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Abstract: In recent years, machine learning, especially deep learning, has developed rapidly and has
shown remarkable performance in many tasks of the smart grid field. The representation ability of
machine learning algorithms is greatly improved, but with the increase of model complexity, the
interpretability of machine learning algorithms is worse. The smart grid is a critical infrastructure
area, so machine learning models involving it must be interpretable in order to increase user trust
and improve system reliability. Unfortunately, the black-box nature of most machine learning models
remains unresolved, and many decisions of intelligent systems still lack explanation. In this paper, we
elaborate on the definition, motivations, properties, and classification of interpretability. In addition,
we review the relevant literature addressing interpretability for smart grid applications. Finally, we
discuss the future research directions of interpretable machine learning in the smart grid.

Keywords: interpretable machine learning; explainable artificial intelligence; machine learning; deep
learning; smart grid

1. Introduction

The smart grid greatly improves the traditional power grid with advanced mea-
surement and sensing, information and communication technologies, simulation analysis
and control decision-making systems [1–4]. Compared with the traditional power grid,
the smart grid has more advantages in self-healing, renewable energy consumption, situa-
tional awareness, information interaction and stability [5,6]. With the access to intermittent
and distributed generation and the development of electricity markets, the complexity and
uncertainty of the operation of the power system have greatly increased. The smart grid is
gradually becoming a power cyber-physical system that closely integrates measurement,
communication and various external systems (such as weather, market, etc.) [7,8]. It con-
tinues to generate high-dimensional, multi-source heterogeneous data. The emergence of
massive data can provide data support for the study of smart grid problems, but also bring
a new challenge to smart grid management. How to efficiently and pertinently analyze
massive data with complex sources and extract valuable information from it to assist smart
grid decision-making has become an important topic [9].

Artificial intelligence (AI) technology, which can improve the efficiency and accuracy
of decision-making, is an important means to support the smart grid [10]. Machine learning
(ML) is a branch of AI, the key technology and core creativity of AI development, and plays
a major role in promoting the development of AI technology. The application of ML
technology in the smart grid is regarded as one of the important technologies in the
development of the power industry. ML algorithms use few assumptions and a lot of
computing power to mine complex relationships of history data [11]. The use of ML
algorithms can form input–output relationship mapping for complex mechanisms in the
smart grid, thereby breaking through the limitations of existing physical knowledge, so
it is very suitable for dealing with the challenges of the smart grid. Commonly used
ML algorithms include linear regression (LR) [12], support vector machine (SVM) [13], K-
nearest neighbors (KNN) [14], clustering algorithms [15], decision tree (DT) [16], ensemble
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learning [17], multi-layer perceptron (MLP) [18], etc. They are currently used to address
many related issues in the smart grid, such as rapid diagnosis of fault information [19],
accurate prediction of distributed energy resources [20], and stability analysis of complex
power grids [21]. In recent years, with the development of computing power, deep learning
(DL) which is a special kind of ML is emerging. DL is a neural network with multiple hidden
layers. Its basic idea is to combine low-level features through multiple layers of network
structures and nonlinear transformations to form abstract high-level representations to
discover complex patterns in data [22]. In recent years, in order to improve the effect
of the deep neural network (DNN) and adapt to different forms of data and problems,
some unique DL algorithms have been proposed successively, such as stacked autoencoder
(SAE) [23], convolutional neural network (CNN) [24], recurrent Neural Network (RNN) [25],
etc. DL algorithms are more complex in structure, which is considered more suitable for
processing the massive and complex data in the smart grid. DL can also provide better
accuracy than other ML algorithms [20].

Although the potential of ML for smart grid applications has been recognized, ob-
stacles to further deployment of ML models remain. An important factor is the black
box nature of most ML algorithms. With the development of ML algorithms, especially
the emergence of DL, its representation ability is gradually improving. However, with
the increase in model complexity, the interpretability of ML algorithms has deteriorated.
Previous works in the smart grid domain mainly pursued accurate ML models while
ignoring interpretability [26]. The power sector is highly regulated, and the analysis as
well as decision-making of the power system must be reliable and transparent [27]. ML
techniques often make critical decisions, especially in use cases regarding power outages
[28], and professionals are hesitant to deploy such models because a model error may
induce a very large impact. Furthermore, electricity is intrinsically complex and dangerous.
If there is a problem with the model, the ML algorithm is likely to affect the personal
safety of field employees [29]. Therefore, for some smart grid control problems that are too
risky, ML is still not trusted at present. Furthermore, power grid professionals are more
interested in understanding how decision outcomes are actually produced. However, most
ML models are so complex that it is impossible for anyone to understand the reasoning
process that makes the predictions. The input may undergo a series of complex nonlinear
transformations, interact with numerous neurons, and then produce predictions. Such a
black-box model cannot help us gain insight beyond the predicted outcome, understand
the key drivers of the model and the role of its different input features [30]. Therefore,
interpretability is an inherent requirement for applications in the power domain. In order
to make better use of ML algorithms to promote the development of the smart grid, it is
urgent to develop interpretable ML.

Interpretable ML is a hot topic in AI, and it allows professionals to understand, audit
and even improve ML systems. ML algorithms are traditionally considered to have a trade-
off between performance and interpretability. ML models such as linear models and DTs
are interpretable, but their fitting ability and prediction performance are often poor [31].
These models tie interpretability to model complexity, especially sparsity. Sparsity is
considered an important aspect of interpretability. For the same model, the sparser the
parameters or structure, the more interpretable the model is. Recently, researchers have
proposed interpretation methods for complex ML algorithms (especially DL) that aim
to enhance model interpretability without sacrificing model complexity, such as local
interpretable model-agnostic explanation (LIME) [32] and shapley additive explanations
(SHAP) [33]. After the model is built and trained, these methods use the approximate
model, feature contribution, sensitivity, or other statistics to explain the black-box prediction
process. At present, interpretable ML has been applied in various fields, such as healthcare,
autonomous driving, finance and other fields, some studies can refer to [34–37].

Although interpretability has been noted in the smart grid and some related work has
emerged, to the best of the authors’ knowledge, there is no related review of interpretable
ML in the smart grid. In general, the limited degree of human understanding of the inter-
pretability of ML limits the upper bounds of ML applications in the smart grid. Therefore,
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we believe that a review of interpretable ML research in the smart grid is warranted. In this
paper, we reveal the development of interpretable ML by reviewing the descriptions of
interpretability and the classification of interpretable ML in recent papers. Further, we
review existing interpretable ML methods in the smart grid, explore new possibilities for
interpretable ML in the smart grid, and propose future research directions.

The rest of the paper is organized as follows. In Section 2, definitions, motivations,
and properties of interpretability are given. Section 3 explains the classification of inter-
pretable ML. Next, Section 4 discusses the application of explainable ML in the smart grid.
Some future research directions are discussed in Section 5. Finally, Section 6 concludes
the paper.

2. Description of Interpretable Machine Learning
2.1. Definition

At present, the interpretability of ML has not been clearly defined, and there are subjec-
tive differences in the understanding of interpretability by different researchers [38–41]. One
of the broadest definitions is given by [38]: ability to explain or to present in understandable
terms to a human. In a nutshell, interpretability means providing simple and clear terms to
explain the decision-making mechanism of a model and enabling users to understand and
trust the decision.

Furthermore, there are two terminologies that are often confused: interpretability and
explainability. Their concepts are difficult to define strictly. Some researchers have pointed
out that interpretability mainly refers to providing human beings with an understandable
model operating mechanism [42]. In fact, Interpretable ML has a long history, dating
back to the 1950s. It first appeared in expert systems based on context rules and logical
models (DTs, Decision rules) [43–45]. Early Interpretable ML pursued intrinsic explanation,
i.e., explanation is part of the model. The original model structure and decision progress are
understandable to people. For example, a DT model is intrinsically interpretable, because it
can provide a human-friendly explanation: IF input x is smaller/large than threshold c AND
...THEN the prediction is the average of the instances in leaf node l. It is important to note that
interpretability is subjective, as it requires statistical or domain knowledge to reasonably
explain the model decision [46].

