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Abstract: The traditional decomposition–combination wind speed forecasting model has high com-
plexity and a long calculation time. As a result, an ultra-short-term wind speed hybrid forecasting
model based on a broad learning system (BLS) that combines improved variational mode decomposi-
tion (EPSO-VMD, EVMD) and subseries reconstruction (SR) is proposed in this work. The values of
K and α in the EVMD are determined by minimum mean envelope entropy (MMEE) and enhanced
particle swarm optimization (EPSO), and EVMD is used to decompose the original wind speed data.
SR is applied to recombine the subseries obtained by EVMD to improve the forecasting efficiency. The
sample entropy (SE) is used to quantify the subseries’ complexity, and they are then adaptively di-
vided into high-entropy and low-entropy subseries. Adjacent high-entropy subseries of approximate
entropy values are merged to obtain a new group of reconstructed high-entropy subseries, while the
low-entropy subseries merge into a new subseries as well. Then, the forecasting results of the recon-
structed high- and low-entropy subseries are calculated via the BLS and ARIMA models. Numerical
simulation results show that the proposed method is more effective than traditional methods.

Keywords: ultra-short-term wind speed forecasting; broad learning system; variational mode
decomposition; subseries reconstruction; sample entropy

1. Introduction

Climate change and reducing greenhouse gas emissions have become central issues
on the global sustainability agenda. For this reason, wind energy, as a renewable and
clean energy source in nature, is undergoing rapid development worldwide [1]. However,
variable wind speed has restricted its power quality and related system stability in terms of
the output power of wind turbine generators (WTG) [2]. This phenomenon significantly
restricts wind energy’s integration with the grid [3]. Comparatively speaking, great signifi-
cance is therefore attached to the accurate prediction of wind power and wind speed as
regards the exploitation of renewable energy sources [4].

According to the technical specifications of power systems, wind speed forecasting can
be segmented into four different timescales, namely, ultra-short-term (<30 min), short-term
(0.5~6 h), medium-term (6~24 h), and long-term (1~7 days). Turbine control and load
tracking are based on ultra-short-term forecasting. Preload sharing is based on short-term
forecasting. For power system management and energy trading, medium-term forecasting
is utilized. Maintenance schedules for wind turbines are based on long-term forecasting.

Over the past several years, numerous researchers have devoted their efforts to propos-
ing more accurate and stable statistical models for ultra-short-term wind speed forecasting.
Recently, decomposition–combination forecasting models based on time–frequency anal-
ysis have been studied and proposed. The time–frequency analysis method is used to
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decompose different feature information for wind speed time series, which reduces the
influence of non-stationarity on the prediction result and improves prediction accuracy. A.
Tascikaraoglu [5] incorporated a forecasting model based on wavelet transform (WT) to
improve the forecasting accuracy of electrical price and wind speed; however, the wavelet
transform effect depends on the wavelet base and decomposition scale, and the adaptability
is poor. Wavelet transform was combined with a deep belief network (DBN) to improve
effectively prediction accuracy, as suggested by [6]; however, this model usually includes
multiple neural layers, and each layer contains hundreds to thousands of node nerves.
The interplay of neurons between the layers is intricate, resulting in a dramatic increase
in modeling complexity and computational time. Empirical mode decomposition (EMD)
has been used to decompose wind speed data into a series of intrinsic mode functions
(IMF), after which the improved ARIMA model was used for each IMF and margin, as
proposed in [7]. Ning [8] introduced an EMD-based signal filtering method that is fully
data-driven in order to reduce the noise signals of electricity demand series, a method
that could noticeably improve forecasting accuracy. Huang [9] applied ensemble empirical
mode decomposition (EEMD) to extract a series of IMFs from an initial wind data sequence,
and created the LSTM-GRNN-BSO model for multi-step wind speed forecasting. While
this method, which is based on EMD, can improve forecasting results EMD has an end
effect and over-enveloping problem. Sun [10] suggested local mean decomposition (LMD)
and improved least-square support machine (LSSVM) to predict short-term wind speed,
which can improve the modeling accuracy of LSSVM. However, the ability of the LMD
algorithm to judge the FM signal needs to be tested. If the selection of the sliding span is
improper, the function will not converge, and the structural accuracy will be affected by
over-smoothing.

In the process of obtaining the decomposition component, variational mode decompo-
sition (VMD) uses the optimal solution of the iterative search variational model to determine
the frequency center and bandwidth of each component. In essence, it is a plurality of
adaptive Wiener filter groups which are more robust or perform better than their counter-
parts [11]. Sun [12] suggested the VMD-P-ARIMA-BP-PSOLSSVM prediction-optimization
model to forecast wind speed in the short term. Han [13] proposed a variational mode
decomposition long short-term memory (VMD-LSTM) method to improve the accuracy of
multi-step wind power forecasting. While VMD is an effective decomposition technology,
the parameters K and α need to be determined in advance, and empirical values are used
in most cases.

The broad learning system (BLS) is based on the input of the Map Vector as a Random
Vector Functional Link Neural Network (RVFLNN) used to generate enhanced nodes. The
network system can be quickly obtained through pseudo-inverse operations. This avoids
the time-consuming training of a large number of BLS parameters with complex structures.
The BLS has been introduced into wind speed forecasting in [14,15] to improve precision
and computational efficiency.

In view of the above research situation, we propose an EVMD-SR-BLS-ARIMA hybrid
wind speed forecasting model, which is based on BLS combined with improved variational
mode decomposition (EPSO-VMD, EVMD), subseries reconstruction (SR), and ARIMA.
The main contributions of this paper are summarized as follows.

