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Abstract: The use of inorganic salt hydrates for thermochemical energy storage (TCS) applications is
widely investigated. One of the drawbacks that researchers face when studying this class of materials is
their tendency to undergo deliquescence phenomena. We here proposed and investigated, for the first
time, the possibility of using organic salt hydrates as a paradigm for novel TCS materials with low water
solubility, that is, more resistance to deliquescence, a tendency to coordinate a high number of water
molecules and stability under operating conditions. The organic model compound chosen in this study
was calcium; 7-[[2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetyl]amino]-3-[(2-methyl-5,6-dioxo-1H-
1,2,4-triazin-3-yl)sulfanylmethyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate, known as cal-
cium ceftriaxone, hereafter named CaHS (calcium hydrated salt), a water-insoluble organic salt,
which can combine up to seven water molecules. The CaHS was prepared by precipitation from
the water-soluble disodium triaxone. The thermal behavior of CaHS, in terms of stability and
dehydration–hydration cyclability, was assessed. The material can operate in the temperature range
of 30–150 ◦C, suitable for TCS. No deliquescence phenomena occurred upon exposure to a relative
humidity (RH) between 10 and 100%. Its heat storage capacity, so far unknown, was measured to
be ~595.2 kJ/kg (or ~278.6 kWh/m3). The observed heat storage capacity, thermal stability, and
good reversibility after dehydration–hydration cycles highlight the potential of this class of materi-
als, thus opening new research paths for the development and investigation of innovative organic
salt hydrates.

Keywords: thermochemical energy storage; organic salt hydrate; deliquescence; thermogravimetric
dynamic vapor sorption

1. Introduction

Thermochemical energy storage (TCS) is a key technology that promotes more efficient
use of energy from renewable sources [1–4] in the shift towards carbon-free renewable
energy sources, which are inherently intermittent [5]. For example, while solar energy is
the primary renewable energy source, its diurnal nature generates a mismatch between
energy supply and demand. Therefore, developing an efficient TCS technology that allows
storage of low-grade thermal energy and supplies it on demand can help guarantee energy
security. Compared to sensible and latent heat storage [6], TCS offers higher energy density,
heat supply available on request (namely, long-term heat storage), and lower heat losses [7].
Higher energy density makes thermochemical heat storage systems more compact, whereas
lower heat losses and the dispatchability of the stored heat on demand make it more
suitable for long-term energy storage. Currently, TCS technologies are based on inorganic
salt hydrates, which involve a reversible solid–gas reaction [8–10]:
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A·mH2O(s) � A·(m− n)H2O(s)+nH2O(g) (m ≥ n) (1)

The reagent (the solid hydrated salt) is converted, through an endothermic process
(charging step), to products that consist of a totally or partially dehydrated solid salt and
gaseous water. To avoid recombination of the products, the water is removed and stored
for re-use in the discharging step. The reverse rehydration reaction of the dehydrated
salt with water vapor, being exothermic, releases heat on demand [11]. The rehydration
reaction is fully reversible if the salt recovers the total number of crystal water molecules.
However, in some cases, the hydration product is a saturated salt solution rather than a salt
hydrate. This process is called deliquescence, i.e., a substance sorbs water vapor from the
environment and gradually dissolves to form a solution at a critical relative humidity (RH)
value, the deliquescence relative humidity (DRH) [12]. The deliquescence phenomenon
implies some severe drawbacks, such as chemical instability. A liquid film forms on the
surface of the salt crystal, thus inhibiting the rehydration reaction (e.g., in case of the LiCl,
LiBr, CaCl2) [10,13]; the sorbate mass transfer into the system is hindered, causing issues
such as high-pressure drops and ultimately system failure, as well as corrosion issues due
to the dripping of the salt solution onto other metal components of the system. In other
cases, the deliquescence RH value limits the operating range, as in the case of MgSO4,
despite its very high potential heat storage capacity (2.3 GJ/m3).

The high potential of such systems [8] (with an average enthalpy of reaction of ~55.2 kJ
per mole of water [14,15]) warrants further investigation to solve this issue. Salt hydrates
can be embedded into porous matrices (such as carbon foams, expanded natural graphite,
zeolite, vermiculite, silica gel, etc.) to prevent deliquescence and improve water trans-
port into the materials [16–18]. Nevertheless, such strategies often fail to overcome these
challenges without efficiency loss [3]. Microencapsulation is another approach for the
stabilization of salt hydrates; salt particles are enveloped with a second inherently stable
material to prevent coalescence or agglomeration. However, this methodology presents
stability problems due to salt leakage, and the matrices themselves already strongly affect
the equilibrium of the reaction shown in Equation (1), thus leading to an efficiency de-
crease [19,20]. Indeed, it is essential that water vapor can escape through the encapsulation
material.