Explainability refers to giving abstract-level insights into how models work and
make decisions without trying to reveal computational details [47]. Its main purpose is
to introduce explanations for complex black-box models that are not interpretable so that
they can be understood by humans. Explainability stems from function approximation
in the 1990s, where a simple model approximates the model output to explain a black-
box decision process [48], and it is widely researched after DARPA proposed explainable
artificial intelligence (XAI) in 2016. In practice, explainability methods usually generate
some key elements (such as statistics, visualizations, or a simple interpretable model) to
construct approximate explanations.

Actually, interpretability is a broader concept than explainability. As described in [40]:
systems are interpretable if their operations can be understood by a human, either through
introspection or through a produced explanation. This means that interpretability includes
introspection (intrinsically interpretable) and explainability (producing explanations for
black-box models). Therefore, we believe that interpretable ML has broadened the concept.
It pursues not only intrinsic interpretability, but also interpreting/explaining black-box
models and other techniques that make models more transparent.

2.2. Motivations

The motivation for interpretability has stimulated a great deal of discussion. A lot of
papers have discussed the importance of interpretability and highlighted the potentially
catastrophic consequences of a lack of interpretability [38,49,50]. Ref. [49] summarizes three
key reasons: to audit, to validate, and to discover. We find that all three are relevant to the
smart grid. Figure 1 shows the benefits of Interpretable ML for smart grid applications.
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Figure 1. An illustration of interpretable ML in the smart grid.

2.2.1. To Audit

The ML technique has become an important part of many human-oriented applica-
tions, such as credit risk assessment [51], medical screening [52], etc., and has produced a
great social impact. From this perspective, the fairness and ethics of the ML model are a
bigger issue. There may be prior biases hidden in the data, such as racial discrimination,
geographical discrimination, etc. [53]. A trained ML model may inherit biases in the train-
ing data and automate injustices. Interpretable ML methods can help quantify and reduce
this ethical bias by introducing explanations. Notably, the need for interpretability has
been written into laws and regulations. The European Union’s General Data Protection
Regulation (GDPR), which came into effect in May 2018, clearly stipulates that when a
machine makes a decision about an individual, the decision must meet certain requirements
for interpretability.

In the smart grid, we need to focus on this when it comes to applications that are more
focused on the individual [29]. Load modeling or customer behavior modeling may draw
conclusions from the electricity consumption profile of a household or a region. Unfair
decisions can be made when deciding where to upgrade the grid and selecting potential
customers. In addition, smart meter electricity theft detection systems may predict theft
based on factors such as location. This could negatively impact those accused customers.
Therefore, it is difficult to ensure fairness and morality if the reliance of the model on
sensitive features is not transparent enough.

2.2.2. To Validate

When taken from an epistemological point of view, interpretability can help to verify
the safety and reliability of algorithms, thus allowing ML systems to gain trust. The per-
formance and interpretability of ML models in practical critical systems require rigorous
and continuous verification of their safe use [54]. Verifying the behavior of ML systems
is both important and difficult. The black-box nature of most ML models makes it nearly
impossible to verify that they work as expected. A common cause of unreliable systems is
overfitting. Since the model overreacted to tiny noises, it performed well on the training
data, but failed to predict in practice [55]. Interpretation is an effective means of verifying
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network overfitting. Through model interpretation, researchers can gain some information
about whether overfitting has occurred. This is mainly because overfitted models usually
focus on non-informative features in the raw data, which are impossible to understand in
most cases.

In the smart grid, rarely completely testable ML systems pose a challenge for some
applications involving large risks. For example, the accurate and rapid voltage stability
assessment of the power system is of great significance to maintain the voltage stability [56].
Without timely and reliable voltage stability assessment, voltage instability may occur after
a power system is disturbed. In severe cases, it will lead to voltage collapse or even power
outages, causing huge economic losses in multiple industries. Advanced ML techniques
can assess the stability of power system voltages so that grid operators can take preventive
measures in advance. Although the rich high-resolution system state data provided by the
wide-area measurement system of the smart grid creates favorable conditions for this task.
However, how to ensure that ML algorithms can extract the correct valuable information
is still a huge challenge. Since traditional ML algorithms cannot prove the reliability of
the assessment results, operators of smart grids may be reluctant to act in advance to
correct voltage instability. Interpretable ML can provide the decision-making process or the
contribution of the input variables. These interpretations can be compared with the actual
operating laws of the power system to help decision makers verify the reliability of the
prediction results. For example, if there is an interpretation that a too high or too low node
voltage will have a negative impact on the stability prediction, it is in line with the actual
operation law of the power system. The interpretation of the model allows grid operators
to trust prediction results and take quick steps to maintain voltage stability. Figure 2 shows
the general idea of interpretable ML for voltage stability assessment.

Interpretability 
methods

Validation

Voltage Stability
 Assessment Model

Assessment 

Results

Whether to 

Take Action

Variable 
Contribution/Deci-

sion Process

System 

Status Data

Figure 2. The general idea of interpretable ML for voltage stability assessment.

2.2.3. Discovery

An interpretable ML model can help us understand the reasons behind the output
and discover correlations between various factors. This is important because it can provide
meaningful knowledge and even facilitate the formation of new theories.

For smart grid applications, the knowledge generated by model interpretation can
help grid operators solve unexpected problems, thereby guaranteeing system reliability.
For example, grid fault diagnosis is an important application to realize the self-healing
function of the smart grid [57]. When the power grid fails, the power grid fault diagnosis
system needs to quickly analyze the fault-related data from the massive measurement data,
find the cause of the fault, and assist the dispatching operators to analyze and deal with
the accident in a timely manner, and quickly restore the power supply. In order to identify
and resolve failures as quickly as possible, we must identify the most likely failures and
their causes for further investigation. We can use system measurements, as well as other
external factors (such as weather), to train a fault diagnosis model and generate a fault list
that enables operators to take appropriate action immediately. In this case, interpretable
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ML can help explain the types of failures that may occur so that maintenance personnel
can fix them as quickly as possible. Going a step further, interpretable ML can discern the
causal logic between input and output to discover the cause of equipment fault, so that they
can find weak points in the system and take action to prevent the failure from recurring.
Figure 3 shows a flowchart of interpretable ML methods for smart grid fault diagnosis.

Input Data

Status Data 

Device Data 

Weather Data

…

Model 

Training

Model 

Prediction

Fault State

Fault Type

Fault Location

Maintenance 

Measures

Discovering knowledge 
Fault Feature Correlation

System Weak 
Points

Preventive 
Measures

Interpretability 
methods

Figure 3. A flowchart of interpretable ML methods for smart grid fault diagnosis.

2.3. Properties

Below we give several properties of explanation methods, which are derived from the
research of [58]. These properties can be used to judge the quality of interpretable methods
or explanations, although it is still difficult to accurately quantify these properties.

• Expressive Power: The language or structure of explanation. Such as logic rules,
linear models, statistics, natural language, etc.

• Translucency: Translucency describes how much the explanation method looks inside
the ML model. For example, interpretable methods that rely on intrinsically inter-
pretable models are highly translucent. Explanation methods that rely only on inputs
and outputs and treat the model as a black box have zero translucency.

• Portability: Portability describes the range of ML models that can be interpreted using
this method. Model-agnostic methods are more portable.

• Algorithmic Complexity: The computational complexity of the interpretable methods.

The quality of explanation is another important characteristic and usually has the
following properties:

• Accuracy: The ability of an explanation for a decision to generalize to other unseen situations.
• Fidelity: The degree to which the explanation reflects the decision-making behavior

of the model. Some explanations only provide local fidelity, such as LIME.
• Consistency: Consistency measures the degree to which models trained on the same

task and producing similar predictions produce similar explanations.
• Stability: Stability is the similarity of explanations between similar instances. This

criterion targets explanations generated from the same prediction model.
• Comprehensibility: The readability of the explanation (subjective) and the size of

the explanation (such as the depth of the DT, the number of weights in the linear
model, etc.).