(1) In the proposed EVMD, the minimum mean envelope entropy (MMEE) and enhanced
particle swarm optimization (EPSO) algorithm are introduced in order to solve the
optimal value of K and α and improve the computational convergence.

(2) SR is applied to recombine the subseries obtained by EVMD. The sample entropy (SE)
is used to quantify the complexity of the subseries, which are then adaptively divided
into new high-entropy and low-entropy subseries. The adjacent high-entropy subseries
of approximate entropy values are merged to obtain a new group of reconstructed high-
entropy subseries, while the low-entropy subseries are merged into a new subseries
as well.
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(3) A novel and robust hybrid prediction model (EVMD-SR-BLS-ARIMA) is proposed
and employed for ultra-short-term wind power forecasting. This avoids the time-
consuming training of a deep structures model. This paper introduces BLS, which
is time-efficient and constantly updates the parameters of the forecasting model, to
ultra-short-term wind speed forecasting. The forecasting results of nascent high- and
low-entropy subseries are calculated using the BLS and ARIMA models. In order to
improve the forecasting accuracy, an error-corrected EVMD-SR-BLS-ARIMA model is
developed to post-process the errors.

The rest of the paper is organized as follows: Section 2 briefly reviews the related
approaches involved in this paper; Section 3 describes the EVMD-SR-BLS-ARIMA model
for wind speed forecasting in detail; Section 4 presents experimental simulations and
comparative examples to demonstrate the performance of the proposed algorithm; finally,
we present our conclusions in Section 5.

2. Related Work

In this section, the proposed methods are introduced, including the VMD and BLS network.

2.1. Variational Mode Decomposition

Variational mode decomposition (VMD) is an adaptive signal processing method first
proposed by Konstantin Dragomiretskiy and Dominique Zosso [11]. VMD can decompose
the original input signal, x(t), into a K intrinsic modes function (IMF), uk(t) (k = 1, 2, . . . ,
K). In this process, the bandwidth sum of each mode is minimized, and the aggregation
of modes u(t) is equal to the input signal, x(t). Compared with EMD, the instantaneous
frequency of u(t) is physically meaningful, and is written as in Equation (1):

uk(t) = Ak(t) cos(Φk(t)) (1)

where Ak(t) is the non-negative envelope of uk(t), Φk is the phase, and the instantaneous
frequency is the derivative of Φk.

VMD, completely different from EMD, transforms the signal decomposition process
into a variational problem. Its adaptive decomposition is based on the optimal solution of
the constrained variational problem, as described in Equation (2):

min
{uk} ,{ωk}

{
K

∑
k=1
‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt‖

2

2

}
s.t.

K

∑
k=1

uk = x (2)

where uk is the k-th IMF mode function, ωk is the k-th center frequency, ∂t is the partial
derivative of the function for time t, δ(t) is the Dirac distribution, and ∗ indicates the
convolution.

In order to find the optimal solution, the Lagrange multiplier λ and the quadratic
penalty term α are introduced to Equation (2). Then, the constrained variational problem is
turned into an unconstrained one, which can be expressed as in Equation (3):

L({uk}, {ωk}, λ) = α
K
∑

k=1
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖

2

2

+‖x(t)−
K
∑

k=1
uk(t)‖

2

2
+

〈
λ(t), x(t)−

K
∑

k=1
uk(t)

〉
(3)
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Meanwhile, the alternating direction multiplier algorithm is employed to update the
parameters of Equation (3) iteratively in order to calculate the saddle point of the Lagrange
function. This process can be represented as in Equations (4) and (5) [16]:

ûn+1
k (ω) =

x̂(ω)− ∑
i 6=k

ûi(ω) + λ̂(ω)
2

1 + 2α(ω−ωk)
2 (4)

ω̂n+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(5)

where ûn+1
k (ω), ûi (ω), x̂ (ω) and λ̂ (ω) are the Fourier transforms of un+1

k (t), ui (t), x (t)
and λ(t), respectively, and n is the iteration number.

2.2. Broad Learning System

The broad learning system (BLS) is a kind of flat function-link neural network proposed
by C. L. Philip Chen and Zhuliu Liu [17] which can overcome the time-consuming training
process of deep-learning networks. The core concept of BLS is to transform the original
input to the mapped feature (the mapped feature being an input of a function-link neural
network) and to establish the enhancement node. In the BLS network, all mapping features
and enhancement nodes are directly connected to the output; its structure is shown in
Figure 1. The BLS network consists of mapped features, enhancement nodes, and an
output layer.
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Figure 1. Structure of the broad learning system.

Assuming that the BLS network sets n mapped features and each mapped feature is
equipped with k nodes, the i-th mapped feature Zi can be represented as in Equation (6):

Zi = Φ(XWei + βei), i = 1, · · · , n (6)

where X is the input data, Wei and βei are the random weights matrix and the random bias
matrix of mapping feature, respectively, Φ(·) is the nonlinear activation function, and Zi is
the output matrix.