This work aims to explore new strategies for developing suitable materials based on
highly insoluble organic hydrated salts in order to reduce and/or avoid deliquescence phe-
nomena under operating conditions, ensure the ability to coordinate a high number of water
molecules, and ensure stability under operation conditions. To test this idea, calcium;7-[[2-
(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetyl] amino]-3-[(2-methyl-5,6-dioxo-1H-1,2,4-
triazin-3-yl)sulfanylmethyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate, known
as calcium ceftriaxone, hereafter named CaHS (calcium hydrated salt), was chosen as
a model compound. It is a highly insoluble salt (water solubility product constant is
1.62 × 10−6 mol2/L2 [21]) that easily precipitates from the extremely soluble disodium
ceftriaxone upon the addition of calcium ions. It should be mentioned that disodium
ceftriaxone, despite containing 3.5 H2O molecules within its crystal structure, cannot be
taken under consideration as a TCM due to its high solubility [21]. It is reasonable to
assume that in CaHS the hard acid Ca2+ can easily interact with the hard base H2O and
coordinate an expected range of 6–8 water molecules [22,23], according to the most stable
coordination number of the calcium aquaione complex. We here carried out a study on
the thermochemical behavior of CaHS for TES applications. Its heat storage capacity, not
available in the literature, was estimated.

2. Materials and Methods
2.1. Synthesis of Calcium Ceftriaxone (CaHS)

CaHS was prepared using disodium ceftriaxone hemiheptahydrate (from now on
referred to as Na2HS, TOWA PHARMACEUTICAL CO., LTD., Osaka, Japan) as the pre-
cursor. Then, 15 mL of 0.08 M Na2HS aqueous solution was added dropwise to 20 mL
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of 0.166 M Ca(NO3)2 · 4H2O (Sigma-Aldrich, St. Louis, Missouri, USA, ≥99.0% purity)
aqueous solution, inducing the formation of a pale yellow precipitate according to the
following reaction:

Na2HS + Ca(NO3)2 → CaHS ↓ +2NaNO3 (2)

Upon digestion for 3 h, the solid was separated by vacuum-assisted filtration and
washed with H2O to remove all the soluble unreacted reagents and with diethyl ether
to remove the excess of physisorbed water. The product was dried at room temperature
overnight under a relative humidity of ~50%.

The yield of the exchange reaction of Na+ with Ca2+ (Equation (2)) was evaluated by
measuring the moles of Ca2+ present in the final product with respect to the theoretical
amount, assuming that the Ca2+ to Na+ replacement ratio is 1:2. The amount of calcium
present in the solid was determined by a permanganometric redox titration on a weighted
sample of CaHS (as reported in ESI Supplementary SI.1). The reaction yield, given by the
ratio 100·nexperimental(mol)/ntheoretical(mol), was determined to be 99.2 ± 2%.

2.2. Chemical, Physical, Structural, Morphological, and Thermochemical Characterization of CaHS

Morphological studies were performed using scanning electron microscopy (SEM, FEI
Quanta 450, Thermo Fisher Scientific, Waltham, Massachusetts, USA). Additionally, chemi-
cal analysis was performed along with the morphological studies using energy-dispersive
X-ray spectroscopy (EDAX, Ametek, Tokyo, Japan) at an acceleration voltage of 20 kV. The
crystal structure was analyzed via X-ray powder diffraction (XRD, D8 Advance Bruker
diffractometer, Billerica, Massachusetts, USA, Bragg–Brentano theta-2theta configuration,
Cu Kα, 40 V, 40 mA, 0.05◦/s scan rate). Fourier transform infrared spectroscopy (FTIR,
Cary 600 Series FTIR Spectrometer, Agilent, Santa Clara, CA, USA) was performed in
transmission mode in a wavenumber range from 400 cm−1 to 4000 cm−1 with a spectral
resolution of 4 cm−1 and a scan number of 46 cm−1.