• Certainty: Whether the explanation reflects the confidence of the predicted result.
• Degree of Importance: Does the explanation include the importance of its return component?
• Novelty: Does the explanation reflect that the instance to be explained comes from a

new region far from the distribution of the training data? With high novelty, model
decisions may be inaccurate.

• Representativeness: Representativeness is the extent to which the explanation can
cover the instance. For example, the rule interpretation of a DT can cover the entire
model, and the Shapely value only represents the interpretation of a single prediction.
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3. Taxonomy of Interpretable Machine Learning

Interpretability methods can be classified according to different criteria [59]. It can be
divided into local versus global according to whether it is for a specific sample/feature or the
whole of the model. Another criterion is model-specific versus model-agnostic. Model-specific
methods rely on the parameters or internal structure of the model. Model-agnostic methods
only need to know the inputs and outputs of ML models, so it is suitable for interpreting
any ML model. It can also be divided into pre-model, in-model and post-model according to
the stage of explanation generation. In this paper, we adopt this classification to introduce
different interpretability methods, as illustrated in Figure 4.

 Interpretable 
 Machine Learning

 Pre-Model

 In-Model

 Post-Model

 EDA

 Visualization

 Feature Engineering

 Data Summarization

 Simple Intrinsically 
 Interpretable Models

 LR

 Self-Explanatory Neural 
 Networks

 Interpretation of Model
 DeConvNet

 Interpretation of 
 Prediction

 Mimic Model

 GLM

 GAM

 DT

 DL

 KNN

 Capsule Network

 PINN

 KPRN

 Attention Machanism

 Network Dissection

 PDP

 ICE

 Guided Backpropagation

 LRP

 CAM

 TCAV

 ......

 Model Distillation

 LIME

 ......

Figure 4. Taxonomy of interpretable ML.

3.1. Pre-Model

Pre-model interpretability is applied before ML model selection and training. Pre-
model interpretability is related to data interpretability, whose goal is to understand the
dataset used for ML models as much as possible. Pre-model interpretability is mainly
achieved through exploratory data analysis (EDA) [59]. EDA is a collection of data analysis
methods used to explore the structure and regularity of data [60]. EDA can help us
better understand patterns in data, find outliers, and find correlations between features.
The most basic EDA method is descriptive statistics, including calculating the mean,



Energies 2022, 15, 4427 8 of 31

standard deviation, and quantiles. Other methods are visualization, feature engineering,
data summarization, etc. [61].

Visualization is an important means of exploratory data analysis. Visual analysis
transforms data into graphical representations, which can enhance human cognitive ability
to data. Visualization is also widely used to improve data quality and assist data pro-
cessing [62]. To support users in visually identifying patterns in high-dimensional data,
dimensionality reduction methods are usually used to visualize high-dimensional datasets.
Commonly used dimensionality reduction methods are principal component analysis
(PCA) [63] and t-distributed stochastic neighbor embedding (t-SNE) [64].

Feature engineering can extract useful features and discover feature relationships.
Representative sparse features help understand and interpret data. Feature extraction is
a critical step in interpretable feature engineering, as the future implementation of ML
algorithms heavily depends on the selected features [61]. Feature correlation analysis can be
used to find implicit relationships between variables from large-scale data sets. It can also
help us verify subjective judgments and improve data interpretability. The most commonly
used feature correlation analysis methods are Pearson correlation [65] and Spearman’s
rank-order correlation [66].

The target of data summarization is outputting smaller subsets of samples that reflect
the overall characteristics of the dataset [67]. Prototype selection is an implementation of
data summarization [68]. Prototype selection usually selects the sample prototype that
is most representative of the data according to the inherent distribution and structure of
the target set. Classical prototype selection algorithms include K-Medoid [69] and Affinity
Propagation Clustering [70], which select the prototype set that meets the requirements by
minimizing the global dissimilarity between the target set and the prototype set. The proto-
type reflects the main distribution of the data set, but does not reflect all distributions of
the data. Ref. [71] proposed model criticism, i.e., the data points with the largest similarity
deviation between the dataset and the prototype. Criticism represents data points that are
not well explained by the prototype and it gives new insights into the data.

3.2. In-Model

In-model interpretability aims to create ML models that are intrinsically interpretable [59].
The explanation is contained within the model and is part of the prediction process, allowing
model decisions to be understood without additional post-processing. We generally create
intrinsically interpretable ML models through mediations and constraints such as linearization,
rules, examples, sparsity or causality.

3.2.1. Simple Intrinsically Interpretable Models

The easiest way to achieve in-model interpretability is to use simple ML models.
These models are inherently transparent, decomposable and simulatable. Some classical
linear models, such as LR, generalized linear model (GLM), generalized additive model
(GAM) have simple structure and strong statistical basis. For LR, the model weights
reflect the relationship between features, giving an easy-to-understand explanation. GLM
is a generalization of LR model [72]. On the one hand, GLM does not require a linear
relationship between features and prediction. On the other hand, GLM does not require
the predictions to obey a normal distribution. GLM has the following form:

g(y) = β0 +
n

∑
i=1

βixi, (1)

where xi is the ith feature, g is a link function and βi represents model weight. Logistic
regression model is a GLM that assumes a Bernoulli distribution and uses the Logit function
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as the link function. GAM is a further extension of GLM that allows the use of arbitrary
functions to model the effect of each feature on prediction [73]. The general form of GAM is:

g(y) = β0 +
n

∑
i=1

fi(xi), (2)

where fi represents a univariate function which is possibly nonlinear. GAM is more accurate
because it captures the nonlinear relationship between each feature and the final prediction.
Further, pairwise interactions can be added to the GAM to form GA2M [74], which has the
following form:

g(y) = β0 +
n

∑
i=1

fi(xi) + ∑
i 6=j

fi,j(xi, xj), (3)

The link function of a GAM can be a very complex nonlinear function, even a DT or a
neural network.

The rule-based methods give the model decision-making process in symbolic form,
which can describe and explain the model mechanism [75]. The most widely used rule
model is DT. A DT consists of leaf nodes representing categories and internal nodes
representing features or attributes. Every path from the root node to the leaf node in the
DT can be transformed into a rule in the form of if-then, forming a traceable reasoning
process [16]. Some other rule-based methods are decision list, decision set and fuzzy system
etc. Decision list or decision set are assembled from a set of pre-mined rules by association
classification methods [76]. Decision list greedily adds rules to the model one by one.
Decision set scores each rule individually according to the scoring function and simply
adds all the "highest scoring" rules to the model. In addition, the fuzzy rule-based system
also provides interpretability and is able to effectively utilize quantitative information and
qualitative knowledge to deal with uncertainty [77].

KNN is the most classic nearest neighbor-based model. KNN finds k training instances
with the smallest distance from the test instance and uses their average as the prediction.
Finding a suitable distance metric to quantify the difference between input instances is
very important for KNN models [78]. It is important to note that the nearest neighbor
models require a lot of distance computation. Moreover, the nearest neighbors may not be
representative, leading to poor interpretability.

3.2.2. Self-Explanatory Neural Networks

In addition to the existing simple models, there are some ways to generate in-model
interpretability by making deep models more transparent. These complex models often
have meaningful features or structures within neural networks from which useful informa-
tion can be extracted to explain prediction. There are roughly two types of self-explanatory
neural networks. One is to the neural network imposes physical, semantic, or causal
constraints to make its structure more interpretable. The other is to include the explanation
generation module in the model.

Many methods have emerged to make the structure of neural networks more in-
terpretable. Ref. [79] proposed capsule network, which improved the traditional CNN.
Capsule network replaces the neurons of a traditional neural network with a vector (called
capsule), which can detect a specific pattern. Capsule network can be regarded as a specific
semantic network structure. The weighted routing relationship between capsule nodes can
explain the spatial relationship between detected objects, reflecting the causal correlation
interpretation. Ref. [80] designed a physical information neural network (PINN) to incor-
porate physical prior knowledge for deep learning. PINN approximates the solution of a
set of partial differential equations with initial and boundary conditions. The loss of PINN
includes errors in initial and boundary conditions, as well as errors in partial differential
equations. PINN enhances interpretability through the action of automatic differentiation.
The knowledge graph regards each element in the dataset as an entity, and there is a path
between entities. Knowledge graph reveals relationships between adjacent entities by
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encoding contextual information, intrinsically supporting reasoning and causality. Ref. [81]
combined knowledge graph and long short-term memory (LSTM) network to propose
knowledge path recurrent network (KPRN). KPRN can directly exploit the entity relations
on the path for interpretation.