Denoting all of the feature nodes of BLS as Zn ≡ [Z1, . . . , Zn], the j-th enhancement
node Hj can be defined as in Equation (7):

Hj = ξ(ZnWhj + βhj), j = 1, · · · , m (7)

where Whj and βhj are the random weights matrix and the random bias matrix of en-
hancement node, respectively, and ξ(·) is the nonlinear activation function. Hence, in
mathematical terms, the network output Y of the BLS can be denoted as in Equation (8):

Y = [Z1, · · · , Zn|ξ(ZnWh1 + βh1), · · · , ξ(ZnWhm + βhm) ]Wm

= [Z1, · · · , Zn|H1, · · · , Hm ]Wm = [Zn|Hm ]Wm (8)
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where Wm is the network connection weight matrix and Wm = [Zn|Hm]+Y. [Zn|Hm]+ is
the Moore–Penrose inverse matrix of the matrix [Zn|Hm], the value of which is estimated
by ridge regression. Meanwhile, [Zn|Hm]+ can be calculated using Equation (9):

[Zn|Hm ]+ = lim
λ→0

(λI + [Zn|Hm ][Zn|Hm ]+)[Zn|Hm ]T (9)

As in a random vector function-link neural network, the network weights of BLS
can be updated dynamically and quickly. Assuming that the initial network has n map-
ping features and m enhancement nodes and that the network input features matrix is
Am

n = [Zn|Hm], when denoting Xa as the new added data of BLS network the mapping
features and enhancement nodes of the new added data are represented as in Equation (10):

Ax = [Φ(XaWe1 + βe1), · · · , Φ(XaWen + βen)|ξ(Zn
xWh1 + βh1), · · · , ξ(Zn

xWhm + βhm)] (10)

where Zn
x = [Φ(XaWe1 + βe1), . . . , Φ(XaWen + βen)] is the mapping features matrix corre-

sponding to Xa and Wei, βei and Whj, βhj are randomly generated during the initialization
of the network. Hence, the updated matrix of the output features, xAm

n , is provided by
Equation (11):

xAm
n =

[
Am

n
AT

x

]
(11)

According to the Moore–Penrose inverse matrix recursive algorithm, the Moore–
Penrose inverse matrix of the output features update matrix xAm

n can be obtained as in
Equation (12):

(xAm
n )

+ = [(Am
n )

+ + BTDT
∣∣∣BT] (12)

where DT = AT
x (A

m
n )

+, BT =

{ (
AT

x −DTAm
n
)+, AT

x −DTAm 6= 0(
1 + DTD

)−1
(Am

n )
+D, AT

x −DTAm
n = 0

.

Therefore, the new network weight matrix xWm
x can be represented as in Equation (13):

xWm
n = (xAm

n )
+Yx (13)

where Yx is the network output and can be expressed as in Equation (14):

Yx =

[
Y
Ya

]
(14)

where Ya is the output data corresponding to the new added data, Xa.
Based on Equations (8), (11), (12), and (14), the network weight matrix xWm

x can be
transformed as in Equation (15):

xWm
n = Wm +

(
YT

a −AT
x Wm

)
B (15)

3. EVMD-SR-BLS-ARIMA Hybrid Wind Speed Forecasting Model

In this section, a novel EVMD-SR-BLS-ARIMA hybrid wind speed forecasting model
is developed that is able to attain high precision and efficiency.

3.1. Improved Variational Mode Decomposition (EVMD)

The non-linearity, non-smoothness and randomness of wind speed are the main factors
that decrease accuracy in wind speed forecasting. VMD has the advantages of high compu-
tational efficiency and strong robustness, and can improve the smoothness of the original
signal and reduce the complexity of modelling. Compared with the EMD, the values of IMF
K and the quadratic penalty term α must be pre-set before using VMD. If the K value is too
small, the feature of the original signal cannot be extracted efficiently. Conversely, excessive
decomposition leads to added complexity in the model [18]. Furthermore, a smaller value
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of α results in the bandwidth of each obtained mode function being larger. Therefore, the
choice of K and α directly affects the decomposition effect and reconstruction accuracy.

In order to address this problem, improved variational mode decomposition (EPSO-
VMD, EVMD) is proposed, in which the minimum mean envelope entropy (MMEE) and
enhanced particle swarm optimization (EPSO) algorithms are introduced in order to solve
the optimal value of K and α and improve the computational convergence.

According to the characteristics of entropy, it is possible to use it to evaluate the
sparsity of a signal. The amount of entropy can reflect the uniformity of a probability
distribution [19]. Based on the entropy, the minimum mean envelope entropy (MMEE) of
IMF is the objective function of the VMD parameter optimization algorithm. This objective
function can be expressed as in Equation (16):

min
K,α

F(K, α) = − 1
K

K

∑
k=1

N

∑
i=1

pi log2(pi), pi = h(i)/
N

∑
i=1

h(i) (16)

where h is the envelope of the mode function uk generated by the Hilbert transform and pi
is the probability at the i-th point of the envelope.

In order to improve convergence, an enhanced particle swarm optimization (EPSO)
algorithm is proposed to solve the optimal parameters of VMD in this paper. In ordinary
PSO, the velocity and position of each particle in PSO-updating rules are provided as in
Equation (17) [20]:{

vi(g + 1 = wvi(g) + c1r1(pbesti − xi(g) + c2r2(gbest− xi(g))
xi(g + 1 = xi(g) + vi(g + 1)

(17)

where pbesti is the best solution of particle i, gbest is the optimal solution of the entire swarm,
g is an iteration number, vi (g) is velocity, xi (g) is the position of particle i at iteration g, w is
an inertia weight, c1 and c2 are learning factors, and r1 and r2 are random numbers in [0, 1].

In order to improve the global search ability, the EPSO adds mutation and jump
operations in the search process. At each iteration, this algorithm can randomly determine
the mutation number and position of an individual optimal solution pbest with a certain
mutation probability, and this probability gradually decreases as the iterations proceed.
Thus, the pbest updating rule for population number Np is defined as in Equation (18):

pbest =
{

pbest, r > pm
Rpbest, r ≤ pm

Rpbest(i) =
{

pbest(i), i /∈ Mp
rand, i ∈ Mp

, i = 1, 2, · · ·Np

(18)

where pm is the mutation probability, Mp is the randomly determined set of mutation
particle positions in pbest, and r is a random number in [0, 1].

