probability distributions in
Figure 7, standardization cannot be applied because our predictors do not follow a Gaussian
distribution. Min-max normalization is used instead and described in Equation (10).

XMinMax=
X−Min X

Max X−Min X
(10)

where X represents a predictor value, Min X is the minimum value of the considered
predictor, and Max X is the maximum value of the predictor.

4.2. Accuracy Assessment of Regression Models

A commonly used metric to evaluate the performance of a predictive model on a given
data set is the loss function defined by the mean squared error (MSE) [36] and is given by
Equation (11)

MSE =
√

∑
i
(yi(xi)− ŷi(xi))

2 (11)

If the model fits perfectly the output values, the MSE will be close to 0. However, MSE
alone may not be sufficient to clearly see the perfect fit of our model. R2 score [37] is an
additional metric for evaluating model fit. The latter measures the proportion of variability
in the target variable y explained by the features X, assuming a linear relationship existing
between the predicted variable and the predictors. R2 is close to 1 if the predictors X can
explain the target variable y, and close to 0 if the variability is poorly explained.

R2=
Total squared Sum−Residual squares Sum

Total squared Sum
=1−∑i(y(xi) − ^

y (xi))
2

∑i(y(xi)− ¯
y(xi))

2 (12)
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It is also worth mentioning that R2 is identical to r2, where r = Cor (X, Y) represents
the Pearson correlation coefficient.

4.3. Model Selection

A performance factor to consider for the machine learning model is the generalization
ability for unseen test data. It will give a more realistic measure of our model’s reliability. To
further understand this concept, the bias-variance decomposition [38] is defined as follows:

Y=f(X)+ε where E(ε)=0 (13)

The decomposition of the mean squared error for a given point X0 with a prediction
value of f̂ (x0) is as follows:

E(y0−
^
f(x0))

2

=Var(
^
f(x0))+[Bias(

^
f(x0))]

2

+Var(ε) (14)

Equation (14) showed that the expected MSE can be decomposed into the sum of
three fundamental quantities: the variance of f̂ (x0), the squared bias of f̂ (x0), and the
variance of the error term Var(ε). Thus, in order to minimize the expected value of the mean
squared error, a statistical model that minimizes both variance and bias in our predictions
is required.

When predicting nonlinear data, a simple model (e.g., linear regression) has a high
variance and high bias. The model is underfitting, in this case. On the contrary, a complex
predictive model has a low bias and high variance for that data. The model is overfitting,
in this case, because it has lost its generalization ability. The optimal model neither overfits
nor underfits. To assess the generalization ability of a selected model, a traditional method
called cross-validation is applied [39,40]. Another popular method is called k-fold cross-
validation [41].

k fold is calculated by averaging the k MSE values, which is expressed by Equation (15)

CVk=
1
k

k

∑
i

MSE (k) (15)

where k represents the number of equally sized parts, called folds.
The model that has the lowest cross-validation error is the best predictive model.

5. Results
5.1. Training and Cross-Validation of Random Forest Regressor

After preprocessing and feature engineering, we trained the random forest with the
6 scaled predictors: depth (m), weight on bit (kg), rotary speed (rpm), pump press (KPa),
temp in (◦C), and flow in (liters/min). Table 3 shows our new pre-processed dataset, which
contains 7293 data samples following outlier removal.

First, we split our data into a 70% training set and a 30% test set. Then, the model’s
hyperparameters are optimized. The hyperparameter for the random forest method is the
number of decision trees. Finally, the model evaluation is done by using a validation set. A
total of 20% of the training set is used as the evaluation set for each fold, which corresponds
to 14% of the total dataset. Additionally, we used the 5 folds cross-validation. These
previous tasks are realized simultaneously using GridSerachCV implemented in python.

5.2. Training and Cross-Validation Artificial Neural Network

For comparison, we trained an artificial neural network (ANN) model, known as
an efficient predictive model, with the chosen features. We split our data into an 80%
training set and a 20% test set. Then, the model’s hyperparameters are optimized. The
hyperparameters for the ANN are the number of layers and the number of neurons per
layer. The activation function is also a hyperparameter [42]. Previous research in the deep
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learning field pointed out that ReLU proved to be an effective activation function for most
deep learning applications [43,44]. Thus, we chose ReLU as our activation function due to
its popularity in research and industry.

In addition, we need to evaluate the model by using a validation set. The 5 folds
validation was also used for cross-validation.