Some neural network models incorporate explanation generation modules into net-
work training. While completing the prediction task, it can also generate feature summary
explanations or human-understandable visual or natural language explanations. The at-
tention mechanism is a strategy that enables neural network to output feature summaries
explanation [82]. Attention mechanism can be added to most neural networks and endow
the model with the ability to distinguish key important information. The attention mech-
anism is currently widely used in image processing, natural language processing, time
series prediction and other fields. With attention weights, the attention mechanism can
well interpret the alignment relationship between input and output. In addition to feature
importance, there are also important feature subset explanations. Ref. [83] introduced a
self-explanatory neural network in which an explanation generation module generates a
subset of important features for each sample. This sample makes predictions only based
on important features. On the other hand, it is also possible to generate an explanation
that is directly understandable to humans. Ref. [84] proposed a framework for deep visual
interpretation using natural language, combining classification and interpretation models
to visually explain the basis for the predicted label given by the image. Ref. [85] proposed
a method for generating multimodal explanations that include both visual and textual
explanations. Multimodality can promote each other to improve the quality of interpreta-
tion. Ref. [86] introduced the teaching explanations for decisions (TED) framework for
generating local explanations that satisfy human mental models. TED utilizes explanation
production components to generate domain-specific explanations that reflect the reasoning
process of human experts in a particular domain.

3.3. Post-Model

Post-model interpretability attempts to explain the trained ML model. Due to the
increasing complexity of ML models, post-model interpretability has become the main
direction of current interpretable ML research and is mainly focused on the field of deep
learning [87]. According to the different interpretation objects, post-model interpretability
is mainly divided into three types: interpretation of model, interpretation of prediction
and mimic model. Table 1 summarizes the post-model interpretability methods, giving
common methods and their interpretation forms.
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Table 1. Summary of post-model interpretability methods.

Type Medium Representative Method Interpretation Form

Interpretation of
model

Hidden layer analysis
DeConvNet [88],

Network
dissection [89,90]

Visualization of
internal pattern

Activation
maximization Ref. [91] example

Interpretation
of prediction

Sensitivity analysis

PDP [92], ICE [47], ALE
plot [93], Influence

function [94], Ref. [95],
MASK [96]

Feature summary

Gradient
backpropagation

Gradients [97], Guided
backpropagation [98],

Integrated Gradi-
ents [99],VarGrad [100]

Feature summary

Relevance
propagation

LRP [101],
DeepLIFT [102] Feature summary

Shapley Values KernelSHAP [103],
TreeSHAP [104] Feature summary

Activation map
CAM [105],

Grad-CAM [106]
Grad-CAM++ [107],

Feature summary
(saliency map)

Conceptual
attribution TCAV [108], ACE [109] Conceptual

feature summary
Counterfactual

explanation Ref. [110] example

Mimic model Global mimic model Model distillation [111],
Tree regularization [112]

Intrinsically
intepretable model

for all samples

Local mimic model LIME [113], DLIME [114],
Anchor [115]

Intrinsically
Intepretable model

for local area

3.3.1. Interpretation of Model

The main purpose of interpretation of model is to understand the inner working
mechanism of the neural network and the learned meaning of the hidden layers. Common
interpretation methods of model are hidden layer analysis and activation maximization.

The main purpose of hidden layer analysis is to analyze and visualize the semantics
learned by the hidden layers in the neural network. This approach can help people generate
deep insights into the internal structure of deep networks and build an interactive system.
Ref. [88] visualized the features of each hidden layer of CNN using the deconvolution
network (DeConvNet). The features learned by each convolutional layer are visually
presented. The first few layers of CNN mainly learn background information, and the
higher the number of layers, the more abstract the learned features. Going a step further,
we can analyze abstract concepts learned by individual neurons. Ref. [89] proposed a
framework for network dissection. They quantified the semantics learned by individual
neurons in neural networks used in the image domain by analyzing network changes when
neurons were activated or deactivated. Ref. [90] analyzed the role of individual neurons
of neural networks used in the field of natural language processing. They studied their
linguistic meaning by visualizing the saliency maps of the neurons that had the greatest
impact on output.

The goal of activation maximization is to find an input pattern that maximizes activa-
tion for a given neuron. The input pattern to which a neuron responds maximally may be
a good first-order representation of what a neuron is doing [91]. This is an optimization
problem that can be defined as:

x∗ = arg max( fl(x)− λΩ(x)), (4)
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where fl(x) is the activation of a neuron in the lth layer of neural network under the input
x, Ω is an optional regularizer. Analyzing the generated prototype sample x∗ can help
us understand what the neuron learned. When we analyze the maximum activation of
the output neuron, we can find a prototype corresponding to a certain class. However,
the activation maximization method can only be used to optimize continuous data, and it
is difficult to directly use it in natural language processing models.

3.3.2. Interpretation of Prediction

Interpretability methods of prediction mainly study the sensitivities or contributions
of features (including user-defined advanced features) to predictions. It includes methods
such as sensitivity analysis, gradient backpropagation, relevance propagation, shapley
Values, activation map, conceptual attribution, counterfactual explanation, etc.

Sensitivity analysis refers to a method to study the degree of influence of input
changes on output [116]. Sensitivity analysis gives explanations in the form of a feature
summary, which can be global or local. Classical global sensitivity analysis methods
include partial dependence plot (PDP) [92], individual conditional expectation (ICE) [47],
accumulated local effects (ALE) plot [93], etc. PDP can show the global impact of specific
features on the prediction results of the model. PDP can be obtained by calculating the
average of the predictions of the original model for each sample set. ICE characterizes the
relationship between individual prediction and a single feature. An ALE plot can describe
the average influence of features on predictions. ALE is more practical as it gets rid of
the constraints of feature independence. Local sensitivity analysis studies the impact of a
specific sample change on its prediction. Ref. [94] evaluated the importance of a training
sample through the influence function, which is defined as the derivative of the parameter
change to the small change of the sample. Some local sensitivity analysis methods treat
the model to be explained as a black box, and only need to know the output of the model
for a certain input. Ref. [95] determined the sensitivity of the feature to the prediction
by the change of the prediction before and after deleting a feature. Ref. [96] proposed
an image sensitivity analysis method based on MASK by perturbing different regions of
the image to be explained, the most significant part of its predicted value is found as a
saliency explanation.

Gradient backpropagation-based methods exploit the back-propagation of gradients
in neural networks to understand the impact of changes in the input on the output. Gradi-
ents [97] is a classic gradient attribution method, which uses the gradient of the input layer
as the importance of pixels to generate saliency maps. Guided backpropagation [98] com-
bines the deconvolutional nets [88] with Gradients and corrects the gradient of the ReLU
by discarding negative values during backpropagation. Ref. [99] proposed Integrated Gra-
dients, which effectively addresses misleading interpretations due to vanishing gradients
by integrating relative gradients instead of a single gradient. In addition, the saliency map
generated by the gradient backpropagation method usually has more noise. VarGrad [100]
produces higher quality saliency maps by averaging the interpretations of multiple noisy
copies of the image.

Layer-wise relevance propagation (LRP) is an interpretability method based on deep
Taylor decomposition [101,117]. LRP distributes prediction scores backwards up to the
input layer through specialized correlation propagation rules and ultimately determines
the contribution of individual features to predictions. Each neuron in each layer of the
LRP corresponds to a correlation score. According to the propagation rule, the assignment
of each neuron to the lower layers is conserved with the correlation score received from
the higher layers. LRP can be applied to various data types as well as various neural
networks. Ref. [102] proposed DeepLIFT to improve the LRP method, which improves
the quality of saliency maps by defining reference points in the input space and propa-
gating the correlation scores proportionally with reference to the gradient information of
neuron activations.