To evaluate the thermal stability of the material, a sample aliquot (~10 mg) was heated
(by 10 ◦C/min) from r.T. up to 350 ◦C in a vertical reactor under an inert gas flow (Ar
100 mL/min). The gaseous evolved species were analyzed through a mass spectrometer
(MS, Discovery, TA Instruments, Waters Corporation, Milford, MA, USA) at the reactor
outlet of the exhaust gases.

The material thermochemical behavior was evaluated via thermogravimetric analysis
(TG, STA Jupiter F3 Netzsch, Selb, Germany). The analysis was carried out under an inert
atmosphere (120 mL/min N2) using a holed Pt crucible and a sample mass of ~10–20 mg.
During the experiment, the sample was heated from r.T. up to 200 ◦C by 10 ◦C/min.

Differential scanning calorimetry (DSC, DSC8000 Perkin Elmer, Waltham, MA, USA)
analyses were carried out to determine the dehydration reaction enthalpy. The instrument
was calibrated with In and Zn elements, and it was equipped with a liquid nitrogen cooler
to decrease the sample below r.T. and accurately control the heating and cooling rates. In
a typical procedure, the sample (~8–10 mg), placed in disposable aluminum pans, was
heated to the target temperature under an inert atmosphere (20 mL/min N2). A baseline
was obtained by carrying out the same measurement without the sample (blank test) and
subtracting the sample’s test curve. An empty crucible was used as a reference and placed
in the reference furnace. Two types of measurements were carried out: a ramp from 10
to 200 ◦C (heating rate of 10 ◦C/min) and an isothermal at 150 ◦C for 2 h (heating rate of
30 ◦C/min).

The relative density of the powder was measured using a helium pycnometer (Accupyc
II 1345, Micromeritics, Norcross, GA, USA).

2.3. Dehydration–Hydration Cycles

In order to perform the dehydration–hydration cycles in a controlled (temperature,
RH) and measurable (mass change) environment, dehydration–hydration cycles of CaHS
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were subsequently performed using a thermogravimetric dynamic vapor sorption system
(DVS Vacuum Surface Measurement Systems). The system consisted of a micro-balance
(precision of ±0.1 µg) and a water vapor pressure flow controller placed in the measuring
chamber. Before the tests, the sample was dehydrated at 150 ◦C under vacuum for 2 h.
Each dehydration–hydration cycle was performed in isothermal mode, at 30 ◦C (the lowest
controllable and achievable temperature), and with varying the RH from 0 to 90%. At each
RH set value, the material was allowed to equilibrate. ESI was available in Supplementary
SI.2 for a complete description of the performed test.

The mass change (∆m(%)) associated with the water uptake/release was calculated
according to the following equation:

∆m(%) =
m(RH, Ts)−m0

m0
×100 (3)

where m(RH, Ts) is the equilibrium weight of the sample at a specific water vapor pressure
and sample temperature, and m0 is the dehydrated sample weight.

In order to evaluate the moles of H2O per mole of CaHS, the following equation was
applied:

nH2O =
Mhyd −Manh

MH2O
(4)

where Manh is the molar mass of the anhydrous CaHS (592.75 g/mol), and Mhyd is the
molar mass of the hydrated salt calculated as:

Mhyd= Manh

(
1+

∆m(%)

100

)
(5)

3. Results and Discussion
3.1. CaHS Chemical Analysis, Structural, and Morphological Characterization

For completeness, a comparison between CaHS and its precursor, Na2HS (JCPDS #
71-1637), is given in terms of structure and morphology. As inferred from the XRD analysis
reported in Figure 1, the two materials exhibit different patterns, namely a structural
modification caused by substituting the sodium cation with a calcium one. No repository
files (CIF—Crystallographic Information File) were available for CaHS in the International
Center for Diffraction Data database. Nevertheless, the patterns match with other results in
the literature [22,24]. For completeness, the peaks list and d-spacing of the two materials
are reported as Supplementary Information (Tables S1 and S2). Furthermore, CaHS exhibits
significantly poorer crystallinity than Na2HS. This structural change is also accompanied
by a morphological modification as confirmed by SEM analysis (compare Figure 2a,b with
Figure 2c,d). Indeed, while Na2HS is made of large edgy particles, CaHS shows uniformly
aggregated particles with irregular shapes. EDX elemental analysis on CaHS (Figure 2e)
reveals the presence of calcium, oxygen, and sulfur in addition to carbon and nitrogen. No
sodium signal is detected, thus excluding the presence of unreacted disodium ceftriaxone.