At each iteration, the number of elements nm in the set Mp is generated randomly,
and nm ≤ Np/2. Then, the mutation probability pm is satisfied as in Equation (19):

pm = pm,max −
(g− 1)(pm,max − pm,min)

(gmax − 1)
(19)

where pm,min is the minimum mutation probability, pm,max is the maximum mutation
probability, and gmax is the maximum iteration number.

In later iterations a large number of particles concentrates in a narrow area and
the optimization result easily falls into local optimization, from which it is difficult to
emerge. Compared with PSO, the multiple uniformly distributed particle populations are
regenerated near the current optimal solution via the jump operation and the new optimal
solution is obtained via multi-step iterative competition. In this paper, the later iteration
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is defined as g > 0.7 gmax. Meanwhile, the particle aggregation level is used as the trigger
threshold in the jump operation, which can be expressed as in Equation (20):

ρ = 1
Npd

Np

∑
i=1

d
∑

j=1
η(xi,j(g))

η(xi,j(g)) =
{

1, (
∣∣xi,j(g)− gbest

∣∣/∣∣gbest
∣∣) < ε

0, others

(20)

where ρ is the particle aggregation level and ε is a small positive number.
If ρ > δ, NJ particle swarms are generated, the h-th particle swarm is as provided in

Equation (21):

xh
i,j(g + 1) =

{
gbest + r(xmax(g)− gbest), (xmax(g)− gbest) > (gbest− xmin(g))
gbest + r(gbest− xmin(g)), others

(21)
where h is the number of the new generated particle swarms (h = 1,2, . . . , NJ), r is the
random number in [0, 1], xmax(g) is the maximum value of xi,j at the g-th iteration, and
xmin(g) is the minimum value of xi,j at the g-th iteration.

After gx iterations and optimizations of NJ particle swarms by Equation (21), the
population with the best solution continues to the next iteration to update the global best
solution. The introduced random value within a range can increase the population diversity
and avoid early maturity. A flowchart representing the EPSO optimization algorithm is
shown in Figure 2.

3.2. Subseries Reconstruction Method (SR)

The structure of the traditional decomposition–combination wind speed forecasting
model is shown in Figure 3. Here, each subseries must be modelled independently, which
increases the model’s complexity and calculation time. In order to improve the accuracy
and efficiency of the forecasting model, this paper proposes a subseries reconstruction
(SR) method to satisfy the accuracy and timeliness requirements for ultra-short-term wind
speed forecasting. In SR, the sample entropy (SE) is introduced to quantify the EVMD sub-
series complexity, while the reconstruction method of adjacent subseries with approximate
entropy is proposed to decrease the number of subseries.

Formally, the sample entropy of time series {xi} (i = 1, . . . , N) can be expressed as in
Equation (22):

Ensamp = − ln
[

Bm+1(r)
Bm(r)

]
(22)

where m is the dimension of vector sequences, r is the similarity tolerance, and Bm(r) is the
mean of the number of distances between all vectors less than or equal to r, which can be
expressed as in Equation (23):

Bm(r) = 1
N−m+1

N−m+1
∑

i=1
Bm

i (r)

Bm
i (r) =

1
N−m C{d[X(i), X(j)

]
< r}, i = 1, 2, · · ·N −m + 1, i 6= j

(23)

where X(i) is m dimensional sequences composed of {xi} in order, X(i) = [x(i), . . . , x(i + m− 1)]
(i = 1, 2, . . . , N −m + 1), d[X(i), X(j)] are the absolute maximum distance between vector X(i)
and X(j), and C{·} is a function that counts the number of vectors that satisfy the condition.

Based on Equation (23), m and r are critical in determining the outcome of sample entropy.
In most conditions, the value of m is 1 or 2, and r is in [0.1SD, 0.25SD], where SD is the standard
deviation of the original time series {xi} [21]. The sample entropy value of {xi} is related to the
series complexity; the higher the series complexity, the higher the sample entropy value.
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In the series reconstruction method, the complexity of EVMD subseries of the orig-
inal wind speed time series is assessed by sample entropy and the subseries are sorted
from lowest to highest according to entropy value. Setting the threshold of entropy, the
EVMD subseries are adaptively divided into high-entropy subseries, SH, and low-entropy
subseries, SL. Evaluating the entropy of adjacent high-entropy subseries, the adjacent
subseries with approximate entropy values are merged, then a new group of reconstructed
high-entropy subseries, SrH, is obtained. Meanwhile, the low-entropy subseries merge into
another new subseries, SrL. Because the complexity of the merged subseries approximates
the original subseries, this reconstructed subseries method can improve accuracy and
efficiency. The framework of this method is shown in Figure 4.
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3.3. Hybrid Wind Speed Forecasting Framework

The EVMD-SR-BLS-ARIMA hybrid wind speed forecasting model proposed in this
paper mainly includes data on time–frequency analysis, subseries reconstruction, hybrid
model construction, and linear superposition of prediction results in four major parts; the
framework is shown in Figure 5. First, the EVMD is utilized to decompose the original
wind speed time series in order to obtain K subseries, thereby reducing irregularities.
Second, SR is applied to reconstruct the subseries in order to decrease their number and
improve forecasting efficiency. Subsequently, the BLS-ARIMA model is used to forecast
different reconstructed subseries. Finally, the final forecasting result is obtained by linear
superposition of the forecasting values of each subseries.
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As shown in Figure 6, the forecasting process of the EVMD-SR-BLS-ARIMA forecasting
model is as follows:

Step 1: Initialize the number of forecasting cycles k, ku, n0, n1, and nr to 0; set the input
model wind speed time series length, Ns, and forecasting times, M.