SHAP [103] is a game theory inspired method that attributes the output value to the
shapely value of each feature. SHAP has a solid theoretical foundation in game theory,
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and as such, its explanation has good properties. SHAP quantifies the contribution to
the prediction by computing Shapely values for each feature. SHAP explanation has the
following form:

g(z′) = φ0 +
N

∑
i=1

φjz′i, (5)

where g is the interpretable model, N is the number of input features, z′ represents the
presence or absence of the corresponding feature (1 or 0), φi is the Shapley value, and φ0 is
a constant. For a certain feature xi, the shapley value needs to be calculated by all possible
feature combinations, and then weighted and summed, that is:

φi(val) = ∑
S⊆{x1,...xN}\{xi}

|S|!(N − |S| − 1)!
p!

(val(S ∪ {xi})− val(S)), (6)

where S is the subset of features used for the model, xi is the ith feature of the sample
to be explained, val(S) refers to the model output value under the feature combination
S. However, a practical issue is exponential computational complexity, more seriously,
the training cost before each call of val(S). To solve this problem, KernelSHAP was
proposed to approximate the actual Shapley value in [103]. The workflow of KernelSHAP
is shown in the Figure 5. The calculation of the kernel to estimate the SHAP value is as
follows:

πx
(
z′
)
=

(N − 1)
(N choose |z′|)|z′|(N − |z′|) , (7)

where |z′| represents the number of non-zero features of z′. The loss function used to train
the weighted linear model is defined by:

L( f , g, πx) = ∑
z′k∈Z

[
f
(
hx
(
z′k
))
− g

(
z′k
)]2

πx
(
z′k
)
, (8)

Generate perturbed
 set

Transform       to the original 
feature space 

Input to black box 
model:

Calculate the 
weight 

Fit a weighted linear 
model

Return the Shapley
 value 

{0,1}N
kz 

kz
( )x kh z ( ( ))x kf h z

k ( )g z ( )x kz 

Figure 5. The workflow of KernelSHAP.

In 2018, [104] further proposed TreeSHAP for tree-based ML models. TreeSHAP is
faster than KernelSHAP and can accurately estimate Shapley values.

Activation map-based interpretability methods are mainly used for interpreting CNN
models. They generate pixel-level feature summary in the form of a saliency map by
a weighted combination of feature activation maps. Class activation map (CAM) [105]
introduces a global average pooling layer instead of a fully connected layer, and then
obtains the mean value of each feature map in the last convolutional layer, which is then
weighted and summed. Grad-CAM [106] uses a weighted combination of gradients using
the activation maps of the last convolutional layer as weights to obtain saliency maps.
Grad-CAM++ [107] extends object localization to multiple object instances in a single
image, while using the mean of the positive partial derivatives of the last convolutional
layer as weights to generate saliency maps.

Attribution methods do not necessarily focus only on raw features, but also on user-
defined concepts. Ref. [108] proposed a method called quantitative testing with concept
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activation vectors (TCAV) to judge the importance of a concept for prediction. They
used directional derivatives to quantify the sensitivity of concepts. Automatic concept
interpretation (ACE) [109] was proposed to address the subjectivity of manual selection
of concepts. ACE starts by segmenting a given image using multiple resolutions. Similar
fragments are then grouped as instances of the same concept. Finally, TCAV provides an
importance score for a concept.

Counterfactual refers to an instance whose prediction is different from the original
instance. A counterfactual explanation aims to obtain a new instance with a different
output result by making minimal changes to the input features of the original instance [118].
Counterfactual explanations describe the effects of changing model inputs in specific ways.
Reference [110] presents a survey on counterfactual explanations, including properties,
generation algorithms, evaluation criteria, etc.

3.3.3. Mimic Model

We can approximate the decisions of the complex original model by training a simple
interpretable model which is called mimic model, or surrogate model. Generally, the mimic
model is obtained by training with the predictions of the original model (instead of the
labels), which can be as faithful as possible to the original model. The mimic model can be
global or local.

The core of the global mimic model is to train a simple model to learn the output
results of the black-box model, and the interpretation of the model prediction results is
realized by understanding the simple model. Figure 6 shows the general principle of the
global mimic model. Model distillation [111] is a way to acquire global mimic model which
use a simple student model to simulate a complex teacher model. We can train a mimic
model by minimizing the error between teacher and student. When using model distillation
as a global interpretation method, student models are usually implemented by models that
can fit complex functional relationships and are interpretable, such as DTs [112,119,120]
and generalized additive models [121]. However, since the mimic model cannot be too
complicated and can only approximate the teacher model, it sometimes cannot fully explain
the behavior of the original model. For DTs as mimic models, the interpretability becomes
worse as the depth of the DT increases. Therefore, we need to comprehensively consider
the fit of the DT and the complexity of the DT. Ref. [112] proposed tree regularization with
the goal of approximating the model well using shallower DT.

1 2, , , nx x x

1 2, , , nx x x

Black box model

Simple model

1 2, , , ny y y

1 2, , , ny y y  

Minimize distance between 
1 2 1 2( , , , ), ( , , , )n ny y y y y y   

Figure 6. The general principle of the global mimic model.

In practice, the global mimic model is often difficult to fully explain the original model.
So we can consider using a local mimic model. The local mimic model focuses on local
area of the samples or an individual sample. The output is interpreted in the form of an
interpretable model within the neighborhood of that sample. A typical local mimic model
is LIME [113]. Figure 7 shows the process of building a local mimic model using LIME.
This method obtains a set of neighbor samples of the target instance by sampling. These
samples are then used to train a simple and interpretable model to locally approximate the
complex model. The interpretation generated by LIME can be described as:

g(x) = argmin
g∈G

L( f , g, πx) + Ω(g), (9)
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where G is the set of interpretable models, πx represents the distance measured between
sample x and neighboring samples. L( f , g, πx) represents the loss of approximating original
model f with g under the weight πx, Ω(g) is the complexity of model g. LIME is suitable
for interpreting any black-box model.Sampling from a Gaussian distribution can make
the interpretation generated by LIME unstable. Ref. [114] proposed a deterministic LIME
(DLIME) method to solve this problem. DLIME uses Hierarchical Clustering to group
the training data into clusters, and then uses KNN to select the samples closest to the
samples to be explained for training. The explanations generated by this sampling method
are more stable. Anchor [115] is another local mimic model that uses if-then rules (called
anchors) as local explanations. The authors define anchors as rules that can adequately
make predictions on a local scale, addressing the inability of linear models in LIME to
determine coverage.

Sample data  x

Calculate distance ( )x

Train surrogate model ( )g x

Sensitivity analysis

Weighted linear 
regression

+
Regularization

Figure 7. The process of building a local mimic model using LIME.

4. Interpretable Machine Learning in Smart Grid

This paper reviews and discusses relevant literature on interpretable ML for smart
grid applications. We mainly use Google Scholar for literature collection and focus on
publications in the last 5 years. Keywords include smart grid, interpretable/explainable
machine learning, explainable deep learning, explainable artificial intelligence, etc. are
used for combinatorial search. According to the literature search results, the current
interpretable ML applications in the smart grid mainly focus on fault diagnosis, energy
forecasting, security and stability analysis, etc.

4.1. Fault Diagnosis

Fault diagnosis plays an important role in power system accident analysis and rapid
restoration of power supply. Fault diagnosis includes detection, classification and local-
ization of fault signals [122]. With the increasing complexity and uncertainty of the power
grid, the fault characteristics of the power system are no longer obvious, and the traditional
mechanism modeling becomes increasingly difficult. At present, ML has been widely used
in fault diagnosis [123].