The coordination mode of the ceftriaxone anion towards Ca2+ was determined by
comparing the FTIR spectra of Na2HS and CaHS (Figure 3). After the complexation of cef-
triaxone to the Ca2+ ion, the frequencies of both of the stretching vibrations of the carbonyl
groups of β-lactam ((C=O) β-lactam) and triazine ((C=O) triazine) are shifted towards
higher values, thus implying the involvement of the oxygen atoms in the coordination
towards the Ca2+ ion. A shift towards higher wavenumbers at 3480 cm−1 is also observable
for the band at 3427 cm−1 assigned to the (N−H) stretching vibration of the NH2 group,
supporting the hypothesis that the nitrogen atom of the amino group coordinates with
the metal ion. The carboxylate group (COO) peak is shifted towards lower wavenumbers
(1582 cm−1). In agreement with previous findings [20], these shifts imply that the oxygen
in the carboxylate group (COO) and the the oxygen carbonyl group (C=O) of β-lactam
and the nitrogen in the amine group and the oxo group of the triazine ring are involved in
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the coordination. The band at 3270 cm−1 is assigned to the stretching vibration of (O–H)
group-coordinated water molecules.
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3.2. CaHS Thermochemical Behavior and Thermal Stability

The thermochemical behavior of the CaHS was evaluated via thermogravimetric
analysis. The experiment carried out while ramping from r.T. to 200 ◦C (Figure 4) found that
the material undergoes continuous mass loss during the overall investigated temperature
range (Figure 4). The measured mass loss was ~13.1%, corresponding to the 4.3 water
molecules initially contained in the as-synthesized material, assuming that the loss was
entirely associated with the water release.

To verify if the mass loss up to 200 ◦C was associated with water molecule dissociation
and to determine the material thermal stability at higher temperatures, the following
test was carried out: the material was heated from r.T. up to 350 ◦C in a vertical reactor
under inert atmosphere, and the gaseous evolved species was analyzed, using a mass
spectrometer as a function of temperature, as shown in Figure 5. Two distinctive processes
occurred in the investigated temperature range. The first, between 25 and 215 ◦C and in
agreement with TG data (Figure 4), consisted of the dehydration process, as confirmed by
the detected mass spectrum corresponding to the molecular species with a molar mass
of 18 g/mol. However, beyond 215 ◦C, the compound underwent a degradation process,
likely irreversible, that was still incomplete at 350 ◦C. Indeed, at 275 ◦C, peaks of CO2 and
NO2 are clearly observable in the mass spectra (Figure 5). In contrast, no water loss was
detected during this second process. Hence, the dehydration process was expected to be
complete at 215 ◦C.

Reasonably, 150 ◦C was selected as the operating dehydration temperature. Upon
dehydration of CaHS in a furnace at 150 ◦C under static air for 2 h, the FTIR spectrum
of the dehydrated salt (CaHS-D) remained almost unchanged, except for the stretching
vibration of (O–H) group-coordinated water molecules, which disappeared, as shown in
Figure 6, proving that no material decomposition occurred at this selected temperature.
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Figure 2. SEM micrographs of (a,b) Na2HS and (c,d) CaHS with (e) EDX spectrum.

XRD analysis after the thermal treatment at 150 ◦C under static air for 2 h was indica-
tive of an amorphous structure (see Figure S3 of ESI).

Furthermore, it is noteworthy that the CaHS did not suffer from deliquescence phe-
nomena, even at an RH of ~100%. This was verified by introducing previously dehydrated
(at 150 ◦C for 2 h, shown in Figure 7a) CaHS into a hydration chamber that consisted
of a sample holder inside a sealed Teflon autoclave containing water for 2 h, in order to
establish a gas–liquid equilibrium at 30 ◦C and a relative humidity (RH) of 100%. As
shown in Figure 7b, the CaHS appears almost dry, and, macroscopically, powder gran-
ules/aggregates are distinguishable.
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heating (10 ◦C/min) CaHS under an inert atmosphere (Ar 100 mL/min).
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3.3. Dehydration–Hydration Cycles

Dehydration–hydration cycles were carried out via a thermogravimetric dynamic
vapor system under isothermal and isobaric conditions. For the isothermal experiment, a
temperature of 30 ◦C was selected and the chamber RH was varied within the range of
0–90%. The results of three-cycle experiments are reported in Figure 8.