Step 2: Using the EVMD method, the wind speed time series [X(1 + k), . . . , X(Ns + k)]
is decomposed into K subseries u(k); calculate the sample entropy of each subseries and
find the minimum sample entropy, Ensamp,min.

Step 3: Using 1.2Ensamp,min as the threshold, divide the subseries u(k) into the high-
entropy subseries SH and low-entropy subseries SL, then count the numbers of high-entropy
subseries n0 and low-entropy subseries n1.

Step 4: The adjacent subseries with no more than 10% Ensamp variation in SH are
reconstructed to obtain a new group of high-entropy subseries SrH (the number of SrH is
nr) and the forecasting results ŶB(i) (I = 1, . . . , nr) are calculated via the BLS model. The n1
low-entropy subseries, SL, merge into a new subseries, SrL, and an ARIMA model for SrL
is built to obtain the forecasting result ŶA; then, the k-th wind speed forecasting result is

Ŷ(k) = ŶA +
nr
∑

i=1
ŶB(i).

Step 5: k = k + 1. Repeat steps 2–4 until k = M is reached at the end of the forecasting
process and the M-step forecasting results are obtained.

In order to improve forecasting accuracy, the error-corrected EVMD-SR-BLS-ARIMA
model is developed to post-process the errors. This error-corrected model is essentially a
two-stage forecasting model. The first stage is composed of EVMD-SR-BLS-ARIMA for
wind speed basis data, which calculates the forecasting error calculated, while the second
stage uses ARIMA to calculate the forecasting error of the EVMD- SR-BLS-ARIMA model.
In the forecasting process, the second-level model is used to correct the first-level prediction
data in order to obtain the final prediction result.
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3.4. Evaluation Index

In order to quantitatively evaluate the performance of the forecasting model, the Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and symmetric Mean Absolute
Percentage Error (sMAPE) are introduced. The discrepancy between anticipated and actual
values is measured by these three indicators, with lesser values indicating better forecast
accuracy. Respectively, the three evaluation indexes are defined as in Equations (24)–(26):

δRMSE =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)
2 (24)

δMAE =
1
N

N

∑
t=1
|yt − ŷt| (25)

δsMAPE =
1
N

N

∑
t=1

2|yt − ŷt|
yt + ŷt

× 100% (26)
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where yt is the actual value at time t, ŷt is the predicted value at time t, and N is the
observation size.

4. Case Study

In this section, original wind speed data from a Huaneng Group wind farm in Shan-
dong province from 1 January 2016 were used to test the accuracy of the ultra-short-term
wind speed forecasting method. The wind forecasting model was constructed using m-files
in MATLAB R2016b running on a Windows PC with an Intel I5-8500 CPU.

4.1. Data Collection

The sample data were based on actual test data from a 1.5 MW wind turbine supervi-
sory control and data acquisition (SCADA) system with a the sampling period of 10 min
(24 h total, 144 sampling points [X1, . . . , X144]). The sample wind speed time series is
shown in Figure 7. The average wind speed in the sample was 6.72 m/s, the maximum
wind speed was 11.80 m/s, and the minimum wind speed was 2.08 m/s. The wind speed
sequence fluctuated noticeably with no discernible pattern. In this case study, the first 100
sampling points (sampling points 1~100) of the wind speed series were utilized as model-
ing data, while the next 44 points (sampling points 101~144) were used as test samples to
evaluate the prediction model’s accuracy and timeliness.
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Figure 7. Sample of wind speed time series.

4.2. Experiment 1: EVMD-BLS Forecasting Model

Experiment 1 mainly studied the ultra-short-term wind speed forecasting performance
of the EVMD-BLS decomposition–combination model. In this model, the EVMD divides
the wind speed time series into subseries with simple frequency components and more
regular variation, creates the BLS models of each subseries, and then constructs the error
correction model for increased accuracy. Meanwhile, when the wind speed time series Ns
in the input model is set to 70, the first 100 wind speed samples are divided into two parts:
the first 70 data points are used for wind speed forecasting, and the last 30 are used for
error modeling.

According to the method introduced in Section 3.1, the EPSO algorithm was used to
solve the optimal values of K and α in the EVMD method. In order to prevent excessive
variation from destroying the algorithm’s convergence efficiency, the size of the set of
variation particles, Mp, was limited to within 50% of the population particle number Np.
Taking into account the algorithm’s computational efficiency, the start point of the jump
operation was set to 70% of the maximum number of iterations. Additionally, the particle
aggregation level calculation limit ε in Equation (20) was set to 0.01, the aggregation trigger
limit, δ, was 0.5, IMF K was an integer between 1 and 10, and the quadratic penalty term α
was a value between 1 and 50. The EPSO optimization algorithm parameters were set as
shown in Table 1.
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Table 1. Parameters of the EPSO optimization algorithm.

Parameter Np wmin wmax c1 c2 pm,min pm,max

Value 30 0.4 0.9 1.497 1.497 0.1 0.6

Figure 8 depicts the variation curve of the minimum average envelope entropy value
in the EPSO optimal value search with the number of iterations, g; the parameters of
variational mode decomposition are then determined as K = 6 and α = 5.67.
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Figure 8. Iterative process of variational mode decomposition parameter optimization.