Interpretable ML makes people understand the decisions of ML models and be able to
track and locate the cause of fault, which help grid management and reduce losses. In [124],
Grad-CAM was used to generate saliency maps of the spectrogram of the three-phase
voltage signal. According to the saliency maps, the regions that have the greatest impact
on fault classification can be found, which helps in fault localization. Ref. [125] studied
the application of LRP to a fault diagnosis model for nuclear power plant reactors and
gained insights into feature correlations. Ref. [126] constructed a heterogeneous graph
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attention network (HGAT) model for multi-source heterogeneous power equipment faults.
Interpretation based on graph attention weights improves the confidence of the model.
Ref. [127] used graph convolutional network (GCN), which can efficiently exploit power
system topology, to construct a search model for critical cascading faults. They explain the
diagnostic results by LRP and give the contribution of different fault features. Ref. [128]
used a random forest (RF) classifier to identify the fault types of photovoltaic grid-connected
systems. SHAP is used to give an explanation of feature importance and identify factors
that lead to failures. Ref. [129] proposed a two-layer power transformer fault diagnosis
model composed of a binary unbalanced classification model and a multi-classification
model. In order to achieve the interpretability of the model, they used TreeSHAP to analyze
the correlation between the input features and the diagnosis results. Table 2 summarizes
the application of interpretable ML for fault diagnosis.

Table 2. Summary of interpretable ML for fault diagnosis.

Ref. Year Application ML Model Interpretability
Method Stage Scope

Model-
Specific/Model-

Agnostic
Discussion

[124] 2021 Distribution
system CNN Grad-CAM Post-model Local Model-

specific

Visual interpretations
produced by

Grad-CAM are not
fine-grained enough.

[125] 2021 Nuclear
power plant DNN LRP Post-model Local Model-

specific

LRP is more robust
than gradients, but less

sensitive to target.

[126] 2021 Secondary
equipment HGAT Attention

mechanism In-model Local Model-
specific

HGAT contains
importance

explanations from
features to nodes to
paths, but attention

increases
model complexity.

[127] 2021 Cascading
failures GCN LRP Post-model Local Model-

specific

The model is likely to
assign contributions to

factors that are
unrelated to the

prediction, and the
explanation will
lack reliability.

[128] 2021

Grid-
connected

photovoltaic
system

RF TreeSHAP Post-model Local Model-
specific

SHAP is more
consistent, and easier

to approximate the
global interpretation.

[129] 2021
Oil-

immersed
transformer

XGBoost TreeSHAP Post-model Local Model-
specific

SHAP has a solid
theoretical foundation,
but the calculation is
more complicated.

4.2. Security and Stability Analysis

With the continuous expansion of the scale of the power system and the deepening of
the reform of the power market, the security and stability of the power grid has received
more and more attention. The process mechanism of power system safety and stability
analysis is complex, and the number of influencing factors is huge. ML has advantages in
solving complex problems with multiple factors and unknown mechanisms. Therefore,
the application of ML technology to power system security and stability analysis has
become a research hotspot.

Interpretability is critical for ML-based system security and stability analysis, provid-
ing assurance and insights for subsequent system control. To evaluate short-term voltage
stability, [130] proposed a shapelet-based spatiotemporal feature learning method to ex-
tract key features. Shapelet is a sample-based time series classification method with good
interpretability. Ref. [26] used DT to implement a dynamic safety assessment for the power
system. They developed two optimization-based tree learning algorithms through dis-
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junctive programming, capable of training high-performance DT while maintaining the
interpretability of safety rules. Ref. [131] proposed an improved deep belief network (DBN)
for evaluating the transient stability, and proposed a local mimic model-local linear inter-
pretation (LLI) to explain the DBN. Experiments show that LLI can reasonably explain the
relationship between input features and system instability. In addition, they also visualized
the internal state of the DBN by t-SNE to help operators understand the prediction results.

Ref. [132] developed a fuzzy rule-based classifier for decentral smart grid control
(DSGC) stability prediction and achieved an interpretability-accuracy trade-off through a
multi-objective optimization algorithm. Ref. [133] used SHAP to analyze the deterministic
frequency deviation and its relationship to external characteristics in detail. Ref. [134]
used SHAP to identify key characteristics and risk factors for frequency stability in power
systems. Ref. [30] constructed a DT-based global mimic model for gated recurrent unit
(GRU) model used for transient stability assessment. A new tree regularization is proposed
to achieve interpretability. Ref. [135] proposed a neighborhood deep model for total
transfer capability evaluation. Quasi-steady state sensitivity analysis method considering
the correlation of input variables is proposed to analyze the interpretability. Table 3
summarizes the application of interpretable ML for security and stability analysis.

Table 3. Summary of interpretable ML for security and stability analysis.

Ref. Year Application ML Model
Inter-

pretability
Method

Stage of
Explana-

tion
Genera-

tion

Scope

Model-
Specific /
Model-

Agnostic

Discussion

[130] 2018

Short-
Term

voltage
stability as-
sessment

Shapelet+DT - In-model Global Model-
specific

The model Provides insights
into voltage stability
assessment from a

spatiotemporal perspective,
but the explanation is not

clear enough.

[26] 2019
Dynamic
safety as-
sessment

DT - In-model Global Model-
specific

The accuracy of the DTs is not
as high as that of the

neural networks.

[131] 2019
Transient

stability as-
sessment

DBN

Local
mimic
model
(LLI)

Post-
model Local Model-

agnostic

The interpretation of the local
mimic model is not stable
enough, and the sampling
neighborhood is not easy

to determine

[132] 2020
DSGC

stability
prediction

Fuzzy
rule-based
classifier

- In-model Global Model-
specific

The accuracy of the model is
not high, and it is not suitable

for high-dimensional
large data.

[133] 2021

Deterministic
frequency
deviations

analysis

Boosting
model KernelSHAP Post-

model Local Model-
agnostic

KernelSHAP is
computationally expensive

and ignores
feature correlations

[134] 2021
Frequency
stability as-
sessment

XGBoost TreeSHAP Post-
model Local Model-

specific

[30] 2021
Transient

stability as-
sessment

GRU

Global
mimic
model
(DT)

Post-
model Global Model-

agnostic

The global mimic model may
not be suitable for all samples,
it may be better to divide the
area to build multiple mimic

tree models

[135] 2021

total
transfer

capability
evaluation

DNN

Quasi-
steady
state

sensitivity
analysis

Post-
model Local Model-

agnostic

Sensitivity analysis generally
does not take into account the

dependencies of variables
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4.3. Energy Forecasting

Energy forecasting can provide important information for grid management and
electricity market transactions [136]. Energy forecasting generally includes load forecasting,
electricity price forecasting, and renewable energy generation forecasting. The use of ML
learning techniques has dramatically improved the accuracy of energy forecasts. However,
since some energy-related decisions have very high impact, the black-box nature of ML
hinders the application of energy prediction models.

Currently, a large portion of interpretable ML in the smart grid is focused on the
field of energy forecasting. Ref. [55] proposed an IoT-based deep learning system and
a two-step prediction scheme for daily total consumption forecasting problems. They
determined the contribution of input features by perturbing the input and presented a
good interpretation by generating an impact analysis heatmap. Ref. [137] proposed a
reasoning mechanism that can explain individual prediction based on LIME, which breaks
the trade-off between model complexity and model interpretability. At the same time,
a new performance evaluation index-trust is given to quantitatively evaluate the validity of
each prediction. The method is applied to the prediction of building energy performance.
Ref. [138] proposed a CNN-LSTM neural network to simultaneously extract spatial and
temporal features to effectively predict residential load. By further visualizing key variables
using CAM, they determined that heaters and air conditioners had the greatest impact
on load. Ref. [139] proposed an autoencoder model to predict load in different situations.
They used t-SNE to visualize the hidden states of the model so that they could explain the
prediction results. Ref. [140] developed an interactive system based on KNN algorithm for
short-term load forecasting. Reference [141] studied Solar power generation forecasting
using post-hoc interpretability methods, LIME, SHAP, and ELI5. This paper analyzed
the advantages and disadvantages of several post-hoc interpretability algorithms from
different aspects.

Ref. [142] proposed a binary classification neural network and a regression neural
network for solar power generation prediction. In order to achieve interpretability, they
adopted three feature attribution methods, Integrated Gradients, Expected Gradients,
and DeepLIFT to evaluate the contribution of features. Ref. [143] introduced a symbolic
regression model- QLattice to predict annual building load. Qlattice has a simple and
transparent structure, and can directly derive the interaction of different input variables,
which is intrinsically interpretable. Table 4 summarizes the application of interpretable ML
for energy forecasting. Ref. [144] developed an interpretable memristive (IM) LSTM model
for residential load forecasting. This model uses mixture attention mechanism to extract
variable and temporal importance, improving the interpretability of time series model for
load forecasting.
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Table 4. Summary of interpretable ML for energy forecasting.