Table 3. Drilling dataset after pre-processing.

ROP (m/h) Depth (m) Weight on Bit
(kg)

Rotary Speed
(rpm)

Pump Press
(KPa) Temp In (◦C) Flow In

(L/min)

count 7293 7293 7293 7293 7293 7293 7293

mean 12.56974 1170.125 10,492.41894 54.855718 8737.605204 47.953857 2710.542394

std 20.19483 654.3972 4130.250795 25.296998 3378.177407 6.626395 511.248043

min 0 25.96 0 0 137.49 29.44 0

25% 3.47 601.94 8308.39 38.12 4593.17 42.72 2347.94

50% 5.47 1176.13 10,807.26 50.38 9877.5 47.34 2650.58

75% 13.46 1736.1 13460.32 75.95 11,510.1 52.7 3120.96

max 274.75 2296.94 21,337.87 178.86 15,171.96 63.51 5864.13

5.3. Model Comparison

The number of decision trees, 200, 300, and 400, were chosen as hyperparameters for
the random forest. The cross-validation results revealed that the optimal hyperparameter
for the random forest was 300 decision trees. The evaluation metric scores are a mean
absolute error of 2.46 and an R2 score of 0.84. When compared to the standard deviation
of the ROP, the mean absolute error represents only 12%. Based on the R2 score, our
optimized random forest model explained 84% of the ROP variance. These are considered
acceptable results. Moreover, there may be room for improvement to reduce the error
further. Figure 15 gives a more visual understanding of the prediction accuracy.
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The predictions are more accurate in the lower range of the ROP. Typically, high ROP
occurs at shallower depths, implying that our model predicts ROP better in deeper formations.
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For hyperparameter optimization of the ANN, the number of hidden layers chosen
were 1, 2, and 3. The number of neurons for each layer chosen were 2, 3, 6, 12, and 24.
The cross-validation results showed that the optimal hyperparameter combination for the
neural network proved to be 3 hidden layers with 12 neurons. Figure 16 shows the optimal
architecture of the optimized neural network.
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Figure 16. Architecture of the optimized neural network.

The optimized neural network has a mean absolute error of 3.98 and an R2 score
of 0.73. When compared to the standard deviation of the ROP, the mean absolute error
represents 19%. Based on the R2 score, our optimized neural network explained 73% of the
ROP variance (Figure 17). It is still an acceptable result, but not as good as the results using
the random forest regressor.
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Figure 18 illustrates the predicted and filed ROP values, along with the depth, for both
the random forest and the artificial neural network.
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6. Discussion

It was indeed interesting that the random forest regressor outperformed the neural
network, even though the ANN ‘s performance was still acceptable. These findings support
the results found by [12]. Thus, we conclude that neural networks are not the solution to
every problem. Neural networks tend to overfit the training data. In practice, to solve this
overfitting issue, we usually refer to the regularization techniques. After several trials, it
this did not considerably affect the performance. Additionally, 7293 data samples used
for training were not enough. Deep learning models require a massive amount of data to
perform better. Machine learning models, such as the random forest method, outperform
neural networks when the dataset is smaller, not to mention the huge computational cost
of ANN compared to the random forest method.

The Pearson correlation coefficient measures a linear relationship between variables.
The feature importance of the random forest method extracts a more complex relationship
between variables. This indicated that the depth variable is the most important contributor
to the ROP value.

After building our predictive model, we must validate it with at least one other well
from the same geothermal field. Formations inhibit similar compressive strength in the
same field. Additionally, the previous models could be improved if we separated our
predictions into different formations and built a predictive model for each formation,
since, in drilling practice, we tend to evaluate the ROP on each formation, rather than
the measured depth due to the variations of compressive strength for different forma-
tions. This will definitely reduce the error for predicting the behavior of ROP values in
shallower formations.

7. Conclusions

After hyperparameter optimization, the random forest regressor method, containing
300 decision trees, was a better method, compared to the ANN, for the evaluation of the
58–32 well dataset. The mean absolute error = 2.46, which is a low margin of error compared
to the overall standard deviation of our field ROP values. The R2 score = 0.84, indicating
that the model explained 84% of field ROP variability. Domain knowledge, the Pearson
correlation coefficient, and the feature importance of decision trees supported the feature
selection process. The data-driven models for ROP prediction are promising tools for future
drilling projects on this FORGE site.
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