The first 70 wind speed data points were subjected to EVMD to generate six mode func-
tions (u1, . . . , u6), as shown in Figure 9. In order to compare the validity of decomposition,
the wind speed data were decomposed using ensemble empirical mode decomposition
(EEMD). When the standard deviation of Gaussian white noise was set to 0.4 and the
noise order was set to 50 in EEMD, the wind speed data were decomposed into five IMF
components and one residual component, r, as shown in Figure 10.
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Figure 9. EVMD results of the first 70 points in the wind speed series.
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Figure 10. Ensemble empirical mode decomposition results of the first 70 points of the wind speed series.

Analyzing the characteristics of each component of EVMD and EEMD, the highest
frequency component’s amplitude in EVMD is between [−0.35, 0.40], with a component
mean of −0.01, and the highest frequency component’s amplitude in EEMD is between
[−0.93, 0.83], with a component mean of 0.03. Compared with EEMD, it is evident that
EVMD decomposes the high-frequency component more completely. When the waveforms
of the lowest frequency component generated by the two approaches are compared, the
lowest frequency component of EVMD can better depict the long-term fluctuation features
of the wind speed.

The BLS forecasting model was used for each EVMD subseries of the first 70 wind
speed data points, and the forecasting result at the 71st point was derived. We updated
the input data and performed the EVMD-BLS forecasting procedure 30 times to obtain
the expected wind speeds at the 71st to 100th points, calculate the forecast error at the
71st to 100th points, and obtain the forecasting error series. The ARIMA model for the
error series was constructed in order to calculate the error forecasting value at the 101st
point. Meanwhile, the corrected forecasting result of the 101st point was obtained by
superimposing the 101st point of EVMD-BLS and the error forecasting results for the
same point.

To validate the prediction performance of the EVMD-BLS model, the ARIMA, BP, EEMD-
SVM, EEMD-DBN, EEMD-BLS, and EVMD-DBN models were employed for comparison.

In this paper, the mapping features of the BLS model are set to 30, each mapping
feature contains 100 nodes, and the enhanced nodes are set to 300. The DBN network
structure is set to 100-500-500-100. The simulation experiment employed these seven
models to predict ultra-short-term wind speed at the 101st to 144th points, with the results
are presented in Figure 11.

The wind speed forecast results of the seven models are generally similar to the actual
wind speed fluctuation trends, and EEMD-DBN, EEMD-BLS, EVMD-DBN, and EVMD-BLS
are better at tracking actual wind speed variation. We used the RMSE, MAE, and sMAPE
to evaluate the forecasting performance of these models; the results are shown in Table 2.



Energies 2022, 15, 4492 15 of 21

Energies 2022, 15, x FOR PEER REVIEW 15 of 21 
 

 

The BLS forecasting model was used for each EVMD subseries of the first 70 wind 

speed data points, and the forecasting result at the 71st point was derived. We updated 

the input data and performed the EVMD-BLS forecasting procedure 30 times to obtain the 

expected wind speeds at the 71st to 100th points, calculate the forecast error at the 71st to 

100th points, and obtain the forecasting error series. The ARIMA model for the error series 

was constructed in order to calculate the error forecasting value at the 101st point. Mean-

while, the corrected forecasting result of the 101st point was obtained by superimposing 

the 101st point of EVMD-BLS and the error forecasting results for the same point. 

To validate the prediction performance of the EVMD-BLS model, the ARIMA, BP, 

EEMD-SVM, EEMD-DBN, EEMD-BLS, and EVMD-DBN models were employed for com-

parison. 

In this paper, the mapping features of the BLS model are set to 30, each mapping 

feature contains 100 nodes, and the enhanced nodes are set to 300. The DBN network 

structure is set to 100-500-500-100. The simulation experiment employed these seven mod-

els to predict ultra-short-term wind speed at the 101st to 144th points, with the results are 

presented in Figure 11. 

 

Figure 11. Wind speed forecasting results of seven different models. 

The wind speed forecast results of the seven models are generally similar to the actual 

wind speed fluctuation trends, and EEMD-DBN, EEMD-BLS, EVMD-DBN, and EVMD-

BLS are better at tracking actual wind speed variation. We used the RMSE, MAE, and 

sMAPE to evaluate the forecasting performance of these models; the results are shown in 

Table 2. 

Table 2. Evaluation result of seven forecasting models. 

Model 
δRMSE 

(m/s) 

δMAE 

(m/s) 

δsMAPE 

(%) 

t 

(s) 

ARIMA 0.64 0.54 12.19 91.07 

BP 0.68 0.53 12.77 101.85 

EEMD-SVM 0.62 0.48 12.24 226.43 

EEMD-DBN 0.46 0.37 9.49 478.99 

EEMD-BLS 0.49 0.37 9.20 203.01 

EVMD-DBN 0.46 0.34 8.85 235.92 

EVMD-BLS 0.38 0.31 7.85 190.45 

100 110 120 130 140
1

2

3

4

5

6

7

8  Actual data

 ARIMA

 BP

 EEMD-SVM

 EEMD-DBN

 EEMD-BLS

 EVMD-DBN

 EVMD-BLS
v w

 （
m

/s
）

t  （10min）

Figure 11. Wind speed forecasting results of seven different models.

Table 2. Evaluation result of seven forecasting models.