Ref. Year Application ML
Model

Inter-
pretability

Method

Stage of
Explana-

tion
Genera-

tion

Scope

Model-
Specific /
Model-

Agnostic

Discussion

[55] 2017

Daily total
consump-

tion
forecast-

ing

DNN Sensitivity
analysis

Post-
model Local Model-

agnostic

Authors visualizes the impact
by changing a training data,

but does not explain the
overall decision-making

of model.

[137] 2019

Building
energy per-
formance
forecast-

ing

GLM,
MLP, SVM,

RF,
XGBoost

LIME Post-
model Local Model-

agnostic

For similar samples,
the interpretation of LIME may

be less stable.

[138] 2019
Residential
load fore-
casting

CNN-
LSTM CAM Post-

model Local Model-
specifi

CAM requires the model to
have a global average pooling
layer, which is inconvenient

to use.

[139] 2020
Residential
load fore-
casting

Autoencoder

hidden
states visu-
alization
(t-SNE)

In-model Global Model-
specific

Latent variable analysis does
not visually show the effect of

the input.

[140] 2020
Short-term
load fore-
casting

KNN - In-model Global Model-
specific

The KNN model is not
accurate and has low

interpretability for time
series data.

[141] 2020

Solar
power

generation
forecast-

ing

RF
LIME,
SHAP,
ELI5

Post-
model Local Model-

agnostic

[142] 2021

Solar
power

generation
forecast-

ing

DNN

Gradients,
Expected
Gradients,
DeepLIFT

Post-
model Local Model-

specific

Explanations produced by
gradient-based feature

attribution often contain noise.

[143] 2022

Annual
building
load fore-
casting

Symbolic
regression
(Qlattice)

- In-model Global Model-
specific

Symbolic regression may not
be accurate enough,

and interpretability needs to
be traded off with sparsity.

[144] 2022
Residential
load fore-
casting

IM-LSTM
Attention

mecha-
nism

In-model Local Model-
specific

The computational complexity
of the model is high.

4.4. Power System Flexibility

With the massive access of new energy sources and active loads, the power system
needs sufficient adjustment capacity to cope with the imbalance of supply and demand
caused by various changes. Based on this, the concept of flexibility of power system is
proposed. Flexibility refers to the ability of a power system to reliably maintain power
during transients and imbalances [145]. In general, the primary approach to achieving
power system flexibility is to integrate rapid supply, demand-side management, demand
response, and energy storage systems [146]. ML is an important means to provide flexibility,
which can be used in demand-side load and renewable energy generation forecasting,
optimal dispatch and control of flexible load, flexible load identification, and user energy
consumption pattern analysis [147]. Table 5 summarizes some application of interpretable
ML for power system flexibility.

Residential customers can provide considerable flexibility as their energy consumption
typically accounts for 70% of total consumption [148]. Generally, power system flexibility
is increased through load shifting or load shedding based on demand response signal.
Residential load shifting is realized through the control and dispatch of the home energy
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management system (HEMS). Reinforcement learning (RL) is a type of ML learning method
that is often used for scheduling and control of HEMS in the residential sector [149]. RL can
learn from interactions and act accordingly to maximize its rewards based on consumer
preferences. Therefore, RL has stronger online self-learning ability than other ML methods.
Ref. [150] established an interpretable RL model to control the operation of home energy
storage devices, which can improve demand-side flexibility and save electricity costs. They
interpret the learning process of the agent and the learning strategy based on storage
capacity.

Residential building load forecasting is an important basis for realizing load transfer.
We can also achieve flexibility estimates by forecasting residential building loads and
household renewable energy generation. There are already interpretable ML techniques
for estimating household loads, as detailed in the previous subsection. The flexible loads
of residential buildings include Air conditioner, water heater, electric vehicle and other
controllable household appliances, etc. It is worth noting that we can also forecast for
a single flexible load demand. Ref. [151] proposed a building cooling load prediction
model based on attention mechanism and RNN. Attention vectors are used to visualize
the impact of the input on the predictions, which helps users understand how the model
makes predictions. On the other hand, the load monitoring of residential customers can
analyze the user’s energy consumption habits and power consumption composition, so as
to evaluate the flexibility of the power grid and provide a theoretical basis for dispatching.
Non-intrusive load monitoring (NILM) only needs to monitor the total voltage and total
current at the power inlet and decompose them to obtain the operating status of each
sub-load [152]. This method can not only protect the privacy of customers, but also save a
lot of monitoring equipment. There are already interpretable ML techniques for NILM. Ref.
[153] combined time-frequency analysis and CNN to solve NILM, and used LRP method to
explain what CNN learned. Ref. [154] interpreted deep autoencoder-based NILM models
by visualizing activation.

Table 5. Summary of interpretable ML for power system flexibility.

Ref. Year Application ML
Model

Inter-
pretability

Method

Stage of
Explana-

tion
Genera-

tion

Scope

Model-
Specific /
Model-

Agnostic

Discussion

[150] 2019

Control of
household

energy
storage
system

RL - In-model Global Model-
specific

The interpretation of the
model is not intuitive enough.

[151] 2021

Building
cooling

load fore-
casting

RNN
Attention

mecha-
nism

In-model Local Model-
specific

The Model cannot analyze the
effect of each feature

on predictions.

[153] 2020 NILM CNN LRP Post-
model Local Model-

specific

[154] 2020 NILM Autoencoder visualizing
activation

Post-
model Local Model-

specific

This method visualizes the
features learned by the hidden
layer, but does not explain the

overall decision-making of
the model.

4.5. Others

With the increasing application of ML in the smart grid, the black-box nature of ML
models is gradually being paid attention to. In addition to the above three main aspects,
interpretable ML has the following applications in our findings. Ref. [155] used different
ML algorithms to establish a prediction model for the diversity factor of the distribution
feeder that comprehensively considers various features. The contributions of different



Energies 2022, 15, 4427 21 of 31

features were quantified using SHAP. Ref. [156] developed an interpretable cyber-physical
energy system (CPES) based on a knowledge graph, which can integrate multi-source het-
erogeneous data in the smart grid to generate causal-based explanations. In addition, they
demonstrated a demand response-oriented application scenario. In [157], a model based
on the attention mechanism and encoder-decoder structure were proposed for area control
error prediction in a renewable energy-dominated power system. The variable selection
module was designed to provide insights into the relative importance of features. Then,
a specially designed attention mechanism can help to better capture temporal dependencies
and give temporal importance insights. In [158], a SHAP-based back-propagation deep
explanation method was proposed to provide reasonable feature importance explanations
for emergency control of power systems based on deep reinforcement learning. Ref. [159]
explained the output of a power quality disturbances classifier using occlusion-based
sensitivity analysis, Grad-CAM and LIME. They also give a definition of explainability
and propose an evaluation process to measure the explainability scores of explainability
methods and classifiers. Ref. [160] proposed a nonlinear autoregressive exogenous (NARX)
model for anomaly mitigation control models in smart inverter-based microgrids. They
employed PDP to account for the effect of features on network output. Table 6 summarizes
other applications of interpretable ML in smart grid.

Table 6. Summary of interpretable ML for other smart grid applications.

Ref. Year Application ML
Model

Interpretabil-
ity

Method

Stage of
Explana-

tion
Genera-

tion

Scope

Model-
Specific /
Model-

Agnostic

Discussion

[155] 2020

Distribution
feeder

diversity
factor

prediction

DNN,
Gradient
boosting
tree, RF

KernelSHAP Post-
model Local Model-

specific

[156] 2021 CPES
modeling

Knowledge
graph - In-model Global Model-

specific

The reasoning ability of
knowledge graph

is insufficient.

[157] 2021

Area
control
error

prediction

Encoder-
decoder
model

Attention
mecha-
nism

In-model Local Model-
specific

The model does not discern
the temporal importance of

each feature.