At 90% RH, the material was found to have a mass gain of ~20.45%, which corre-
sponded to ~6.7 water molecules. This result is in agreement with the literature, where,
accordingly, the maximum hydration number of this material is seven [22]. From the TG
results (Figure 4), the as-synthesized material was found to have (a hydration number
of 4.3, which is in agreement with the DVS results. Indeed, at an RH close to the one at
which the material was synthesized (50%), the mass gain due to hydration was ~13.45%,
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corresponding to ~4.4 water molecules, which was very close to the value obtained by the
TG experiment (~13.1%, ~4.3 water molecules).
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Figure 8. Hydration–dehydration cycles of CaHS through a thermogravimetric dynamic vapor
system under isothermal conditions (T = 30 ◦C) and varying the RH. Before the first hydration, the
material was dehydrated at 150 ◦C under a vacuum for 2 h.

After dehydration, namely reducing the RH to 0, a residual mass was observable
that corresponds to ~1.5 water molecules. For achieving complete dehydration in an
operationally relevant time range, a higher temperature than 30 ◦C was required. Hence,
under an isothermal dehydration–hydration cycle, the material could store/release about
five water molecules. Further dehydration–hydration studies are ongoing at different
temperatures and under isobaric conditions.

After the first cycle, the second and the third cycles profiles are comparable, thus
indicating that material stability was achieved.

Hysteresis is observable between the dehydration and hydration reactions for the
entire RH range, indicating a kinetic barrier. Generally, the presence of hysteresis between
the sorption and desorption isotherms indicates that the water diffusion through the
material structure is slower when the lattice re-arranges upon hydration [25]. This is
applicable to CaHS; indeed, the material transforms from a completely amorphous structure
to a more ordered one (see Figures 1 and S3) when it converts from the dehydrated to the
hydrated form. Furthermore, due to this hysteresis, at equal temperatures, the difference in
the relative humidity conditions under which the heat storage occurs and those at which
the release phase takes place was extreme. This can prevent the material from dispersing
the accumulated heat in the case of required intermediate operating conditions.

3.4. Heat Storage Capacity Evaluation

For a more comprehensive study, DSC analysis was carried out by heating the CaHS
from 10 ◦C up to 200 ◦C by 10 ◦C/min. The thermogram, reported in Figure 9a, exhibited a
broad endothermic peak which extended throughout the temperature range, and, from its
deconvolution, four thermal events could be identified.

In order to determine the reaction enthalpy associated with the dehydration process
of CaHS, and thus its heat storage capacity, DSC analysis was carried out under isother-
mal conditions at 150 ◦C. The setpoint temperature was rapidly achieved by heating at
30 ◦C/min from ~10 ◦C. A narrow endothermic peak was observed (Figure 9b), and the
thermal event could be concluded after 20 min from the beginning of the experiment.
Starting the analysis at a lower temperature allowed the measurement of the heat involved
due to the water loss at r.T., which could not be evaluated by TG/DSC measurement. The
estimated enthalpy of dehydration reaction of CaHS from heptahydrate to anhydrous
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was ~595.2 kJ/kgCaHS (or ~427.8 kJ/molCaHS). Considering the measured value of bulk
density of 1.6852 (±0.002) g/cm3, the volumetric heat storage capacity was estimated to be
~278.6 kWh/m3.
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A comparison between CaHS and other selected common inorganic salt hydrates
studied for thermochemical energy storage is reported in Table 1.

Compared to the most investigated inorganic salt hydrates listed here, CaHS offers a
comparable level of heat storage (per mass and volume units) in line with the requirements
for TES application and overcoming the deliquescence issue. Additionally, CaHS did not
incur the risk of forming by-products in other salt hydrates that may suffer instability
issues, such as Cl- and S-based salt hydrates. Indeed, chlorides, especially if dehydrated
above 140 ◦C, decompose and form volatile HCl, which may induce corrosion problems in
the system [9,10]. Na2S, despite its good storage capacity, evolves H2S, which is toxic and
corrosive [9,10]. Moreover, in CaHS, the Ca2+ ion is not susceptible to redox processes that
can compromise efficiency, such as in CrCl2 and FeCl2, where Cr2+ and Fe2+ ions tend to be
oxidized in a humid environment [26,27].
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Table 1. List of thermophysical characteristics (moles of H2O involved in the dehydration process
(n); molar enthalpy of dehydration per moles of material (∆H (kJ/mol)); heat storage capacity per
mass (QM); and volume (QV) of material) and working conditions (dehydration (Tdeh) and hydration
(Thyd) temperatures) of CaHS and other selected common inorganic salt hydrates.