Model δRMSE
(m/s)

δMAE
(m/s)

δsMAPE
(%)

t
(s)

ARIMA 0.64 0.54 12.19 91.07
BP 0.68 0.53 12.77 101.85

EEMD-SVM 0.62 0.48 12.24 226.43
EEMD-DBN 0.46 0.37 9.49 478.99
EEMD-BLS 0.49 0.37 9.20 203.01

EVMD-DBN 0.46 0.34 8.85 235.92
EVMD-BLS 0.38 0.31 7.85 190.45

In comparing the evaluation index of the seven models, the forecasting models using
time–frequency analysis perform significantly better than the ARIMA and BP models.
Among the three EEMD forecasting models, the EEMD-DBN and EEMD-BLS models out-
perform the EEMD-SVM model, while the EEMD-BLS model has the faster running speed.
In both of the models using DBN, the EVMD-DBN model has higher prediction accuracy
and efficiency than the EEMD-DBN model; however, the amplitude of the high-frequency
component of the EEMD is large, and affects overall prediction accuracy. Furthermore, the
Gaussian white noise introduced by the EEMD in signal decomposition increases computa-
tion time. Compared to the EVMD-DBN model, the EVMD-BLS model has higher wind
speed forecasting accuracy and can greatly reduce computing time. Statistical analysis of
the forecasting errors of the seven models was performed, and the results are presented in
Figure 12.

For the seven combined models, the distribution of ultra-short-term wind speed
prediction errors is as follows: (1) The percentage of prediction errors in the (−0.5, 0.5)
interval is 29.54% for the ARIMA model, 29.54% for the EEMD-SVM model, 38.63% for the
EEMD-DBN model, 43.18% for the EEMD-BLS model, 50% for the EVMD-DBN model, and
45.45% for the EVMD-BLS model; (2) The percentage of prediction errors in the (−1.0, 1.0)
interval is 81.81% for the ARIMA model, 86.36% for the EEMD-SVM model, 93.18% for the
EEMD-DBN model, 90.91% for the EEMD-BLS model, 93.18% for the EVMD-DBN model,
and 100% for the EVMD-BLS model. Therefore, the prediction errors of the EVMD-BLS
model are all less than 1 m/s, and the computing time is short.

The Diebold–Mariano (DM) test is introduced to further evaluate the validity of the
forecasting model in this paper. The DM test results of the seven forecasting models are
shown in Table 3.
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Figure 12. Forecasting-error statistics of seven models.

Table 3. Evaluation result of forecasting models.

BP EEMD-SVM EEMD-DBN EEMD-BLS EVMD-DBN EVMD-BLS

p-value

ARIMA 0.647 0.597 0.018 0.03 0.015 0.003
BP / 0.476 0.015 0.036 0.007 0.003

EEMD-SVM / / 0.107 0.17 0.102 0.021
EEMD-DBN / / / 0.445 0.986 0.014
EEMD-BLS / / / / 0.559 0.034

EVMD-DBN / / / / / 0.088

DM-value

ARIMA −0.461 0.533 2.467 2.239 2.524 3.195
BP / 0.719 2.547 2.167 2.807 3.195

EEMD-SVM / / 1.646 1.397 1.67 2.389
EEMD-DBN / / / −0.771 −0.017 2.565
EEMD-BLS / / / / 0.589 2.191

EVMD-DBN / / / / / 1.744

According to the DM test method, the tested model’s accuracy is better than the
reference model when the p-value is <0.05 and the DM value is >0. As shown in Table 3,
except for the BP model, the forecasting accuracy of ARIMA is lower than the other
five models. In particular, the EVMD-BLS method proposed in this paper significantly
outperforms the ARIMA, BP, EEMD-SVM, EEMD-DBN, and EEMD-BLS models. Compared
with the EVMD-DBN model, the p-value of 0.088 from the DM test of the EVMD-BLS model
is very close to the threshold of significant difference (0.05), and its time, error statistics,
and three evaluated indexes are better than those of EVMD-DBN.

4.3. Experiment 2: EVMD-SR-BLS-ARIMA Hybrid Forecasting Model

According to the method introduced in Sections 3.2 and 3.3, the EVMD-SR-BLS-
ARIMA hybrid model was used to forecast the ultra-short-term wind speed of wind
farms, with the 101st point in the forecasting process used as an example to demonstrate
the modeling.

With the input wind speed data length Ns set to 100, the input wind speed data are
[X1, . . . , X100].

The EPSO algorithm was used to solve the optimization parameters K and α as 7 and
6.40, respectively, and the input data were decomposed by the EVMD to obtain seven
subseries (u1, . . . , u7), as shown in Figure 13a. Using sample entropy (SE) to evaluate the
complexity of the decomposed subseries, the SE evaluation parameters m and r were set
to 2 and 0.2 SD (standard deviation), respectively; the SE results for each subseries are
presented in Figure 14.
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Figure 13. Decomposition result of the first 100 points in the wind speed series: (a) result of EVMD
and (b) result of subseries reconstruction.
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Figure 14. Subseries sample entropy of EVMD.

In Figure 14, the horizontal axis u value of 0 represents the sample entropy of the
undecomposed wind speed data, u0. The sample entropy values of each subseries u1~u7
are 60.32%, 73.68%, 63.47%, 61.56%, 71.10%, 20.22% and 21.69% of the sample entropy
value of u0, respectively, and the minimum sample entropy, Ensamp,min, is 0.299. The high-
entropy-value subseries were screened as u1~u5 and the low-entropy-value sequences
as u6 and u7 using the method shown in Figure 6, with 1.2 Ensamp,min as the threshold.
The subseries u6 and u7 were reconstructed as the new subseries SrL, and the adjacent
high-entropy subseries were reconstructed with the requirement that the change in Ensamp
did not exceed 10%. The reconstructed subseries are shown in Figure 13b. The nascent
subsequence SrH1 is u1, SrH2 is u2, SrH3 is u3 combined with u4, SrH4 is u5, and SrL is u6
fused with u7. In the EVMD-SR-BLS-ARIMA model, the forecasting results of the nascent



Energies 2022, 15, 4492 18 of 21

high-entropy subseries SrH are calculated by the BLS model, while the ARIMA model
obtains the forecasting result of the new low-entropy subseries.