[158] 2021

Emergency
control of

power
system

Deep rein-
forcement
learning

SHAP Post-
model Local Model-

agnostic

The computational complexity
of the model is high and have
poor real-time performance.

[159] 2021

Power
quality dis-
turbances
prediction

CNN

Occlusion-
based

sensitivity
analysis,

Grad-
CAM,
LIME

Post-
model Local Model-

agnostic

For these methods, feature
interactions are difficult

to consider.

[160] 2022 Anomaly
mitigation NARX PDP Post-

model Global Model-
agnostic

The maximum number of
features for PDP is 2,

and feature dependencies are
not considered.

4.6. Case: Interpretable LSTM Model for Residential Load Forecasting

Residential load forecasting is very important to improve the energy efficiency of
HEMS. Time series deep learning models, such as LSTM, can significantly improve fore-
casting accuracy. However, General LSTM networks are a complex model with low in-
terpretability, which is not conducive for customers to further understand the prediction
results and respond quickly. Ref. [144] proposed IM-LSTM to solve the problem of residen-
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tial load forecasting, aiming to improve the interpretability of LSTM-based neuromorphic
computing architecture.

The standard LSTM network represents all input variables as one hidden state. How-
ever, the effects of dynamic evolution of different input features on model predictions are
indistinguishable due to the common pass through multiple activations. To address this
issue, a multivariate LSTM is applied to this architecture to characterize the dynamics of
different input variables. The update of the hidden state of the multivariate LSTM is shown
in Figure 8. Next, a mixture attention mechanism is used to extract feature importance
and feature-wise temporal importance , enabling model-level interpretability. To provide
more robust prediction results, the probabilistic prediction based on pinball loss function is
built after the mixture attention mechanism. Finally, the authors deployed their proposed
interpretable LSTM model on memristors, which improve memory capacity and data
transfer bandwidth. The implementation process of the IM-LSTM network is shown in
Figure 9.

Figure 8. The update of the hidden state of the multivariate LSTM [144].

Figure 9. The implementation process of the IM-LSTM network [144].

The task of Ref. [144] is to predict the net load for the next time step including total
consumption and solar power generation. Among them, the total consumption consists
of lighting, air conditioning (AC), and two other meters. Other input variables include
weather, historical statistics of net load, and time-related variables. The global feature
importance scores computed by IM-LSTM are given in Figure 10. It can be seen that
besides net load, AC and solar power are the two features that contribute the most. This is
because AC consumes the most power, while solar power provides a considerable amount
of electricity for the home. Figure 11 shows the feature-wise temporal importance in IM-
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LSTM. It can be seen that the closer the time step, the greater the temporal importance
scores. Moreover, the effect of AC varies widely, possibly due to the instantaneous behavior
of switching the AC on and off. The knowledge about feature importance and temporal
importance produced by IM-LSTM is consistent with the knowledge of experts in the
energy domain. To sum up, the introduction of interpretable ML improves the reliability of
load forecasting results in smart grids and enhances the trust of people.

Figure 10. The global feature importance scores in IM-LSTM [144].

Figure 11. The feature-wise temporal importance in IM-LSTM [144].
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5. Future Research Directions

Various ML techniques have achieved notable success in the smart grid. However,
the current academic research is still at a very early stage in explaining why and how
the model works. From the current research status, researchers generally realized the
importance of ML interpretability, and have carried out many very meaningful research
studies. Nonetheless, the expansion and application of interpretable ML in the smart grid
are still limited. Based on the analysis and understanding of the current research, we
believe that the future research on interpretable ML in the smart grid can proceed from the
following aspects:

• Interpreting data: The smart grid field uses data from a variety of different sources,
including various signals collected in real time from the power system, user informa-
tion, device data, weather data, and more. Most of the published research focuses on
the performance and interpretation of prediction models, ignoring the exploration
and understanding of the data. Knowing what is behind the data can help you choose
and explore a more suitable model later.

• Embedding domain knowledge: Most ML models in the smart grid provide prediction
results using a data-driven approach. Domain knowledge may only be used to validate
model decisions rather than being incorporated into models to participate in decision
inference. If we embed domain knowledge into model inference, we can obtain more
informative explanations. Therefore, it is a promising research direction to combine
human knowledge, such as in the form of a knowledge graph, with ML technology to
build interpretable ML models.

• Developing more in-model interpretability methods: Benefiting from the excellent
characterization performance, complex DL models have been applied to different
areas of the smart grid. It is advisable to verify the reliability of the model through
post-hoc analysis of feature contributions. However, there is still an open question
on how to build intrinsically interpretable deep neural networks without degrading
model performance. In fact, post-model interpretability methods are always difficult
to explain the model directly from the internal logic. They are only approximate
interpretations of the model and may not be consistent with how the model actually
predicted. Therefore, the use of these models in key decision-making areas requires
careful consideration. Future work should develop more complex DL models with
in-model interpretability.

• Generating human-centered interpretation: An ideal interpretability method should be
able to make different interpretations according to the audience’s background knowl-
edge and interpretation needs. At the same time, this interpretation should be the
logical reasoning process behind the model while giving the decisions. Therefore, ex-
tensive research is required to establish appropriate methods to provide personalized
interpretations based on the expected user’s expertise and abilities.

• Develop interpretable time series models: Most studies of interpretability methods are
on images. However, in smart grid applications, much information such as current,
load, etc., exists in the form of time series. Therefore, we urgently need to study
interpretable ML applied to time series models.

• Applying interpretable ML to more critical areas: In addition to the applications
mentioned in the paper, we believe that power dispatch and control, power safety
operations, and other user-oriented fields require more support for interpretability.

6. Conclusions

Applying interpretable ML in the smart grid is a promising research direction. Due
to the need for transparent and reliable AI systems, this paper reviews interpretable
ML and its applications in the smart grid. First, we clarify the definition, motivation,
and several properties of interpretability. Next, we detail three types of ML interpretability
methods, pre-model, in-model and post-model. Pre-model interpretability methods can
help understand the data. In-model interpretability methods are more faithful to the model.
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Post-model interpretability methods can interpret more complex deep models in different
forms. We then review the relevant literature on the application of interpretable ML in key
areas of the smart grid, all of which are explicitly motivated by interpretability. We observed
that post-model interpretability methods are the primary means of these papers. Finally,
we point out some future research directions of interpretable ML committed to realizing a
transparent and reliable smart grid. These research directions mainly include interpreting
data, establishing more in-model interpretability methods, and realizing human-centered
interpretation, etc. In conclusion, with the continuous deepening of research, interpretable
ML is bound to play an important role in the smart grid field. We hope this survey can help
scholars accelerate research in this area.
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AC Air conditioning
ACE Automatic concept interpretation
AI Artificial intelligence
CAM Class activation map
CNN Convolution neural network
CPES Cyber-physical energy system
DBN Deep belief network
DeConvNet Deconvolution network
DL Deep learning
DNN Deep neural network
DSGC Decentral smart grid control
DT Decision tree
EDA Exploratory data analysis
GAM Generalized additive model
GCN Graph convolutional network
GDPR General Data Protection Regulation
GLM Generalized linear model
GRU Gated recurrent unit
HEMS Home energy management system
HGAT Heterogeneous graph attention network
ICE Individual conditional expectation
IM-LSTM Interpretable memristive LSTM
KNN K-nearest neighbors
KPRN Konwledge path recurrent network
LIME Local interpretable model-agnostic explanation
LLI Local mimic model-local linear interpretation
LR Linear regression
LRP Layer-wise relevance propagation
LSTM Long short-term memory
ML Machine learning
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MLP Multi-layer perceptron
NARX Nonlinear autoregressive exogenous
NILM Non-intrusive load monitoring
PCA Principal component analysis
PDP partial dependence plot
PINN Physical information neural network
ReLU Rectified linear unit
RF Random forest
RL Reinforcement learning
SAE Stacked autoencoder
SHAP Shapley additive explanations
SVM Support vector machine
TCAV Quantitative testing with concept activation vectors
TED Teaching explanation for decisions
t-SNE t-distributed stochastic neighbor embedding
XAI Explainable artificial intelligence
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