Compound n ∆H
(kJ/mol)

QM

(kJ/kg)
QV

(kWh/m3)
Tdeh (◦C) Thyd (◦C) Ref.

CaHS · 7H2O 4.3 427.8 595.2 278.6 150 30 this study
SrBr2 · 6H2O 5 337.0 947.9 433.5 52 45 [3–5]
SrCl2 · 2H2O 1 59.0 302.4 164.1 52 46 [3–5]

MgSO4 · 6H2O 4 225.1 986.4 558.0 91–123 10 [3–5]
MgCl2 · 6H2O 1.3 71.5 351.7 153.3 104 61 [4,8]
CaCl2 · 2H2O 2 125.0 837.0 542.5 111 63 [4,8]

LiCl · H2O 1 62.9 1041.2 486.0 80 73 [4]
K2CO3 · 1.5H2O 1.5 95.5 579.6 355.6 65 59 [4]

Na2S · 5H2O 3 188.7 1120.3 780.6 73 66 [3,4]

Furthermore, CaHS operating conditions are less limiting with respect to other in-
organic salts. Indeed, the deliquescence phenomena are not observable even at high RH
values, and no decomposition is detectable below 150 ◦C. Additionally, a critical dehy-
dration temperature may limit the efficiency of an inorganic system—for example, the
equilibrium of the MgSO4–H2O couple is, indeed, very close to the pressure–temperature
equilibrium curve of water; hence, in real operating systems, the small difference between
the applied temperature for the hydration process and the resulting discharged one com-
promises the efficiency of systems based on this salt [10]. Comprehensibly, concerns may
arise due to the cost of this specific salt, which was synthesized from commercial disodium
triaxone. Nevertheless, in light of the reported results, this study opens new paths for
the exploration of, organic salt hydrates, a new class of materials, for TES application.
CaHS, which was selected as a model molecule, exhibits interesting heat storage capacity,
thermal stability in a broad temperature range, and safety from common problems typical
of inorganic salt hydrates (such as deliquescence).

4. Conclusions

We propose for the first time the use of an organic hydrated salt as a candidate material
for thermochemical energy storage, specifically calcium;7-[[2-(2-amino-1,3-thiazol-4-yl)-2-
methoxyiminoacetyl]amino]-3-[(2-methyl-5,6-dioxo-1H-1,2,4-triazin-3-yl)sulfanylmethyl]-
8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate, known as calcium ceftriaxone, which
we named CaHS (calcium hydrated salt) and used as our model compound. This mate-
rial undergoes reversible dehydration–hydration reactions. The operating dehydration
temperature range, 30–150 ◦C, similar to that of inorganic salt hydrates, is suitable for
low-/middle-temperature thermochemical energy storage applications. In such a context,
systems that waste (e.g., industrial processes) or produce (e.g., solar thermal panels) heat
within this temperature range could be the potential users of this TCM. In comparison
to its inorganic counterparts, CaHS is stable upon exposure at an RH of 100% at 30 ◦C,
assuring no drawbacks related to deliquescence phenomena and, at the same time, fully
recovering its hydration uptake at low temperature. Additionally, CaHS does not show
any decomposition under the operating conditions, avoiding the need for any preventive
strategy (e.g., limitation of maximum charging temperature, working at a low heating rate
for the discharging step, using porous matrices, etc.). The material heat storage capacity
(~595.2 kJ/kgCaHS) is comparable with that of other inorganic salt hydrates, without ap-
preciable efficiency losses in terms of energy as cycles are performed due to unconverted
material.

Such encouraging results strongly support the idea of considering hydrated organic
salts for effective TCS applications, breaking new ground for this field of research. Fur-
ther studies are ongoing for better understanding the material’s behavior at different
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dehydration–hydration temperatures and under isobaric conditions, as well as its stability
upon several hydration–dehydration cycles.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15124339/s1. Figure S1: XRD diffractogram of CaHS after
thermal treatment at 1000 ◦C. Figure S2: DVS RH(%) profiles as function of time. Figure S3: XRD
diffractogram of dehydrated CaHS. Table S1: List of the d-spacing and Miller indexes for Na2HS
(JCPDS # 71-1637). Table S2: List of calculated d-spacing for CaHS.
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