The simulation experiment employed the EVMD-SR-BLS-ARIMA model to predict
ultra-short-term wind speed at the 101st to 144th points, with the results presented in
Figure 15. The green dotted lines with triangle symbols represent the EVMD-SR-BLS-
ARIMA model’s forecasting results, while the red dashed lines with dots represent the
results of the error-corrected EVMD-SR-BLS-ARIMA model. Wind speed variations can
be tracked with excellent precision using these two models; their forecasting evaluation
results are shown in Table 4.
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Figure 15. Wind speed forecasting results of EVMD-SR-BLS-ARIMA model.

Table 4. Evaluation indexes by EVMD-SR-BLS-ARIMA model.

Model δRMSE
(m/s)

δMAE
(m/s)

δsMAPE
(%)

t
(s)

EVMD-SR-BLS-ARIMA 0.45 0.32 8.25 126.94
Error-corrected

EVMD-SR-BLS-ARIMA 0.34 0.30 7.99 172.67

The forecasting accuracy of the EVMD-SR-BLS-ARIMA model is similar to that of
the EVMD-BLS model, and is better than the other models, as shown in Table 3. Due
to the complexity of evaluating the wind speed decomposition subseries using sample
entropy, the low-entropy series is passed to the ARIMA model for processing, and the
adjacent approximate high-entropy series are reconstructed to reduce the model size and
computational time.

The model calculation time is decreased from 190.45 s in the EVMD-BLS model to
126.94 s, which is just 66.65% of the EVMD-BLS model’s calculation time. The δRMSE, δMAP,
and δMAPE of the error-corrected EVMD-SR-BLS-ARIMA model are 0.34 m/s, 0.30 m/s, and
8.38%, respectively, and its computation time is 90.66% of that of the EVMD-BLS model. To
summarize, the EVMD-SR-BLS-ARIMA model can provide an excellent balance of accuracy
and efficiency in wind speed forecasting.

The statistical analysis results of the forecasting error of the two reconstructed models
are shown in Figure 16. It can be observed that (1) the EVMD-SR-BLS-ARIMA model’s
forecasting error is [−1.33, 1.04], the probability that the forecasting error is in the (−1.0,
1.0) interval is 93.18%, and the probability that the forecasting error is in the (−0.5, 0.5)
interval is 68.18%; (2) the error-corrected EVMD-SR-BLS-ARIMA model’s forecasting error
is [−0.68, 0.55], and the probability that the forecasting error is in the (−0.5, 0.5) interval
is 84.09%.
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Figure 16. Forecasting errors and statistics of EVMD-SR-BLS-ARIMA models: (a) forecasting error
and (b) error statistics.

This paper used two different days of wind speed data from the same wind farm
(collected on 6 and 13 January 2016) to verify the applicability of the model; the results
are shown in Figure 17. Compared with the ARIMA model, the p-value and DM-value
of the error-corrected EVMD-SR-BLS-ARIMA model are 0.045 and 2.057, and its δsMAPE
is 7.41% less than that of ARIMA (10.58%) for 6 January 2016; the p-value and DM-value
of the error-corrected EVMD-SR-BLS-ARIMA model are 0.033 and 2.20, and its δsMAPE is
6.62% less than that of ARIMA (7.73%) for 13 January 2016. Hence, the proposed model
has better applicability.
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Figure 17. Wind speed forecasting results at different times: (a) 6 January 2016 and (b) 13 January 2016.

According to the above experimental simulation results, it can be observed that (1) the
proposed model has higher prediction accuracy and stronger prediction performance; and
(2) the proposed model can significantly improve computational operation efficiency and
reduce the time required to completion.

5. Conclusions

In view of the fact that actual wind speed is affected by weather, temperature, and
random factors, there are a large number of outliers in wind speed prediction and it is
strongly nonlinear. In this study, a hybrid intelligent forecasting model for ultra-short-term
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wind speed forecasting based on EVMD, SR, and BLS is proposed. The conclusions of this
paper can be listed as follows:

• EVMD was used to decompose the wind speed time series, while the minimum
mean envelope entropy (MMEE) and enhanced particle swarm optimization (EPSO)
algorithms were introduced to attain the optimal values of K and α of EVMD.

• SR was applied to recombine the subseries obtained by EVMD. The subseries of EVMD
were adaptively divided into high-entropy and low-entropy subseries. Adjacent high-
entropy subseries of approximate entropy values were merged to obtain a new group
of reconstructed high-entropy subseries, and the low-entropy subseries were merged
into a new subseries as well.

• The EVMD-SR-BLS-ARIMA hybrid wind speed forecasting model was constructed to
obtain the reconstructed subseries forecasting results. Experimental results showed
that the proposed method can significantly improve the forecasting accuracy and
reduce the time required.

In future research, we intend to select more appropriate models for wind speed datasets
with different features, investigate forecasting results with a nonlinear weighted combination of
components, improve forecasting accuracy characteristics from the standpoint of BLS structure,
optimize this model to carry out wind power forecasting, and identify the optimal configuration
of the energy storage system capacity of wind power systems.
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